• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1902
  • 1827
  • 1565
  • 320
  • 163
  • 135
  • 114
  • 98
  • 58
  • 57
  • 54
  • 36
  • 31
  • 30
  • 30
  • Tagged with
  • 6912
  • 1675
  • 1385
  • 989
  • 979
  • 974
  • 345
  • 322
  • 313
  • 304
  • 300
  • 300
  • 291
  • 281
  • 270
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Liaisons optiques faible bruit pour la distribution de références de fréquences micro-ondes

Onillon, Bertrand 17 October 2006 (has links) (PDF)
Les liaisons par fibre optique sont une alternative sérieuse aux câbles électriques pour la transmission de signaux analogiques. A bord des satellites, elles permettent une réduction significative de la taille et de la masse des harnais de distribution vers les charges utiles, une meilleure isolation électromagnétique, et les applications TéraHertzs bénéficieront de leur bande passante très large. Au sol, la faible atténuation des fibres a des applications comme le partage d'une horloge ou la synchronisation des réseaux de stations sols ou d'antennes. Cette thèse propose des systèmes de transmissions optiques de signaux hyperfréquences, optimisés en gain et en bruit. La modulation par annulation de porteuse optique, ou DSB-CS, a été plus particulièrement étudiée. Enfin le signal reçu est conditionné par la synchronisation d'un oscillateur faible bruit : le bruit de phase du signal est ainsi amélioré et son niveau largement relevé.
242

Access to Government Micro-data for SME Internationalization Research

Niroui, Fariba January 2012 (has links)
International entrepreneurship (IE) is “a combination of innovative, proactive and risk-seeking behaviour that crosses national borders and is intended to create value in organizations”. The IE literature has been concerned with entrepreneurial behaviour in multiple countries and cross-border studies of entrepreneurship and international activities of small and medium-sized enterprises (SME). Due to the potential for SMEs to serve as significant sources of export, considerable research has been conducted regarding their internationalization. However, despite attempts to integrate concrete frameworks of international entrepreneurship, some primary issues have not been adequately addressed and IE researchers are faced with challenges including insufficient micro-data for advancing quality research. The main objective of this thesis is to study and explore the limitations on researchers to access governmental data regarding small firms operating internationally and use it for scientific purposes. Despite company data being compiled and publicly available in some countries, such as Germany, other countries, including Canada, have not made any such efforts in a coherent way. There is a significant disconnect in the Canadian context between internationalization and firms’ data. This shortcoming may stem from various sources, including the legal framework in Canada for accessing data and a lack of sufficient financial support and expertise to gather and integrate such data. Furthermore, the type of data available to the research community through statistical institutions were identified and analyzed, as were access methods. With the increasing interest of researchers in accessing data gathered by the government, the formation of anonymized records or anonymized micro-datasets has acquired great importance. Therefore, the primary approach is to explore the extent to which data regarding firms’ characteristics and internationalization activities are currently available to the research community, as well as to ensure the confidentiality of official statistics, most notably in the Canadian context. The research resulted in the confirmation of data availability in Canada through government and statistical organizations. The latter bodies can provide researchers and research organizations access to some data but limitations arise in providing micro-datasets to researchers due to confidentiality issues; these constraints were identified and further analyzed. Moreover, this research has studied methods to overcome these limitations and assess the shortcomings in micro-data in order to advance quality research. Methods and recommendations were introduced and studied to allow researchers access to essential data and information while maintaining confidentiality.
243

Induced-Charge Electrokinetic Motion of a Heterogeneous Particle and Its Corresponding Applications

