• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Switching Stage Design and Implementation for an Efficient Three-Phase 5kW PWM DC-DC Converter

Urciuoli, Damian 14 August 2003 (has links)
With the development of fuel cell based power systems, the need for more advanced DC-DC power converters has become apparent. In such applications DC-DC converters provide an important link between low voltage fuel cell sources and inverter buses operating at significantly higher voltages. Advancements in converter efficiency, cost reduction, and size reduction are the most necessary. These challenges are formidable, even when considering the improvements made to conventional DC-DC topologies. However, it can be possible to achieve these criteria through the implementation of more advanced topologies. A recently developed efficient three-phase DC-DC topology offers benefits over standard designs. Passive component sizes and output ripple voltage were reduced as a result of an effective boost in switching frequency. Converter output voltage was reached more easily due to an increased transformer voltage boost ratio in addition to the turns ratio. For cost reduction, the converter was designed and built with discrete components instead of more expensive integrated modules. This thesis presents an overview of the three-phase converter, with a detailed focus on the design, implementation, and performance of the switching stage. The functionality of the three-phase topology is covered along with the selection of converter components. Simulation results are shown for both ideal and real converter models. Considerations for the switching device package with respect to circuit board and heat sinking configurations are discussed in support of the selection of an insulated metal substrate (IMS) circuit board. An effective circuit layout designed to minimize parasitic trace inductances as well as provide favorable component positioning is presented. Experimental converter test results are shown and the causes of undesired effects are identified. Switching stage modifications and their results are discussed along with the benefits of proposed future design enhancements. / Master of Science
2

Thermal analysis of high power led arrays

Ha, Min Seok 17 November 2009 (has links)
LEDs are being developed as the next generation lighting source due to their high efficiency and long life time, with a potential to save $15 billion per year in energy cost by 2020. State of the art LEDs are capable of emitting light at ~115 lm/W and have lifetime over 50,000 hours. It has already surpassed the efficiency of incandescent light sources, and is even comparable to that of fluorescent lamps. Since the total luminous flux generated by a single LED is considerably lower than other light sources, to be competitive the total light output must be increased with higher forward currents and packages of multiple LEDs. However, both of these solutions would increase the junction temperature, which degrades the performance of the LED--as the operating temperature goes up, the light intensity decreases, the lifetime is reduced, and the light color changes. The word "junction" refers to the p-n junction within the LED-chips. Critical to the temperature rise in high powered LED sources is the very large heat flux at the die level (100-500 W/cm2) which must be addressed in order to lower the operating temperature in the die. It is possible to address the spreading requirements of high powered LED die through the use of power electronic substrates for efficient heat dissipation, especially when the die are directly mounted to the power substrate in a chipon- board (COB) architecture. COB is a very attractive technology for packaging power LEDs which can lead improved price competiveness, package integration and thermal performance. In our work high power LED-chips (>1W/die) implementing COB architectures were designed and studied. Substrates for these packaging configurations include two types of power electronic substrates; insulated-metal-substrates (IMS) and direct-bonded-copper (DBC). To lower the operating temperature both the thermal impedance of the dielectric layer and the heat spreading in the copper circuit layers must be studied. In the analysis of our architectures, several lead free solders and thermal interface materials were considered. We start with the analysis of single-chip LED package and extend the result to the multi-chip arrays. The thermal resistance of the system is only a function of geometry and thermal conductivity if temperature-independent properties are used. Thus through finite element analysis (ANSYS) the effect of geometry and thermal conductivity on the thermal resistance was investigated. The drawback of finite element analysis is that many simulations must be conducted whenever the geometry or the thermal conductivity is changed. To bypass same of the computational load, a thermal resistance network was developed. We developed analytical expressions of the thermal resistance, especially focusing on the heat spreading effect at the substrate level. Finally, multi-chip LED arrays were analyzed through finite element analysis and an analytical analysis; where die-spacing is another important factor to determine the junction temperature. With this thermal analysis, critical design considerations were investigated in order to minimize device temperatures and thereby maximizing light output while also maximizing device reliability.
