• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Semiclassical spectral analysis of discrete Witten Laplacians

Di Gesù, Giacomo January 2012 (has links)
A discrete analogue of the Witten Laplacian on the n-dimensional integer lattice is considered. After rescaling of the operator and the lattice size we analyze the tunnel effect between different wells, providing sharp asymptotics of the low-lying spectrum. Our proof, inspired by work of B. Helffer, M. Klein and F. Nier in continuous setting, is based on the construction of a discrete Witten complex and a semiclassical analysis of the corresponding discrete Witten Laplacian on 1-forms. The result can be reformulated in terms of metastable Markov processes on the lattice. / In dieser Arbeit wird auf dem n-dimensionalen Gitter der ganzen Zahlen ein Analogon des Witten-Laplace-Operatoren eingeführt. Nach geeigneter Skalierung des Gitters und des Operatoren analysieren wir den Tunneleffekt zwischen verschiedenen Potentialtöpfen und erhalten vollständige Aymptotiken für das tiefliegende Spektrum. Der Beweis (nach Methoden, die von B. Helffer, M. Klein und F. Nier im Falle des kontinuierlichen Witten-Laplace-Operatoren entwickelt wurden) basiert auf der Konstruktion eines diskreten Witten-Komplexes und der Analyse des zugehörigen Witten-Laplace-Operatoren auf 1-Formen. Das Resultat kann im Kontext von metastabilen Markov Prozessen auf dem Gitter reformuliert werden und ermöglicht scharfe Aussagen über metastabile Austrittszeiten.
2

Structural and magnetic characterization of Nd-based Nd-Fe and Nd-Fe-Co-Al metastable alloys

Kumar, Golden 07 May 2005 (has links) (PDF)
The aim of the present work is to characterize a metastable hard magnetic phase referred to as "A1" in Nd-Fe alloys, which forms as a part of the fine eutectic depending on the composition and cooling rate. In order to define the range of composition for the formation of A1, Nd100-xFex (x = 20, 25, 40) alloys are cooled at about 150 K/s. The results indicate that for a cooling rate of 150 K/s, the hypereutectic Nd100-xFex (x = 20) alloys solidify into hard magnetic A1 whilst the hypoeutectic alloys (x = 40) show the formation of Nd2Fe17 crystallites. However, no sample cooled at 150 K/s shows the peaks of Nd5Fe17 as expected from the equilibrium Nd-Fe phase diagram. The effect of cooling rate on the formation of hard magnetic A1 is studied by investigating the Nd80Fe20 alloys cooled at different rates. The microstructure of hard magnetic Nd80Fe20 alloys displays a fine eutectic-like matrix consisting of Nd-richer and Fe-richer regions. The Nd-richer regions are identified as dhcp Nd and fcc Nd-Fe solid solution. However, the Fe-richer regions also referred to as A1, are diffuse and give an average composition of Nd56Fe44. These regions yield complex electron diffraction patterns, which do not match with any known Nd-Fe phase. HRTEM images of the Fe-richer regions reveal the presence of 5-10 nm crystallites embedded in an amorphous phase. Thus the Fe-richer regions of the hard magnetic Nd80Fe20 specimens are not a single homogeneous phase rather they are mixture of finely dispersed nanocrystallites in an amorphous phase. The demagnetization curves the hard magnetic Nd80Fe20 measured at temperatures above 30 K are typical of a hard magnetic material. The coercivity increases from 0.48 to 4.4 T with the temperature decreasing from 300 to 55 K. The demagnetization curves change from single to two-phase type when the temperature approaches 29 K, ordering temperature of fcc Nd-Fe solid solution. The measurements of initial magnetization, field dependence of coercivity, and temperature dependence of coercivity suggest the Stoner-Wohlfarth type magnetization reversal process for the hard magnetic A1. The values of anisotropy constant are estimated by fitting the magnetization data to the law-of-approach to saturation. The temperature dependence of anisotropy constant and the coercivity indicate that the origin of coercivity is magnetic anisotropy. A cluster model with sperimagnetic arrangement of Nd and Fe spins is used to explain the hard magnetic behavior of the mold-cast Nd80Fe20. Structural and magnetic properties of multicomponent Nd60Co30-xFexAl10 (0 < x < 30) alloys are compared with the binary Nd-Fe alloys. Magnetic measurements of the multicomponent alloys show that the magnetic properties are controlled by the fraction of the Fe content. The coercivity of the Nd60Co30-xFexAl10 mold-cast rods does not vary much with the Fe-content for more than 10 at.% Fe but the remanence and the maximum magnetization increase linearly with the Fe content. The temperature dependence of coercivity, effective anisotropy constant, and anisotropy field are identical to those for the binary Nd80Fe20 mold-cast rod. These results clearly suggest that the binary Nd80Fe20 and the multicomponent Nd60Co30-xFexAl10 (x > 5) mold-cast rods are magnetically identical.