Daghighi, Yasaman January 2013 (has links)
This thesis conducts numerical and experimental studies of the nonlinear electrokinetic motion of heterogeneous particles in microfluidic systems and their corresponding applications in laboratory-on-a-chip (LOC) systems. Induced-charge electrokinetic (ICEK) phenomena flow is generated by applying an external electric field to a conducting particle immersed in an aqueous solution. As a result of this field, micro-vortices form around the conducting particle. Using this phenomenon, many shortcomings of classical electrokinetics (e.g. poor mixing, leakage, back flow problem) can be improved. This thesis proposes and investigates a complete 3-D numerical multi-physics method to calculate the induced zeta potential on the conducting surface of a heterogeneous object. To model the ICEK motion of a heterogeneous particle in a DC electric field, the moving grid technique is used to conduct the particle-fluid simulation. It was numerically shown that the vortices form near the conducting surface of a particle. Both transitional and rotational motions of heterogeneous particles are investigated. A set of novel experiments are designed and conducted to investigate several aspecs of ICEK. It is demonstrated for the first time that four vortices form around a conducting sphere in contact with an aqueous solution while the DC electric field is applied. The motions of heterogeneous particles are experimentally studied. The speed of a heterogeneous particle is compared with the same size non-conducting particle under the same experimental conditions and it is shown that the heterogeneous particle moves significantly faster than the non-conducting particle. It is also shown that the micro-vortices on the conducting section of the heterogeneous particle act like an engine and push the particle to move faster. These experiments verify the results of our simulation studies. We introduce three applications for induced-charge electrokinetic phenomena in ths thesis: ICEK micro-valve, ICEK micro-mixer, and ICEK micro-motor, which can be used in microfluidics and lab-on-a-chip devises. This ICEK micro-valve significantly improves many shortcomings of other micro-valves reported in the literature (such as leakage, considerable dead volume and complicated fabrication processes). Our ICEK micro-mixers take the advantages of induced micro-vortices and boost the mixing process in a micro-channel. As a result well mixed homogeneous (100%) mixture could be obtained at the downstream of the mixer. Our proposed no-contact ICEK micro-motor rotates as long as the DC electric field is being applied. This thesis develops a new understanding of several ICEK phenomena and applications related to heterogeneous particles. The 3D numerical model developed in this thesis along with the experimental studies are capable of describing the ICEK motion of a heterogeneous particle and is a considerable step to calculate the ICEK phenomena for real-world applications. This thesis, for the first time, experimentally visualized and verified the induced micro-vortices around conducting particles under applied DC electric field. The proposed ICEK micro-mixers, valve and motor can be used in various LOC devices and applications.
244

Identification of Macro- and Micro-Compliant Mechanism Configurations Resulting in Bistable Behavior

Jensen, Brian D. 24 June 2003 (has links) (PDF)
The purpose of this research is to identify the configurations of several mechanism classes which result in bistable behavior. Bistable mechanisms have use in many applications, such as switches, clasps, closures, hinges, and so on. A powerful method for the design of such mechanisms would allow the realization of working designs much more easily than has been possible in the past. A method for the design of bistable mechanisms is especially needed for micro-electro-mechanical systems (MEMS) because fabrication and material constraints often prevent the use of simple, well-known bistable mechanism configurations. In addition, this knowledge allows designers to take advantage of the many benefits of compliant echanisms, especially their ability to store and release energy in their moving segments. Therefore, an analysis of a variety of mechanism classes has been performed to determine the configurations of compliant segments or rigid-body springs in a mechanism which result in bistable behavior. The analysis revealed a relationship between the placement of compliant segments and the stability characteristics of the mechanism which allows either analysis or synthesis of bistable mechanisms to be performed very easily. Using this knowledge, a method of type synthesis for bistable mechanisms has been developed which allows bistable mechanisms to be easily synthesized. Several design examples have been presented which demonstrate the method. The theory has also been applied to the design of several bistable micromechanisms. In the process of searching for usable designs for micro-bistable mechanisms, a mechanism class was defined, known as "Young" mechanisms, which represent a feasible and useful way of achieving micro-mechanism motion similar to that of any four-bar mechanism. Based on this class, several bistable micro-mechanisms were designed and fabricated. Testing demonstrated the ability of the mechanisms to snap between the two stable states. In addition, the mechanisms showed a high degree of repeatability in their stable positions.
245

Development of novel micro-embossing methods and microfluidic designs for biomedical applications