3

Vers la compréhension des mécanismes de dégradation et de vieillissement des assemblages photovoltaïques pour des applications sous haute concentration / On the understanding of failure and ageing mechanisms of photovoltaics cell-assemblies used under high concentration

Mabille, Loïc 13 March 2014 (has links)
Les systèmes photovoltaïques à concentration, ou CPV, reposent sur le principe de la concentration des rayons du soleil sur une cellule photovoltaïque à très haut rendement. Le CPV reste jeune face au photovoltaïque (PV) classique qui accumule plus de 30 ans de retour d’expérience.La pérennisation de cette technologie CPV ne passera que par la démonstration d’une certaine maturité. Aussi, la question de la fiabilité de ces systèmes est plus que jamais d’actualité. Dans ce contexte, le Commissariat à L’Energie Atomique et aux Energies Alternatives (CEA) a répondu à la sollicitation lancée par des fabricants de modules CPV français sur la thématique de la conception et de la fiabilisation de modules CPV par une collaboration de ses différents laboratoires, dont le Laboratoire des Modules Photovoltaïques (LMPV). C’est au sein de ce laboratoire que s’effectuent les travaux de thèse. La diversité des éléments constituant un module CPV a poussé les travaux de thèse à se concentrer sur le coeur fonctionnel des modules : les assemblages CPV. Une première partie des travaux de thèse a consisté à mettre en place les bons outils de caractérisation, en partant parfois d’une feuille blanche. La mesure de caractéristique IV dans l’obscurité, la mesure de réponse spectrale, la tomographie RX ou encore l’électroluminescence sont autant de moyens de caractérisation de cellules multi-jonctions amenés par les travaux de thèse. Les efforts conduits sur l’électroluminescence auront permis l’invention d’une nouvelle technique de caractérisation des interfaces cellule/ substrat des assemblages CPV, concrétisée par le dépôt d’un brevet. Une collaboration entre le laboratoire d’accueil et l’Institut de l’Energie Solaire (IES) à Madrid a permis l’accès à la mesure de performance des assemblages CPV sous éclairement. Tous ces moyens ont rendu possible une caractérisation fine des assemblages CPV et ont permis de s’intéresser à leur robustesse-fiabilité, deuxième partie des travaux de thèse. Deux types d’assemblages CPV ont été étudiés durant les travaux de thèse. Le premier, basé sur un substrat Direct Bonded Copper (DBC) correspond à l’état de l’art et est le plus utilisé dans l’industrie CPV. Le deuxième, en rupture technologique avec l’état de l’art, repose sur un Substrat Métal Isolé (SMI), et a été intégralement développé par le CEA et ses partenaires industriels. L’étude de la robustesse de ces assemblages CPV a été faite par l’emploi de tests de vieillissement accéléré dont la nature est justifiée par le retour d’expérience et la définition des spécifications environnementales. Aucune défaillance n’a été observé sur chacun des types d’assemblage. Les assemblages SMI se comportent comme les assemblages DBC, considérés comme références. Les travaux de thèse offrent donc un premier retour d’expérience propre au laboratoire d’accueil et la mise en place d’une infrastructure complète de caractérisation d’assemblage CPV permet aujourd’hui au CEA d’être un acteur clé du CPV en France. / Concentrating Photovoltaic (CPV) is based on the concentration of solar rays on very-high efficienciessolar cells. Multi-junction architectures used in CPV systems reach efficiency superior to44% under concentration. This has created great interest for this technology over the past decade.Nevertheless, CPV has still to be proven reliable. This work contributes to this goal.CPV assemblies -or receivers- are defined by the electrical, mechanical and thermal cohesionof a multi-junction solar cell on an appropriate substrate. The complexity of multi-junctionarchitecture does not allow their characterization with the existing PV tools. Therefore, the firstachievement of the work was the development of a complete infrastructure for the characterizationof such devices. The second part developed accelerated ageing tests and analysis methods to studythe degradation process of these assemblies.A new method for the characterization of die-attached CPV cell assembly has been provensuccessful. It is called EEL for Enhanced ElectroLuminescence. This method is cost effective andreally fast and has therefore been patented. Regarding the characterization of performance of CPVcell assembly under illumination (2nd part of the thesis), collaboration has been made with theInstituto de Energìa Solar (IES) in Madrid, Spain. Thanks to this collaboration, two types of CPVcell assemblies have been studied. One based on the Direct Bonded Copper (DBC) substrate, correspondingto the state-of-the-art and most used type of substrate in CPV industry. The other is acompletely new type of substrate, inspired by the Insulated Metal Substrate (IMS). This new IMSbased CPV cell assembly has been developed by the CEA and its industrial partners. The reliabilitystudy of these CPV cell assemblies (DBC and IMS) has been conducted through acceleratedageing tests. It has been shown that none of the DBC or IMS cell assembly present infant mortalityor failure upon ageing.This work has launched the CPV activity at INES. Results on receivers now need to be confirmedon complete CPV-modules and systems.
