• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 20
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 153
  • 153
  • 30
  • 27
  • 24
  • 23
  • 16
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Small molecule and polymer templating of inorganic materials

Brennan, Daniel P. January 2006 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Department of Chemistry, 2006. / Includes bibliographical references.
102

Use of photosensitive metal-organic precursors to deposit metal-oxides for thin-film capacitor applications

Barstow, Sean J. 01 December 2003 (has links)
No description available.
103

Mechanisms and Factors Affecting Chromium Oxide Particle reduction in Iron-Chromium Honeycombs

McIntosh, Monique Sandra 20 April 2005 (has links)
In the production of iron chromium honeycombs, iron oxide and chromium oxide mixtures are reduced by hydrogen at elevated temperatures to produce a metallic alloy. The complete reduction of the iron oxide occurs prior to the reduction of the chromium oxide. The reduction of the chromium oxide particles within the iron matrix is affected by factors that include the diffusion of the reduced chromium away from the chromium oxide particle into the iron matrix, the diffusion of the gaseous reactants and products to and from the chromium oxide particles, and the porosity of the iron matrix, which changes as a result of sintering. The type of heat-treatment used, (isothermal or non-isothermal, i.e., holding at a specific temperature versus using a steadily increasing temperature) plays a vital role in how these factors will affect chromium oxide reduction. Experimental data were used in conjunction with sintering and dissolution models to obtain an understanding of the environment in which the chromium oxide particles reduce as a function of heat-treatment. This understanding will assist in the development of more effective processing steps for the reduction of metallic honeycombs from oxide mixtures.
104

Surface Modifications to Mitigate Refractory Degradation in High-Temperature Black Liquor Gasifiers

Pallay, Krista Joy 03 April 2006 (has links)
Ceria (CeO2), chromia (Cr2O3), yttria-stabilized zirconia (Y2O3-ZrO2), and sodium cerium oxide (Na2CeO3) were used as barrier coatings on Ufala, an alumina-based ceramic refractory, to determine if they were effective at increasing the life of the refractory in a high-temperature black liquor gasification environment. The ceria, chromia, and yttria-stabilized zirconia coatings were applied at atmospheric pressure using a coating applicator at the Institute of Paper Science and Technology at the Georgia Institute of Technology. The sodium cerium oxide coatings in addition to the three other coating types were applied under atmospheric pressure at C3 International Technologies in Alpharetta, GA. The coated refractory, as well as a set of uncoated refractory used for baseline analysis, were tested using molten synthetic smelt at 1000C for 36 hours. Uncoated refractory samples were also tested for 12, 72, 120, and 168 hours in order to make a kinetic reaction rate determination. The refractory were analyzed using gravimetric and dimensional analysis, X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy to determine the severity of the physical changes that occurred after exposure to molten smelt. The data gathered from these experiments were not able to conclude that barrier coatings are sufficient to impede corrosion of the Ufala refractory material in molten smelt.
105

Synthesis, Characterization, and Growth Mechanism of Single-Walled Metal Oxide Nanotubes

Mukherjee, Sanjoy 03 July 2007 (has links)
Nanotubes have numerous potential applications in areas such as biotechnology, electronics, photonics, catalysis and separations. There are several challenges to be overcome in order to realize their potential, such as: (1) Synthesis of monodisperse (in diameter and in length) single-walled nanotubes; (2) Quantitative understanding of the mechanism of formation and growth of nanotubes; (3) Capability to engineer the nanotube size; (4) Low temperature synthesis process; and (5) Synthesis of impurity free nanotubes. Our investigation focuses on a class of metal oxide (aluminosilicate/germanate) nanotubes, which are; single walled nanotubes with monodisperse inner and outer diameters, can be synthesized in the laboratory by a low temperature (95ºC) process in mildly acidic aqueous solutions, and their formation timescales is hours, which makes it convenient as a model system to study the mechanisms of nanotube formation. This work is focused on obtaining a qualitative and quantitative understanding of the mechanism of formation of aluminosilicate and aluminogermanate nanotubes. In order to achieve this overall objective, this thesis consists of the following aspects: (1) A systematic phenomenological study of the growth and structural properties of aluminosilicate and aluminogermanate nanotubes. The constant size and increasing nanotube concentration over the synthesis time strongly suggest that these nanotubular are assembled through self-assembly process. (II) Investigation of the mechanism of formation of single-walled aluminogermanate nanotubes provided the central phenomena underlying the formation of these nanostructures: (1) the generation (via pH control) of a precursor solution containing chemically bonded precursors, (2) the formation of amorphous nanoscale (~ 6 nm) condensates via temperature control, and (3) the self-assembly of short nanotubes from the amorphous nanoscale condensates. (III) Synthesis of mixed metal oxide (aluminosilicogermanate) nanotubes with precise control of elemental composition, diameter and length of the product nanotubes. (IV) Preliminary work towards generalization of the kinetic model developed for aluminogermanate nanotubes to a larger class of metal oxide nanotubes. It was found that the size of nanotubes is dependent on the amount of precursors that can be packed in a single ANP and in turn depends on the size of the ANP.
106