Lu, Chunmeng 22 September 2006 (has links)
No description available.
246

In-situ biodiesel production from a municipal waste water clarifier effluent stream / Gert Cornelius van Tonder

Van Tonder, Gert Cornelius January 2014 (has links)
This study investigated In situ biodiesel production with supercritical methanol. A micro-algae based feedstock was used and obtained from a local water treatment plant situated just outside of Bethal, South Africa (S 26° 29’ 19.362” E 29° 27’ 11.552”). The wet feedstock was used as harvested with only the excess moisture being removed. Characterisation of the feedstock showed that a wide variety of macro-algae, micro-algae, cyanobacteria and bacterial species were present in the feedstock. The main algal species isolated from the feedstock were Nostoc sp. and Chlamydomonas. The feedstock was found to have a higher heating value (HHV) of 22 MJ.kg-1 and a lower heating value (LHV) of 16.03 MJ.kg-1 with an inherent moisture content of 270g.kg-1 feedstock. The protein and fat content of the feedstock was determined by the Agricultural Research Council (ARC) and found to be 370.1 g.kg-1 and 61.6 g.kg-1 on a moisture free basis respectively. The high protein and fat content gives a theoretical bio-yield of 430 wt%. The low lignin content and high cellulose and hemi-cellulose content indicated that the feedstock would be suitable for energy production. Three experimental sets were performed to determine the effect certain reaction parameters will have on the bio-char, bio-oil and biodiesel yields. The first set entailed hydrothermal liquefaction without the addition of methanol. The second set involved in situ biodiesel production with supercritical methanol, while both supercritical methanol and an acid catalyst were used during in situ biodiesel in the third set. For the first set of experiments the effect of temperature (240°C to 340°C in intervals of 20°C) on the crude bio-oil and bio-char yields were investigated. The highest bio-char yield was found to be 336g g char.kg-1 biomass at 280°C, while the highest crude bio-oil yield was 470.7 g crude bio-oil per kg biomass at 340°C. In the second set of experiments the dry biomass loading was kept constant at 500 g.kg-1 and the temperature varied (240°C to 300°C in intervals of 20°C) along with methanol to dry biomass ratio (1:1, 3:1 and 6:1). The optimum bio-oil yield of 597.1 g bio-oil per kg biomass for this set was found at 500 g.kg-1 biomass loading, 300°C and 3:1 methanol to dry biomass ratio. The highest bio-char yield was found to be 382.6 g bio-char.kg-1 biomass for a 1:1 methanol to dry biomass weight ratio set with 500 g.kg-1 biomass loading at 280°C. An increase in methanol ratio also led to an increase in crude bio-oil yields however the 3:1 methanol to dry biomass mass ratio was found to give the highest bio-oil yield and the purest biodiesel, with less unsaturated FAME. The 6:1 methanol to dry biomass mass ratio did however increase the FAME yield, which tends to show completion of the in situ production of biodiesel. This was also seen in the amount fatty acid methyl esters (FAME) present in the crude bio-oil as the degree of transesterification starts to increase with an increase in methanol. The FAME content was determined using gas chromatography (GC) and gas chromatography coupled to mass spectrometry (GC-MS). During the last set of experiments the temperature (260°C to 300°C in intervals of 20°C) and methanol to dry biomass ratio (1:1, 3:1 and 6:1) was varied at a constant catalyst loading of 1 wt% of the dry biomass. The optimum yields achieved were 627 g crude bio-oil per kg biomass and 376 g bio-char per kg biomass at 300°C and 280°C, respectively. These yields were achieved at 500 g.kg-1 biomass loading and 6:1 methanol ratio. Compared to the experiments where no catalyst was used, a slight increase in the yield was observed with the addition of an acid catalyst. This might be due to the base metals present in the feedstock that can lead to saponification during transesterification without the addition of an acid catalyst. An overall improvement in the extraction of crude bio-oil was observed with in situ production compared to hydrothermal liquefaction. During in situ liquefaction, the bio-oil yield increased by 150 g crude bio-oil per kg biomass higher, while the bio-char yields did not significantly vary at the optimum point of 280°C this finding has a significant value for green coal research. The highest HHV for the bio-char of 27 MJ.kg-1 +/- 0.17 MJ.kg-1 was found at 280°C and a 3:1 methanol ratio. The HHV of the bio-char decreases with an increase in temperature as more of the hydrocarbons are dissolved and form part of the bio-crude make-up. The highest HHV recorded for the crude bio-oil was 42 MJ.kg-1 at a 6:1 methanol ratio, a temperature of 300°C and an acid catalyst. The crude bio-oil HHV, which increased with an increase in temperature, is well within the specifications of the biodiesel standard (SANS, 1935). The highest FAME yield of 39.0 g.kg-1 was obtained using a 6:1 methanol ratio and a temperature of 300°C in the presence of an acid catalyst. The crude oil contained 49.0 g.kg-1 triglycerides with alkenes (C13, C15 and C17) making up the balance. The purest biodiesel yield was achieved at 3:1 methanol to dry biomass mass ratio, as it had the lowest yield unsaturated methyl esters. The overall FAME yield increased with an increase in methanol ratio. The derivatised FAME yields were the highest during hydrothermal liquefaction (55.0 g.kg-1 biomass). The in situ production of biodiesel from waste water clarifier effluent stream was found to be possible. Further investigation is needed into sufficient harvesting methods, including the optimum harvesting location, as this will result in fewer impurities in the stream and subsequent higher yields. / MIng (Chemical Engineering), North-West University, Potchefstroom Campus, 2015
247