4

White Top-Emitting OLEDs on Metal Substrates

Freitag, Patricia 18 April 2011 (has links)
This work focusses on the development of top-emitting white organic light-emitting diodes (OLEDs), which can be fabricated on metal substrates. Bottom-emitting OLEDs have been studied intensively over the years and show promising perspectives for future commercial applications in general lighting. The development of top-emitting devices has fallen behind despite the opportunities to produce these devices also on low-cost opaque substrates. This is due to the challenges of top-light-emission concerning the achievement of a broad and well-balanced white emission spectrum in presence of a strong microcavity. The following work is a further step towards the detailed understanding and optimization of white top-emitting OLEDs. First, the available metal substrates and the deposited silver electrodes are examined microscopically to determine their surface characteristics and morphology in order to assess their applicability for thin-film organic stacks of OLEDs. The examination shows the suitability for untreated Alanod metal substrates, which display low surface roughness and almost no surface defects. For the deposited silver anodes, investigations via AFM show a strong influence of the deposition rate on the surface roughness. In the main part of the work top-emissive devices with both hybrid and all-phosphorescent architecture are investigated, in which three or four emitter materials are utilized to achieve maximum performance. The feasibility for top-emitting white OLEDs in first and second order devices is investigated via optical simulations, using the example of a three-color hybrid OLED. Here, the concept of a dielectric capping layer on top of the cathode is an essential criterion for broadband and nearly angle independent light emission. The main focus concerning the investigation of fabricated devices is the optimization of the organic stacks to achieve high efficiencies as well as excellent color quality of warm white emission. The optimization of the hybrid layer structure based on three emitter materials using a combined aluminum-silver anode mirror resulted in luminous efficacies up to 13.3 lm/W and 5.3 % external quantum efficiency. Optical analysis by means of simulation revealed a superior position concerning internal quantum efficiency compared to bottom-emitting devices with similar layer structure. The devices show an enhanced emission in forward direction compared to an ideal Lambertian emitter, which is highly preferred for lighting applications. The color quality - especially for devices based on a pure Al anode - is showing excellent color coordinates near the Planckian locus and color rending indices up to 77. The introduction of an additional yellow emitter material improves the luminous efficacy up to values of 16.1 lm/W and external quantum efficiencies of 5.9 %. With the choice of a all-phosphorescent approach, using orange-red, light blue and green emitter materials, luminous efficacies of 21.7 lm/W are realized with external quantum efficiencies of 8.5 %. Thereby, color coordinates of (x, y) = (0.41, 0.45) are achieved. Moreover, the application of different crystalline capping layers and alternative cathode materials aim at a scattering of light that further reduces the angular dependence of emission. Experiments with the crystallizing material BPhen and thin carbon nanotube films (CNT) are performed. Heated BPhen capping layer with a thickness of 250 nm show a lower color shift compared to the NPB reference capping layer. Using CNT films as cathode leads to a broadband white emission at a cavity thickness of 160 nm. However, due to very high driving voltages needed, the device shows low luminous efficacy. Finally, white top-emitting organic LEDs are successfully processed on metal substrates. A comparison of three and four color based hybrid devices reveal similar performance for the devices on glass and metal substrate. Only the devices on metal substrate show slightly higher leakaged currents. During repeated mechanical bending experiments with white devices deposited on 0.3 mm thin flexible Alanod substrates, bending radii up to 1.0 cm can be realized without device failure. / Diese Arbeit richtet ihren Schwerpunkt auf die Entwicklung von top-emittierenden weißen organischen Leuchtdioden (OLEDs), welche auch auf Metallsubstraten gefertigt werden können. Im