3

Structural and magnetic characterization of Nd-based Nd-Fe and Nd-Fe-Co-Al metastable alloys

Kumar, Golden 27 May 2005 (has links)
The aim of the present work is to characterize a metastable hard magnetic phase referred to as "A1" in Nd-Fe alloys, which forms as a part of the fine eutectic depending on the composition and cooling rate. In order to define the range of composition for the formation of A1, Nd100-xFex (x = 20, 25, 40) alloys are cooled at about 150 K/s. The results indicate that for a cooling rate of 150 K/s, the hypereutectic Nd100-xFex (x = 20) alloys solidify into hard magnetic A1 whilst the hypoeutectic alloys (x = 40) show the formation of Nd2Fe17 crystallites. However, no sample cooled at 150 K/s shows the peaks of Nd5Fe17 as expected from the equilibrium Nd-Fe phase diagram. The effect of cooling rate on the formation of hard magnetic A1 is studied by investigating the Nd80Fe20 alloys cooled at different rates. The microstructure of hard magnetic Nd80Fe20 alloys displays a fine eutectic-like matrix consisting of Nd-richer and Fe-richer regions. The Nd-richer regions are identified as dhcp Nd and fcc Nd-Fe solid solution. However, the Fe-richer regions also referred to as A1, are diffuse and give an average composition of Nd56Fe44. These regions yield complex electron diffraction patterns, which do not match with any known Nd-Fe phase. HRTEM images of the Fe-richer regions reveal the presence of 5-10 nm crystallites embedded in an amorphous phase. Thus the Fe-richer regions of the hard magnetic Nd80Fe20 specimens are not a single homogeneous phase rather they are mixture of finely dispersed nanocrystallites in an amorphous phase. The demagnetization curves the hard magnetic Nd80Fe20 measured at temperatures above 30 K are typical of a hard magnetic material. The coercivity increases from 0.48 to 4.4 T with the temperature decreasing from 300 to 55 K. The demagnetization curves change from single to two-phase type when the temperature approaches 29 K, ordering temperature of fcc Nd-Fe solid solution. The measurements of initial magnetization, field dependence of coercivity, and temperature dependence of coercivity suggest the Stoner-Wohlfarth type magnetization reversal process for the hard magnetic A1. The values of anisotropy constant are estimated by fitting the magnetization data to the law-of-approach to saturation. The temperature dependence of anisotropy constant and the coercivity indicate that the origin of coercivity is magnetic anisotropy. A cluster model with sperimagnetic arrangement of Nd and Fe spins is used to explain the hard magnetic behavior of the mold-cast Nd80Fe20. Structural and magnetic properties of multicomponent Nd60Co30-xFexAl10 (0 < x < 30) alloys are compared with the binary Nd-Fe alloys. Magnetic measurements of the multicomponent alloys show that the magnetic properties are controlled by the fraction of the Fe content. The coercivity of the Nd60Co30-xFexAl10 mold-cast rods does not vary much with the Fe-content for more than 10 at.% Fe but the remanence and the maximum magnetization increase linearly with the Fe content. The temperature dependence of coercivity, effective anisotropy constant, and anisotropy field are identical to those for the binary Nd80Fe20 mold-cast rod. These results clearly suggest that the binary Nd80Fe20 and the multicomponent Nd60Co30-xFexAl10 (x > 5) mold-cast rods are magnetically identical.