In-situ biodiesel production from a municipal waste water clarifier effluent stream / Gert Cornelius van Tonder

Van Tonder, Gert Cornelius January 2014 (has links)
This study investigated In situ biodiesel production with supercritical methanol. A micro-algae based feedstock was used and obtained from a local water treatment plant situated just outside of Bethal, South Africa (S 26° 29’ 19.362” E 29° 27’ 11.552”). The wet feedstock was used as harvested with only the excess moisture being removed. Characterisation of the feedstock showed that a wide variety of macro-algae, micro-algae, cyanobacteria and bacterial species were present in the feedstock. The main algal species isolated from the feedstock were Nostoc sp. and Chlamydomonas. The feedstock was found to have a higher heating value (HHV) of 22 MJ.kg-1 and a lower heating value (LHV) of 16.03 MJ.kg-1 with an inherent moisture content of 270g.kg-1 feedstock. The protein and fat content of the feedstock was determined by the Agricultural Research Council (ARC) and found to be 370.1 g.kg-1 and 61.6 g.kg-1 on a moisture free basis respectively. The high protein and fat content gives a theoretical bio-yield of 430 wt%. The low lignin content and high cellulose and hemi-cellulose content indicated that the feedstock would be suitable for energy production. Three experimental sets were performed to determine the effect certain reaction parameters will have on the bio-char, bio-oil and biodiesel yields. The first set entailed hydrothermal liquefaction without the addition of methanol. The second set involved in situ biodiesel production with supercritical methanol, while both supercritical methanol and an acid catalyst were used during in situ biodiesel in the third set. For the first set of experiments the effect of temperature (240°C to 340°C in intervals of 20°C) on the crude bio-oil and bio-char yields were investigated. The highest bio-char yield was found to be 336g g char.kg-1 biomass at 280°C, while the highest crude bio-oil yield was 470.7 g crude bio-oil per kg biomass at 340°C. In the second set of experiments the dry biomass loading was kept constant at 500 g.kg-1 and the temperature varied (240°C to 300°C in intervals of 20°C) along with methanol to dry biomass ratio (1:1, 3:1 and 6:1). The optimum bio-oil yield of 597.1 g bio-oil per kg biomass for this set was found at 500 g.kg-1 biomass loading, 300°C and 3:1 methanol to dry biomass ratio. The highest bio-char yield was found to be 382.6 g bio-char.kg-1 biomass for a 1:1 methanol to dry biomass weight ratio set with 500 g.kg-1 biomass loading at 280°C. An increase in methanol ratio also led to an increase in crude bio-oil yields however the 3:1 methanol to dry biomass mass ratio was found to give the highest bio-oil yield and the purest biodiesel, with less unsaturated FAME. The 6:1 methanol to dry biomass mass ratio did however increase the FAME yield, which tends to show completion of the in situ production of biodiesel. This was also seen in the amount fatty acid methyl esters (FAME) present in the crude bio-oil as the degree of transesterification starts to increase with an increase in methanol. The FAME content was determined using gas chromatography (GC) and gas chromatography coupled to mass spectrometry (GC-MS). During the last set of experiments the temperature (260°C to 300°C in intervals of 20°C) and methanol to dry biomass ratio (1:1, 3:1 and 6:1) was varied at a constant catalyst loading of 1 wt% of the dry biomass. The optimum yields achieved were 627 g crude bio-oil per kg biomass and 376 g bio-char per kg biomass at 300°C and 280°C, respectively. These yields were achieved at 500 g.kg-1 biomass loading and 6:1 methanol ratio. Compared to the experiments where no catalyst