Laufe der letzten Jahre wurden bottom-emittierende OLEDs sehr intensiv studiert, da sie vielversprechende Perspektiven für zukünftige kommerzielle Anwendungen in der Allgemeinbeleuchtung bieten. Trotz der Möglichkeit, OLEDs auch auf kostengünstigen lichtundurchlässigen Substraten fertigen zu können, blieb die Entwicklung von top-emittierenden Bauteilen dabei allerdings zurück. Dies läßt sich auf die enormen Herausforderungen von top-emittierenden OLEDs zurückführen, ein breites und ausgeglichenes weißes Abstrahlungsspektrum in Gegenwart einer Mikrokavität zu generieren. Die folgende Arbeit liefert einen Beitrag zum detaillierten Verständnis und der Optimierung von weißen top-emittierenden OLEDs. Zunächst werden die verfügbaren Metallsubstrate und abgeschiedenen Silberelektroden auf ihre Oberflächeneigenschaften und Morphologie mikroskopisch untersucht, um damit ihre Verwendbarkeit für organische Dünnfilmstrukturen in OLEDs einzuschätzen. Die Untersuchung zeigt eine Eignung von unbehandelten Alanod Metallsubstraten auf, welche eine niedrige Oberflächenrauigkeit und fast keine Oberflächendefekte besitzen. Bei den abgeschiedenen Silberelektroden zeigen Untersuchungen mit dem Rasterkraftmikroskop eine starke Beeinflussung der Oberflächenrauigkeit durch die Aufdampfrate. Im Hauptteil der Arbeit werden top-emittierende Dioden mit hybrid und voll-phosphoreszenter Architektur untersucht, in welcher drei oder vier Emittermaterialien verwendet werden, um eine optimale Leistungscharakteristik zu erreichen. Die Realisierbarkeit von top-emittierenden weißen OLEDs in Dioden erster und zweiter Ordnung wird durch optische Simulation am Beispiel einer dreifarb-OLED mit Hybridstruktur ermittelt. Dabei ist das Konzept der dielektrischen Deckschicht - aufgebracht auf die Kathode - ein essenzielles Kriterium für breitbandige und annähernd winkelunabhängige Lichtemission. Der Schwerpunkt im Hinblick auf die Untersuchung von hergestellten Dioden liegt in der Optimierung der organischen Schichtstrukturen, um hohe Effizienzen sowie exzellente warmweiße Farbqualität zu erreichen. Im Rahmen der Optimierung von hybriden Schichtstrukturen basierend auf drei Emittermaterialien resultiert die Verwendung eines kombinierten Aluminium-Silber Anodenspiegels in einer Lichtausbeute von 13.3 lm/W und einer externen Quanteneffizienz von 5.3 %.Eine optische Analyse mit Hilfe von Simulationen zeigt eine überlegene Stellung hinsichtlich der internen Quanteneffizient verglichen mit bottom-emittierenden Dioden ähnlicher Schichtstruktur. Die Dioden zeigen eine verstärkte vorwärts gerichtete Emission im Vergleich zu einem idealen Lambertschen Emitter, welche in hohem Maße für Beleuchtungsanwendungen erwünscht ist. Es kann eine ausgezeichnete Farbqualität erreicht werden - insbesondere für Dioden basierend auf einer reinen Aluminiumanode - mit Farbkoordinaten nahe der Planckschen Strahlungskurve und Farbwiedergabeindizes bis zu 77. Die weitere Einführung eines zusätzlichen gelben Emittermaterials verbessert die Lichtausbeute auf Werte von 16.1 lm/W und die externe Quanteneffizient auf 5.9 %. Mit der Wahl eines voll-phosphoreszenten Ansatzes unter der Verwendung eines orange-roten, hellblauen und grünen Emittermaterials werden Lichtausbeuten von 21.7 lm/W und externe Quanteneffizienten von 8.5 % erzielt. Damit werden Farbkoordinaten von (x, y) = (0.41, 0.45) erreicht. Darüberhinaus zielt die Verwendung von verschiedenen kristallinen Deckschichten und alternativen Kathodenmaterialien auf eine Streuung des ausgekoppelten Lichts ab, was die Winkelabhängigkeit der Emission vermindern soll. Experimente mit dem kristallisierenden Material BPhen und dünnen Filmen aus Kohlenstoffnanoröhren werden dabei durchgeführt. Geheizte BPhen Deckschichten mit einer Schichtdicke von 250 nm zeigen eine geringere Farbverschiebung verglichen mit einer NPB Referenzdeckschicht. Die Verwendung von Kohlenstoffnanoröhren als Kathode führt zu einer breitbandigen weißen Emission bei einer Kavitätsschichtdicke von 160 nm. Schließlich werden weiße top-emittierende organische Leuchtdioden erfolgreich auf Metallsubstraten prozessiert. Ein Vergleich von drei- und vierfarb-basierten hybriden Bauteilen zeigt ähnliche Leistungsmerkmale für Dioden auf Glas- und Metallsubstraten. Während wiederholten mechanischen Biegeexperimenten mit weißen Dioden auf 0.3 mm dicken flexiblen Alanodsubstraten können Biegeradien bis zu 1.0 cm ohne Bauteilausfall realisiert werden.