The fabrication of thin-walled steel alloys through the gas carburization of reduced metal oxide extrusions

Cerully, Laura B. 26 April 2010 (has links)
Investigations of the production of thin-walled steel alloys through the reduction and subsequent gas carburization of structures made from metal oxide powders were performed. Batch compositions, as well as the heat treatment parameters necessary for the formation of structures were determined through the use of thermogravimetric analysis, dilatometric measurements, and microstructural investigation. Parameters for the high temperature carburization of thin-walled 4140 structures were determined. The research has shown that the amount of carbon in the walls of the structures can be controlled and uniform carbon contents across the cross-sections can be achieved in less than 30 minutes. Heat treatments for carburized samples were performed and subsequent microhardness testing resulted in values similar to conventionally produced 4140 steel. Studies on the decarburization behavior of similar alloys under various conditions were also performed in order to aid in the prediction of the microstructural behavior of samples during carburization and subsequent heat treatment. Low temperature gas carburization of structures with 316 steel composition has also been performed. Hardness variations present through the cross-section of the part after carburization suggest some transfer of carbon, though contents are not as high as anticipated. Suggestions for future work in this area are presented. The results of these investigations yield a novel method for the production of steel parts from metal oxide powders. The speed and low cost of the process, coupled with the proven ability of the process to yield parts with similar microstructural and mechanical characteristics as conventionally made alloys, allows for the techniques presented in this study to be used for the development of alloys which could not be previously done economically.
107

Formation, characterization and flow dynamics of nanostructure modified sensitive and selective gas sensors based on porous silicon

Ozdemir, Serdar 29 March 2011 (has links)
Nanopore covered microporous silicon interfaces have been formed via an electrochemical etch for gas sensor applications. Rapid reversible and sensitive gas sensors have been fabricated. Both top-down and bottom-up approaches are utilized in the process. A nano-pore coated micro-porous silicon surface is modified selectively for sub-ppm detection of NH3, PH3, NO, H2S, SO2. The selective depositions include electrolessly generated SnO2, CuxO, AuxO, NiO, and nanoparticles such as TiO2, MgO doped TiO2, Al2O3, and ZrO2. Flow dynamics are analyzed via numerical simulations and response data. A general coating selection method for chemical sensors is established via an extrapolation on the inverse of the Hard-Soft Acid-Base concept.
108

Solid-state NMR studies of polymer adsorption onto metal oxide surfaces

McAlduff, Michael. January 2009 (has links)
This dissertation presents solid-state NMR studies that probe the dynamic and conformational properties of polymers adsorbed on solid surfaces in the dry state. The systems studied include a series of ethylene based random copolymers where the binding group is modified, and two diblock copolymer systems where the blocks have different intrinsic mobilities and surface interactions. The thesis begins by looking at the structures formed by the adsorption of poly (ethylene-co-acrylic acid) (PEA), poly (ethylene- co-vinyl alcohol) (EVOH), poly (ethylene-co-vinyl acetate) (EVA), and polyethylene (PE) on metal oxide powders (zirconia and alumina). NMR spectroscopy, FTIR-PAS, and TGA were used to characterize the surface behaviour of the systems with comparisons made between the bulk and adsorbed copolymers. 13C CPMAS, 1H and T 1 relaxation measurements were all recorded with the aim of correlating the microscopic structure of the surface with changes in NMR data. The chain conformation of adsorbed ethylene copolymers was found to strongly depend on the binding strength of the polar sticker groups with the substrates. / The chain dynamics of adsorbed diblock copolymers in the dry state are reported for the first time. Poly (styrene)-b-poly ( t-butyl acrylate) (PS-PtButA) and poly (styrene)-b-poly (acrylic acid) (PS-PAA) were selected to vary both the block size and the binding strength. Once again the primary surface characterization methods are NMR spectroscopy, FTIR-PAS, and TGA. 13C CPMAS, 1H, T1, and T1rho relaxation measurements were all recorded with the aim of correlating the surface structures with changes in NMR data. For the most part, the observed trends in the chain mobilities of the anchor (PAA) and buoy (PS) blocks with block size can be correlated with the predicted mushroom, intermediate and extended brush structures which collapse upon removal of the solvent. However, the chain mobility of the PS buoys decreases with increasing anchor block size. Although the chain mobility of the PS buoys are moderately enhanced relative to the bulk state, the mobility is sufficiently restricted to comfirm the picture of a thin glassy layer with adhesive properties similar to the surface of bulk polystyrene. / The diblock copolymers poly (2-vinylpyridine), poly (isoprene)- b-poly (2--vinylpyridine), (PI-P2VP) and poly (isoprene)- b-poly (4-vinylpyridine) (PI-P4VP) were selected to complement the PS-PAA system as both systems have been studied by surface force microscopy. The large contrast in chain mobilities of the PI and PVP blocks allowed spectral editing through variation of the 13C cross polarization parameters. The trends in mobility with block size differ from that of PS-PAA in that the segmental mobility of the buoys increases with anchor block size as expected. The chain mobility of the collapsed PI brushes is significantly enhanced as compared to the bulk state, again supporting the interpretation of surface microscopy studies which require an entropically unfavorable flattened, yet rubbery, surface structure.
109