4

Über nanoskalige Bismutoxidocluster zu (metastabilen) Polymorphen des Bismut(III)-oxids und deren photokatalytische Aktivität / From nanoscaled bismuth oxido cluster to (metastable) polymorphs of bismuth(III) oxide with photocatalytic activity

Schlesinger, Maik 15 May 2013 (has links) (PDF)
In der vorliegenden Arbeit werden Möglichkeiten der Stabilisierung und die photokatalytische Aktivität von Polymorphen des Bismut(III)-oxids, synthetisiert ausgehend von nanoskaligen, polynuklearen Bismutoxidoclustern, beschrieben. Hydrolyse- und Kondensationsstudien werden mit dem Ziel der Aufklärung von Bildungsprozessen von Bismutoxidoclustern ausgehend von bismutnitrat- und bismutsilanolathaltigen Lösungen durchgeführt. Basierend auf polynuklearen Modellverbindungen wird durch deren Hydrolyse und anschließende thermische Behandlung die Darstellung von Nanopartikeln von verschiedenen Polymorphen des Bismut(III)-oxids erreicht. Die Reaktivität der synthetisierten β Bi2O3 Nanopartikel wird zur Synthese von Verbindungen vom Sillenit-Strukturtyp ausgenutzt. Diese Verbindungen sind isostrukturell zum metastabilen γ-Bi2O3. Die isolierten oxidischen Materialien weisen eine hohe photokatalytische Aktivität gegenüber wässrigen Rhodamin B Lösungen bei der Bestrahlung mit sichtbarem Licht auf. Für die β Bi2O3 Nanopartikel wird ebenso die photokatalytische Aktivität gegenüber wässrigen Farbstofflösungen von Indigokarmin, Orange G, Methylorange und Methylenblau sowie wässrigen Schadstofflösungen von Phenol, 4-Chlorphenol, 2,4-Dichlorphenol, 4-Nitrophenol, Triclosan und Ethinylestradiol beschrieben. Die Charakterisierung der synthetisierten Verbindungen erfolgte unter anderem mittels Einkristall-Röntgenstrukturanalyse, Röntgenpulverdiffraktometrie, NMR-Spektroskopie, FTICR-ESI-Massenspektrometrie, UV/Vis-, Infrarot- und Ramanspektroskopie sowie thermischen Analysemethoden. / The present essay describes the stabilization and photocatalytic activity of different polymorphs of bismuth(III) oxide which were prepared starting from nanoscaled, polynuclear bismuth oxido clusters. Hydrolysis and condensation processes of bismuth nitrate as well as bismuth silanolates in solution were performed to provide an insight into the formation process of bismuth oxido clusters. Nanoparticles of different polymorphs of bismuth(III) oxide were obtained by hydrolysis, followed by annealing steps at temperatures of 370 °C and 600 °C starting from polynuclear bismuth compounds, respectively. The high reactivity of the as-prepared β-Bi2O3 nanoparticles was used to synthesize sillenite-type compounds at rather low temperatures which are isostructural to metastable γ-Bi2O3. The isolated oxidic materials show promising photocatalytic activities exemplified by the degradation of aqueous Rhodamine B solutions under visible light irradiation. Additionally, the β- Bi2O3 nanoparticles were tested in photodegradation processes of aqueous solutions containing different dyes such as indigo carmine, orange G, methyl orange and methylene blue as well as typical organic pollutants such as phenol, 4-chlorophenol, 2,4-dichlorophenol, 4-nitrophenol, triclosan and ethinyl estradiol. The characterization of the as-prepared materials was performed using single crystal X-ray diffraction, powder X-ray diffraction analysis, NMR spectroscopy, FTICR- electrospray ionization mass spectrometry, UV/Vis-, IR- and Raman spectroscopy, electron microscopy, nitrogen physisorption as well as thermal analyses.