5

White Top-Emitting OLEDs on Metal Substrates / Weiße top-emittierende OLEDs auf Metallsubstraten

Freitag, Patricia 19 July 2011 (has links) (PDF)
This work focusses on the development of top-emitting white organic light-emitting diodes (OLEDs), which can be fabricated on metal substrates. Bottom-emitting OLEDs have been studied intensively over the years and show promising perspectives for future commercial applications in general lighting. The development of top-emitting devices has fallen behind despite the opportunities to produce these devices also on low-cost opaque substrates. This is due to the challenges of top-light-emission concerning the achievement of a broad and well-balanced white emission spectrum in presence of a strong microcavity. The following work is a further step towards the detailed understanding and optimization of white top-emitting OLEDs. First, the available metal substrates and the deposited silver electrodes are examined microscopically to determine their surface characteristics and morphology in order to assess their applicability for thin-film organic stacks of OLEDs. The examination shows the suitability for untreated Alanod metal substrates, which display low surface roughness and almost no surface defects. For the deposited silver anodes, investigations via AFM show a strong influence of the deposition rate on the surface roughness. In the main part of the work top-emissive devices with both hybrid and all-phosphorescent architecture are investigated, in which three or four emitter materials are utilized to achieve maximum performance. The feasibility for top-emitting white OLEDs in first and second order devices is investigated via optical simulations, using the example of a three-color hybrid OLED. Here, the concept of a dielectric capping layer on top of the cathode is an essential criterion for broadband and nearly angle independent light emission. The main focus concerning the investigation of fabricated devices is the optimization of the organic stacks to achieve high efficiencies as well as excellent color quality of warm white emission. The optimization of the hybrid layer structure based on three emitter materials using a combined aluminum-silver anode mirror resulted in luminous efficacies up to 13.3 lm/W and 5.3 % external quantum efficiency. Optical analysis by means of simulation revealed a superior position concerning internal quantum efficiency compared to bottom-emitting devices with similar layer structure. The devices show an enhanced emission in forward direction compared to an ideal Lambertian emitter, which is highly preferred for lighting applications. The color quality - especially for devices based on a pure Al anode - is showing excellent color coordinates near the Planckian locus and color rending indices up to 77. The introduction of an additional yellow emitter material improves the luminous efficacy up to values of 16.1 lm/W and external quantum efficiencies of 5.9 %. With the choice of a all-phosphorescent approach, using orange-red, light blue and green emitter materials, luminous efficacies of 21.7 lm/W are realized with external quantum efficiencies of 8.5 %. Thereby, color coordinates of (x, y) = (0.41, 0.45) are achieved. Moreover, the application of different crystalline capping layers and alternative cathode materials aim at a scattering of light that further reduces the angular dependence of emission. Experiments with the crystallizing material BPhen and thin carbon nanotube films (CNT) are performed. Heated BPhen capping layer with a thickness of 250 nm show a lower color shift compared to the NPB reference capping layer. Using CNT films as cathode leads to a broadband white emission at a cavity thickness of 160 nm. However, due to very high driving voltages needed, the device shows low luminous efficacy. Finally, white top-emitting organic LEDs are successfully processed on metal substrates. A comparison of three and four color based hybrid devices reveal similar performance for the devices on glass and metal substrate. Only the devices on metal substrate show slightly higher leakaged currents. During repeated mechanical bending experiments with white devices deposited on 0.3 mm thin flexible Alanod substrates, bending radii up to 1.0 cm can be realized without device failure. / Diese Arbeit richtet ihren Schwerpunkt auf die Entwicklung von top-emittierenden weißen organischen Leuchtdioden (OLEDs), welche auch auf Metallsubstraten gefertigt werden