Novel synthesis of metal oxide nanoparticles via the aminolytic method and the investigation of their magnetic properties

Sabo, Daniel E. 07 November 2012 (has links)
Metal oxide nanoparticles, both magnetic and nonmagnetic, have a multitude of applications in gas sensors, catalysts and catalyst supports, airborne trapping agents, biomedicines and drug delivery systems, fuel cells, laser diodes, and magnetic microwaves. Over the past decade, an inexpensive, simple, recyclable, and environmentally friendly large, scale synthesis method for the synthesis of these metal oxide nanoparticles has been sought. Many of the current techniques in use today, while good on the small, laboratory bench scale, suffer from drawbacks that make them unsuitable for the industrial scale. The aminolytic method, developed by Dr. Man Han while working for Dr. Zhang, fits industrial scale-up requirements. The aminolytic method involves a reaction between metal carboxylate(s) and oleylamine in a non-coordinating solvent. This system was shown to produce a range of spinel ferrites. Dr. Lisa Vaughan showed that this method can be recycled multiple times without degrading the quality of the produced nanoparticles. The purpose of this thesis is to test the versatility of the aminolytic method in the production of a wide range of metal oxides as well as various core/shell systems. Chapter 2 explores the effect of precursor carboxylates chain length on the aminolytic synthesis of cobalt ferrite, and manganese ferrite nanoparticles. In Chapter 3, a series of CuxMn1-xFe₂O₄, (x ranges from 0.0 to 0.2), nanoparticles were synthesized via the aminolytic method. This series allows for the investigation of the effects of orbital Jahn-Teller distortion as well as orbital angular momentum on the magnetic properties of this ferrite. The quantum couplings of magnetic ions in spinel ferrites govern their magnetic properties and responses. An understanding of the couplings between these metal ions allows for tailoring magnetic properties to obtain the desired response needed for various applications. Chapter 4 investigates the synthesis of MnO and Mn₃O₄ nanoparticles in pure single phase with high monodispersity. To the best of our knowledge, the range of sizes produced for MnO and Mn₃O₄ is the most extensive, and therefore a magnetic study of these systems shows some intriguing size dependent properties. The final part of this chapter investigates the applicability of the aminolytic method for building a MnO shell on a CoFe₂O₄ core. Chapter 5 explores the synthesis of another metal oxide, ZrO₂ in both the cubic and monoclinic phases with no impurities. The use of the aminolytic method here removes the need for dangerous/expensive precursors or equipment and eliminates the need for extensive high temperature heat treatments that destroy monodispersity which is required for most techniques. The creation of a core/shell system between CoFe₂O₄ and ZrO₂ using the aminolytic method was also tested. This core/shell system adds magnetic manipulation which is especially useful for the recovery of zirconia based photocatalyst. Chapter 6 studies the application of the aminolytic method in the synthesis of yttrium iron garnet (YIG) and yttrium iron perovskite (YIP) nanoparticles. Current synthesis techniques used to produce YIG and YIP nanoparticles often requires high temperatures, sensitive to contamination, which could be eliminated through the use of our method
110

Thermal conductivity of metal oxide nanofluids

Beck, Michael Peter 20 August 2008 (has links)
The thermal conductivities of nanofluids were measured as a function of temperature, particle size, and concentration. These nanofluids consisted of alumina, titania, or ceria dispersed in deionized water, ethylene glycol, or a mixture of the two. The results indicated that the temperature behavior of the thermal conductivity of the base fluid dominates that of the nanofluid. It was also discovered that decreasing nanoparticle size lowers the thermal conductivity of the nanofluid. None of the existing thermal conductivity models for heterogeneous materials was capable of predicting all of the observed relationships between thermal conductivity and temperature, particle size, volume fraction, and the thermal conductivities of the individual conductivities. Thus, a semi-empirical predictive model was proposed to predict the thermal conductivity of nanofluids. This model consists of the volume fraction-weighted geometric mean of the liquid and solid thermal conductivities where the solid conductivity is a function of particle size. The model provided predictions within 2.3 % of measured values in this work.

Page generated in 0.0953 seconds