5

Über nanoskalige Bismutoxidocluster zu (metastabilen) Polymorphen des Bismut(III)-oxids und deren photokatalytische Aktivität

Schlesinger, Maik 06 May 2013 (has links)
In der vorliegenden Arbeit werden Möglichkeiten der Stabilisierung und die photokatalytische Aktivität von Polymorphen des Bismut(III)-oxids, synthetisiert ausgehend von nanoskaligen, polynuklearen Bismutoxidoclustern, beschrieben. Hydrolyse- und Kondensationsstudien werden mit dem Ziel der Aufklärung von Bildungsprozessen von Bismutoxidoclustern ausgehend von bismutnitrat- und bismutsilanolathaltigen Lösungen durchgeführt. Basierend auf polynuklearen Modellverbindungen wird durch deren Hydrolyse und anschließende thermische Behandlung die Darstellung von Nanopartikeln von verschiedenen Polymorphen des Bismut(III)-oxids erreicht. Die Reaktivität der synthetisierten β Bi2O3 Nanopartikel wird zur Synthese von Verbindungen vom Sillenit-Strukturtyp ausgenutzt. Diese Verbindungen sind isostrukturell zum metastabilen γ-Bi2O3. Die isolierten oxidischen Materialien weisen eine hohe photokatalytische Aktivität gegenüber wässrigen Rhodamin B Lösungen bei der Bestrahlung mit sichtbarem Licht auf. Für die β Bi2O3 Nanopartikel wird ebenso die photokatalytische Aktivität gegenüber wässrigen Farbstofflösungen von Indigokarmin, Orange G, Methylorange und Methylenblau sowie wässrigen Schadstofflösungen von Phenol, 4-Chlorphenol, 2,4-Dichlorphenol, 4-Nitrophenol, Triclosan und Ethinylestradiol beschrieben. Die Charakterisierung der synthetisierten Verbindungen erfolgte unter anderem mittels Einkristall-Röntgenstrukturanalyse, Röntgenpulverdiffraktometrie, NMR-Spektroskopie, FTICR-ESI-Massenspektrometrie, UV/Vis-, Infrarot- und Ramanspektroskopie sowie thermischen Analysemethoden.:Verzeichnis der verwendeten Abkürzungen ix 1 Einleitung und Problemstellung 1 1.1 Motivation 2 1.2 Das weltweite Wasserproblem 3 1.3 Bismuthaltige Verbindungen als Ausgangsstoffe für eine „grüne“ Zukunft 8 1.4 Konzept zur Durchführung der vorliegenden Untersuchungen 11 2 Bismutoxidocluster 13 2.1 Der Weg von bismuthaltigen Lösungen zu Bismutoxidoclustern 14 2.2 Untersuchungen zum Reaktionsverhalten von Bismut(III)-nitrat in Lösung 22 2.2.1 Kristallisation von [Bi6O4(OH)4(NO3)6(H2O)2]•H2O (1) 22 2.2.2 Kristallisation von [{Bi38O45(NO3)24(DMSO)26}•2DMSO] [{Bi38O45(NO3)24(DMSO)24}•0.5DMSO] ([2a][2b]) 32 2.2.3 Umsetzungen von [Bi22O26(OSiMe2tBu)14] mit Methylsalicylsäuren und Kristallisation von [Bi38O45(HSal4Me)24(DMSO)13.2]•6H2O (3) 43 2.2.4 Kristallisation von [Bi38O45(HSal)22(OMc)2(DMSO)15(H2O)] •DMSO∙2H2O (4) 58 2.2.5 Kristallisation von [Bi(C18H14P(O)SO3)2(DMSO)3](NO3)•DMSO∙2H2O (5) 64 3 Bismut(III)-oxide 71 3.1 Grundlagen 72 3.1.1 Der ausgeprägte Polymorphismus von Bi2O3 und dessen Auswirkungen 72 3.1.2 Strukturelle Betrachtungen der einzelnen Bi2O3-Polymorphe 78 3.1.3 Strukturelle Beziehungen zwischen den Bismutoxidpolymorphen 84 3.2 Hydrolyse von Bismutoxidoclustern 86 3.2.1 Stabilisierung von β-Bi2O3 89 3.2.2 Stabilisierung von „γ-Bi2O3“ sowie von Verbindungen vom Sillenit-Strukturtyp 114 3.2.3 Stabilisierung von δ-Bi2O3 126 4 Photokatalytische Untersuchungen an Bismut(III)-oxiden 135 4.1 Grundlagen der Photokatalyse mit Halbleitern 136 4.1.1 Historische Entwicklungen und potentielle Anwendungen 