was used, a slight increase in the yield was observed with the addition of an acid catalyst. This might be due to the base metals present in the feedstock that can lead to saponification during transesterification without the addition of an acid catalyst. An overall improvement in the extraction of crude bio-oil was observed with in situ production compared to hydrothermal liquefaction. During in situ liquefaction, the bio-oil yield increased by 150 g crude bio-oil per kg biomass higher, while the bio-char yields did not significantly vary at the optimum point of 280°C this finding has a significant value for green coal research. The highest HHV for the bio-char of 27 MJ.kg-1 +/- 0.17 MJ.kg-1 was found at 280°C and a 3:1 methanol ratio. The HHV of the bio-char decreases with an increase in temperature as more of the hydrocarbons are dissolved and form part of the bio-crude make-up. The highest HHV recorded for the crude bio-oil was 42 MJ.kg-1 at a 6:1 methanol ratio, a temperature of 300°C and an acid catalyst. The crude bio-oil HHV, which increased with an increase in temperature, is well within the specifications of the biodiesel standard (SANS, 1935). The highest FAME yield of 39.0 g.kg-1 was obtained using a 6:1 methanol ratio and a temperature of 300°C in the presence of an acid catalyst. The crude oil contained 49.0 g.kg-1 triglycerides with alkenes (C13, C15 and C17) making up the balance. The purest biodiesel yield was achieved at 3:1 methanol to dry biomass mass ratio, as it had the lowest yield unsaturated methyl esters. The overall FAME yield increased with an increase in methanol ratio. The derivatised FAME yields were the highest during hydrothermal liquefaction (55.0 g.kg-1 biomass). The in situ production of biodiesel from waste water clarifier effluent stream was found to be possible. Further investigation is needed into sufficient harvesting methods, including the optimum harvesting location, as this will result in fewer impurities in the stream and subsequent higher yields. / MIng (Chemical Engineering), North-West University, Potchefstroom Campus, 2015
248

Prototype de polarimètre micro-onde portable pour la détection à distance des températures de brillance

Geissbuehler, Simon January 2011 (has links)
Ce mémoire de maîtrise décrit la première phase de la réalisation d'un prototype de polarimètre portable à 37GHz. Les polarimètres portables actuellement disponibles sur le marché coûtent au dessus de 200 000$ et sont plus adaptés à l'utilisation au laboratoire que sur le terrain. Ils nécessitent le transport de gaz à l'état liquide pour leur calibration et ont de grands besoins énergétiques. Tous ces facteurs contribuent à leur haut coût et à leur grande complexité d'utilisation. Cette première phase du projet vise à développer la partie analogique du récepteur micro-onde qui sera au coeur du prototype. D'autres travaux, à la suite de cette maîtrise, seront nécessaires afin de rendre le récepteur utilisable et compléter le prototype. Les spécifications du polarimètre ont d'abord été définies. Par la suite, la décision d'acheter ou de fabriquer chaque sous-système/circuit a été prise. Ensuite, les activités d'achat et de conception ont eu lieu. Il a été constaté que les techniques standards utilisées pour fabriquer des circuits microruban n'étaient pas assez précis. Un procédé de fabrication a alors été développé et les circuits ont été fabriqués. Le tout a finalement été intégré. La finalité de ce projet a été un système analogique qui permet d'amplifier et de traiter une onde incidente à haute fréquence et à faible intensité pour la rendre mesurable par un système d'échantillonnage et de traitement numérique. Ce système numérique sera conçu et fabriqué à une date ultérieure.
249