können. Im Laufe der letzten Jahre wurden bottom-emittierende OLEDs sehr intensiv studiert, da sie vielversprechende Perspektiven für zukünftige kommerzielle Anwendungen in der Allgemeinbeleuchtung bieten. Trotz der Möglichkeit, OLEDs auch auf kostengünstigen lichtundurchlässigen Substraten fertigen zu können, blieb die Entwicklung von top-emittierenden Bauteilen dabei allerdings zurück. Dies läßt sich auf die enormen Herausforderungen von top-emittierenden OLEDs zurückführen, ein breites und ausgeglichenes weißes Abstrahlungsspektrum in Gegenwart einer Mikrokavität zu generieren. Die folgende Arbeit liefert einen Beitrag zum detaillierten Verständnis und der Optimierung von weißen top-emittierenden OLEDs. Zunächst werden die verfügbaren Metallsubstrate und abgeschiedenen Silberelektroden auf ihre Oberflächeneigenschaften und Morphologie mikroskopisch untersucht, um damit ihre Verwendbarkeit für organische Dünnfilmstrukturen in OLEDs einzuschätzen. Die Untersuchung zeigt eine Eignung von unbehandelten Alanod Metallsubstraten auf, welche eine niedrige Oberflächenrauigkeit und fast keine Oberflächendefekte besitzen. Bei den abgeschiedenen Silberelektroden zeigen Untersuchungen mit dem Rasterkraftmikroskop eine starke Beeinflussung der Oberflächenrauigkeit durch die Aufdampfrate. Im Hauptteil der Arbeit werden top-emittierende Dioden mit hybrid und voll-phosphoreszenter Architektur untersucht, in welcher drei oder vier Emittermaterialien verwendet werden, um eine optimale Leistungscharakteristik zu erreichen. Die Realisierbarkeit von top-emittierenden weißen OLEDs in Dioden erster und zweiter Ordnung wird durch optische Simulation am Beispiel einer dreifarb-OLED mit Hybridstruktur ermittelt. Dabei ist das Konzept der dielektrischen Deckschicht - aufgebracht auf die Kathode - ein essenzielles Kriterium für breitbandige und annähernd winkelunabhängige Lichtemission. Der Schwerpunkt im Hinblick auf die Untersuchung von hergestellten Dioden liegt in der Optimierung der organischen Schichtstrukturen, um hohe Effizienzen sowie exzellente warmweiße Farbqualität zu erreichen. Im Rahmen der Optimierung von hybriden Schichtstrukturen basierend auf drei Emittermaterialien resultiert die Verwendung eines kombinierten Aluminium-Silber Anodenspiegels in einer Lichtausbeute von 13.3 lm/W und einer externen Quanteneffizienz von 5.3 %.Eine optische Analyse mit Hilfe von Simulationen zeigt eine überlegene Stellung hinsichtlich der internen Quanteneffizient verglichen mit bottom-emittierenden Dioden ähnlicher Schichtstruktur. Die Dioden zeigen eine verstärkte vorwärts gerichtete Emission im Vergleich zu einem idealen Lambertschen Emitter, welche in hohem Maße für Beleuchtungsanwendungen erwünscht ist. Es kann eine ausgezeichnete Farbqualität erreicht werden - insbesondere für Dioden basierend auf einer reinen Aluminiumanode - mit Farbkoordinaten nahe der Planckschen Strahlungskurve und Farbwiedergabeindizes bis zu 77. Die weitere Einführung eines zusätzlichen gelben Emittermaterials verbessert die Lichtausbeute auf Werte von 16.1 lm/W und die externe Quanteneffizient auf 5.9 %. Mit der Wahl eines voll-phosphoreszenten Ansatzes unter der Verwendung eines orange-roten, hellblauen und grünen Emittermaterials werden Lichtausbeuten von 21.7 lm/W und externe Quanteneffizienten von 8.5 % erzielt. Damit werden Farbkoordinaten von (x, y) = (0.41, 0.45) erreicht. Darüberhinaus zielt die Verwendung von verschiedenen kristallinen Deckschichten und alternativen Kathodenmaterialien auf eine Streuung des ausgekoppelten Lichts ab, was die Winkelabhängigkeit der Emission vermindern soll. Experimente mit dem kristallisierenden Material BPhen und dünnen Filmen aus Kohlenstoffnanoröhren werden dabei durchgeführt. Geheizte BPhen Deckschichten mit einer Schichtdicke von 250 nm zeigen eine geringere Farbverschiebung verglichen mit einer NPB Referenzdeckschicht. Die Verwendung von Kohlenstoffnanoröhren als Kathode führt zu einer breitbandigen weißen Emission bei einer Kavitätsschichtdicke von 160 nm. Schließlich werden weiße top-emittierende organische Leuchtdioden erfolgreich auf Metallsubstraten prozessiert. Ein Vergleich von drei- und vierfarb-basierten hybriden Bauteilen zeigt ähnliche Leistungsmerkmale für Dioden auf Glas- und Metallsubstraten. Während wiederholten mechanischen Biegeexperimenten mit weißen Dioden auf 0.3 mm dicken flexiblen Alanodsubstraten können Biegeradien bis zu 1.0 cm ohne Bauteilausfall realisiert werden.

Page generated in 0.0882 seconds