136 4.1.2 Definition von Begriffen und Anforderungen im Bereich der Photokatalyse 139 4.1.3 Mechanismen der photokatalytischen Aktivität für den Abbau von Schadstoffen 141 4.1.4 Eigenschaften und Charakteristika von Halbleiter-Photokatalysatoren 143 4.1.5 Zersetzung von Rhodamin B und deren Kinetik als Beispiel für photokatalytische Abbaureaktionen 147 4.2 Ergebnisse und Diskussion 151 4.2.1 Untersuchungen zur photokatalytischen Aktivität von β-Bi2O3 153 4.2.2 Untersuchungen zur photokatalytischen Aktivität von „γ-Bi2O3“ bzw. von Verbindungen vom Sillenit-Strukturtyp 176 4.2.3 Untersuchungen zur photokatalytischen Aktivität von δ-Bi2O3 179 4.2.4 Zusammenfassung der photokatalytischen Untersuchungen 181 5 Zusammenfassung und Ausblick 182 6 Experimenteller Teil 193 6.1 Arbeitstechniken und verwendete Geräte 194 6.2 Synthese der Bismutoxidocluster 198 6.2.1 Synthese von [Bi6O4(OH)4(NO3)6(H2O)2]∙H2O (1) 198 6.2.2 Synthese von [{Bi38O45(NO3)24(DMSO)26}•2DMSO] [{Bi38O45(NO3)24(DMSO)24}•0.5DMSO] ([2a][2b]) 198 6.2.3 Synthese von [Bi22O26(HSalxMe)14] und Kristallisation von [Bi38O45(HSal4Me)24(DMSO)13.2]•6H2O (3) 199 6.2.4 Synthese von [Bi38O45(HSal)22(OMc)2(DMSO)15(H2O)]•DMSO∙2H2O (4) 201 6.2.5 Synthese von [Bi(C18H14P(O)SO3)2(DMSO)3](NO3)•DMSO∙2H2O (5) 202 6.3 Synthese der Bismut(III)-oxide 202 6.3.1 Synthese von β-Bi2O3 202 6.3.2 Synthese von Verbindungen vom Sillenit-Strukturtyp 208 6.3.3 Stabilisierung von δ-Bi2O3 209 6.4 Photokatalytische Untersuchungen 210 7 Literaturverzeichnis 211 8 Anhang 236 8.1 Abbildungen und Tabellen 237 8.2 Kristallographische Daten 247 8.3 Ausgewählte Veröffentlichungen 249 Curriculum Vitae 254 Publikationsverzeichnis 255 Tagungsbeiträge 257 / The present essay describes the stabilization and photocatalytic activity of different polymorphs of bismuth(III) oxide which were prepared starting from nanoscaled, polynuclear bismuth oxido clusters. Hydrolysis and condensation processes of bismuth nitrate as well as bismuth silanolates in solution were performed to provide an insight into the formation process of bismuth oxido clusters. Nanoparticles of different polymorphs of bismuth(III) oxide were obtained by hydrolysis, followed by annealing steps at temperatures of 370 °C and 600 °C starting from polynuclear bismuth compounds, respectively. The high reactivity of the as-prepared β-Bi2O3 nanoparticles was used to synthesize sillenite-type compounds at rather low temperatures which are isostructural to metastable γ-Bi2O3. The isolated oxidic materials show promising photocatalytic activities exemplified by the degradation of aqueous Rhodamine B solutions under visible light irradiation. Additionally, the β- Bi2O3 nanoparticles were tested in photodegradation processes of aqueous solutions containing different dyes such as indigo carmine, orange G, methyl orange and methylene blue as well as typical organic pollutants such as phenol, 4-chlorophenol, 2,4-dichlorophenol, 4-nitrophenol, triclosan and ethinyl estradiol. The characterization of the as-prepared materials was performed using single crystal X-ray diffraction, powder X-ray diffraction analysis, NMR spectroscopy, FTICR- electrospray ionization mass spectrometry, UV/Vis-, IR- and Raman spectroscopy, electron microscopy, nitrogen physisorption