Micromechanics of stress corrosion cracking in 304 stainless steel and Ni Alloy 600

Stratulat, Alisa January 2014 (has links)
The current thesis takes a step forward into understanding the intergranular stress corrosion cracking (IGSCC) by applying a relatively new micro-mechanical technique to look at the crack growth rate of individual grain boundaries in 304 stainless steel (SS) and to measure fracture toughness for different grain boundaries in Ni Alloy 600. In addition, a model is tested and proposed that could predict crack initiation in 304 SS. Pentagonal cross-section cantilevers 5 μm wide by 25 μm long were milled at individual grain boundaries in both 304 SS and Ni Alloy 600. The cantilevers milled in 304 SS were tested in-situ in a customised stage, using the nanoindenter. Crack growth rate was measured for two different cantilevers to be approximately 40 μm/s (K = 1.1 MPa(m)^(1/2)) and 120 μm/s (K = 1.7 MPa(m)^(1/2)). Cantilevers were milled in Ni Alloy 600 for three different samples: samples that were exposed to simulated pressurized water reactors (PWR) environment for 4500 h, for 1500 h and un-oxidised samples. The fracture toughness calculated for the fractured cantilevers in samples that were exposed for 4500 h was measured to be between 0.73 and 1.82 MPa(m)^(1/2). No intergranular fracture occurred in the samples that were exposed for 1500 h and in the un-oxidised samples. The grain boundary misorientation was measured for the tested cantilevers but no direct correlation was observed between the misorientation angle and the fracture toughness. A Schmid-modified grain boundary stress (SMGBS) model previously used to study the intergranular behaviour of irradiated 316L steel in supercritical water was applied to predict crack initiation in 304 stainless steel. The model was successfully applied and accurately predicted crack initiation. To extend the model, sensitisation was also included. In addition, different areas of the specimen, including the initiation site were analysed using High resolution electron backscatter diffraction (HR-EBSD) technique to measure the geometrically necessary dislocations (GNDs) density. It was observed that the boundary average GNDs is lower for the intact boundaries and higher for the cracked grain boundaries.
250

Beam Propagation Modelling of Whispering Gallery Microcavities

Cheraghi Shirazi, Mohammad Amin 07 May 2015 (has links)
Whispering Gallery Mode (WGM) microcavities have a wide range of applications from fundamental physics researches to engineering applications due to their ultra high quality factor (Q). For example, an ultra-high Q WGM cavity can be used as an bio/nanosensor since a nano particle bound to the surface of the cavity will result in a resonance wavelength shift. In the last decade lots of research have been conducted on this topic, as a result, WGM biosensors are emerging as one of the mainstream senors. This thesis presents an efficient beam propagation method (BPM) simulation tool to study the light propagation behaviour in WGM cavities. Using this tool, the perturbation of the cavity properties caused by a polystyrene nano bead attached to the surface of a WGM silica microcavity is investigated. Furthermore, we numerically verify a three times sensitivity enhancement by fabricating a nanohole at the surface of the WGM cavity sensor. In addition, we study the open cavity structures, cavity-waveguide coupling, huge WGM cavities, and deformed microcavities radiation. Finally, the impact of fabrication inaccuracy on asymmetric WGM cavities is investigated in terms of quality factor degradation. / Graduate

Page generated in 0.0486 seconds