as well as thermal analyses.:Verzeichnis der verwendeten Abkürzungen ix 1 Einleitung und Problemstellung 1 1.1 Motivation 2 1.2 Das weltweite Wasserproblem 3 1.3 Bismuthaltige Verbindungen als Ausgangsstoffe für eine „grüne“ Zukunft 8 1.4 Konzept zur Durchführung der vorliegenden Untersuchungen 11 2 Bismutoxidocluster 13 2.1 Der Weg von bismuthaltigen Lösungen zu Bismutoxidoclustern 14 2.2 Untersuchungen zum Reaktionsverhalten von Bismut(III)-nitrat in Lösung 22 2.2.1 Kristallisation von [Bi6O4(OH)4(NO3)6(H2O)2]•H2O (1) 22 2.2.2 Kristallisation von [{Bi38O45(NO3)24(DMSO)26}•2DMSO] [{Bi38O45(NO3)24(DMSO)24}•0.5DMSO] ([2a][2b]) 32 2.2.3 Umsetzungen von [Bi22O26(OSiMe2tBu)14] mit Methylsalicylsäuren und Kristallisation von [Bi38O45(HSal4Me)24(DMSO)13.2]•6H2O (3) 43 2.2.4 Kristallisation von [Bi38O45(HSal)22(OMc)2(DMSO)15(H2O)] •DMSO∙2H2O (4) 58 2.2.5 Kristallisation von [Bi(C18H14P(O)SO3)2(DMSO)3](NO3)•DMSO∙2H2O (5) 64 3 Bismut(III)-oxide 71 3.1 Grundlagen 72 3.1.1 Der ausgeprägte Polymorphismus von Bi2O3 und dessen Auswirkungen 72 3.1.2 Strukturelle Betrachtungen der einzelnen Bi2O3-Polymorphe 78 3.1.3 Strukturelle Beziehungen zwischen den Bismutoxidpolymorphen 84 3.2 Hydrolyse von Bismutoxidoclustern 86 3.2.1 Stabilisierung von β-Bi2O3 89 3.2.2 Stabilisierung von „γ-Bi2O3“ sowie von Verbindungen vom Sillenit-Strukturtyp 114 3.2.3 Stabilisierung von δ-Bi2O3 126 4 Photokatalytische Untersuchungen an Bismut(III)-oxiden 135 4.1 Grundlagen der Photokatalyse mit Halbleitern 136 4.1.1 Historische Entwicklungen und potentielle Anwendungen 136 4.1.2 Definition von Begriffen und Anforderungen im Bereich der Photokatalyse 139 4.1.3 Mechanismen der photokatalytischen Aktivität für den Abbau von Schadstoffen 141 4.1.4 Eigenschaften und Charakteristika von Halbleiter-Photokatalysatoren 143 4.1.5 Zersetzung von Rhodamin B und deren Kinetik als Beispiel für photokatalytische Abbaureaktionen 147 4.2 Ergebnisse und Diskussion 151 4.2.1 Untersuchungen zur photokatalytischen Aktivität von β-Bi2O3 153 4.2.2 Untersuchungen zur photokatalytischen Aktivität von „γ-Bi2O3“ bzw. von Verbindungen vom Sillenit-Strukturtyp 176 4.2.3 Untersuchungen zur photokatalytischen Aktivität von δ-Bi2O3 179 4.2.4 Zusammenfassung der photokatalytischen Untersuchungen 181 5 Zusammenfassung und Ausblick 182 6 Experimenteller Teil 193 6.1 Arbeitstechniken und verwendete Geräte 194 6.2 Synthese der Bismutoxidocluster 198 6.2.1 Synthese von [Bi6O4(OH)4(NO3)6(H2O)2]∙H2O (1) 198 6.2.2 Synthese von [{Bi38O45(NO3)24(DMSO)26}•2DMSO] [{Bi38O45(NO3)24(DMSO)24}•0.5DMSO] ([2a][2b]) 198 6.2.3 Synthese von [Bi22O26(HSalxMe)14] und Kristallisation von [Bi38O45(HSal4Me)24(DMSO)13.2]•6H2O (3) 199 6.2.4 Synthese von [Bi38O45(HSal)22(OMc)2(DMSO)15(H2O)]•DMSO∙2H2O (4) 201 6.2.5 Synthese von [Bi(C18H14P(O)SO3)2(DMSO)3](NO3)•DMSO∙2H2O (5) 202 6.3 Synthese der Bismut(III)-oxide 202 6.3.1 Synthese von β-Bi2O3 202 6.3.2 Synthese von Verbindungen vom Sillenit-Strukturtyp 208 6.3.3 Stabilisierung von δ-Bi2O3 209 6.4 Photokatalytische Untersuchungen 210 7 Literaturverzeichnis 211 8 Anhang 236 8.1 Abbildungen und Tabellen 237 8.2 Kristallographische Daten 247 8.3 Ausgewählte Veröffentlichungen 249 Curriculum Vitae 254 Publikationsverzeichnis 255 Tagungsbeiträge 257

Page generated in 0.0788 seconds