• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 1
  • Tagged with
  • 19
  • 19
  • 8
  • 6
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Développement d'un endomicroscope multiphotonique compact et flexible pour l'imagerie in vivo haute résolution de tissus biologiques non marqués / Development of a compact and flexible multiphoton endomicroscope for in vivo high-resolution imaging of label-free biological tissues

Ducourthial, Guillaume 24 September 2014 (has links)
La microscopie multiphotonique est un outil essentiel d’investigation en biologie cellulaire et tissulaire. Son extension à l’endoscopie est l’objet d’intenses efforts de recherche pour des applications en neurosciences (imagerie cérébrale du petit animal) ou en clinique (diagnostic précoce, aide à la biopsie). Ce manuscrit porte sur le développement d’un endomicroscope multiphotonique présentant des performances inédites. Ce dispositif est alimenté par un oscillateur titane-saphir standard. Vient ensuite un module de pré-compensation des distorsions linéaires et non linéaires se produisant dans la fibre endoscopique. Ce module permet d’obtenir des impulsions compressées de 39 fs à la sortie d’une fibre microstructurée air-silice innovante à double gaine de 5 mètres de long qui est optimisée pour l’excitation multiphotonique (cœur central de 3,4 µm à maintien de polarisation) et la collection du signal produit par les cibles biologiques. A l’extrémité de la fibre, on trouve une sonde endoscopique, de 2,2 mm de diamètre pour 37 mm de long, composée d’un micro-scanner à fibre optique et d’un micro-objectif achromatique de distance de travail supérieure à 400 µm. La résolution spatiale de l’appareil vaut 0,83 µm et l’acquisition se fait en simultané sur deux canaux spectraux à 8 images/s. L’appareil a permis l’enregistrement d’images in vivo sans marquage des tubules et de la capsule rénale, respectivement par fluorescence à deux photons des flavines et par génération de second harmonique du collagène, avec 30 mW sur les tissus et jusqu’à 300 µm sous la surface de l’organe. / Multiphoton microscopy is an essential investigative tool in cell and tissue biology. Its extension to endoscopy is the subject of intensive research for applications in neuroscience (brain imaging of small animals) or clinical (early diagnosis, help for biopsy). This manuscript focuses on the development of an endomicroscope with multiphoton unprecedented performance. This device is powered by a standard titanium-sapphire oscillator. Then comes a pre-compensation module of linear and nonlinear distortions occurring in the endoscopic fiber. This module provides compressed pulses of 39 fs at the direct output of 5 meters long innovative double-clad air-silica microstructured fiber which is optimized for multiphoton excitation (polarization maintaining central core of 3.4 µm) and the collection of the signal produced by biological targets. At the end of the fiber, there is an endoscopic probe, 2.2 mm in diameter and 37 mm long, composed of a micro fiber scanning system and an achromatic micro-objective with a working distance greater than 400 µm. The spatial resolution of the device is 0.83 µm and the acquisition is done simultaneously on two spectral channels at 8 frames/s. The device has recorded in vivo images without label of the tubules and the renal capsule, respectively by two-photon excitation fluorescence of flavins and second harmonic generation of collagen, with 30 mW on the tissues and 300 µm below the surface of the organ.
12

Optical design and developent of building blocks for a new generation of vertically integrated on-chip confocal microscopes / Design optique et réalisation de briques de base pour une nouvelle génération de microscopes confocaux sur-puce intégrés verticalement

Baranski, Maciej 12 December 2013 (has links)
Les travaux de thèse concernent le design optique et le développement d’un microscope confocal miniature MEMS intégré verticalement. Différentes architectures optiques ont été proposées afin de combiner un design optique optimal aux nombreuses contraintes technologiques liées à la fabrication collective des différents blocs élémentaires du microscope sur puce. Ceux-ci, réalisés avec des technologies hybrides, sont encapsulés par assemblage vertical de wafers utilisant les technologies de soudure ≪multi-wafer≫, et permettent la construction d’un microsystème complet d’instrumentation. Un accent particulier a été émis sur la minimisation des aberrations optiques générées par les différents composants micro optiques pour permettre une résolution de mesure élevée. Pour satisfaire ces besoins, différentes briques élémentaires ont été développées : un cube semi-transparent micro-fabriqué, différentes microlentilles réfractives basées sur le micro moulage silicium et un micro-objectif réflecteur. Un montage expérimental de caractérisation dédié à l’ évaluation de la qualité de ces micro composants a également été proposé. De plus, les différents procédés de micro-usinage silicium (gravure humide anisotrope et isotrope, gravure sèche isotrope du silicium) pour la génération de micro-miroirs et de microlentilles ont été comparés. Enfin, les procédures d’assemblage vertical, incluant toutes les technologies d’interconnexion électrique ont été développées. Le travail de thèse a été réalisée dans le cadre du projet DWST-DIS ( The Development of Multi Wafer Stacking 3D Technology for Displays and Imaging MicroSystems), programme financé par le programme Inter Carnot Fraunhofer (PICF) - un projet ANR entre FEMTO-STet l’institut Fraunhofer ENAS. / The thesis manuscript concerns optical design and development of a vertically integrated MEMSbasedconfocal microscope. Different optical architectures have been proposed that aim to combineoptimal optical design and the numerous technological constraints linked to the batch fabricationof the different building blocks. The latter, made by hybrid technologies, and packaged byvertical assembly using multi- wafer bonding, allow the construction of a complete microsystem forinstrumentation. Special emphasis is placed on the minimization of optical aberrations generatedby the different microoptical components to ensure good resolution of measurement. For thesepurposes, different building blocks have been developed, namely a batch-fabricated cube-typedbeamsplitter, different silicon moulded refractive microlenses and a miniature reflective objective.Dedicated characterization system for quality assessment of the fabricated micro-components wasalso developed. Moreover, different processes of silicon-based micromachining for generation ofmicromirrors and microlenses (wet anisotropic and isotropic etch, dry isotropic etch of silicon) havebeen compared. Finally, procedures of vertical assembly including all electrical interconnectiontechnologies have been developed. The thesis work was performed in the frame of the DWST-DIS(The Development of Multi Wafer Stacking 3D Technology for Displays and Imaging MicroSystems)project funded by the Programme Inter Carnot Fraunhofer (PICF) – an ANR project between FEMTO-STand ENAS - Fraunhofer Institute.
13

Photopolymère pour le proche infrarouge : application à la fabrication de microlentilles sur composants optiques par écriture directe / Photopolymer for near-infrared polymerisation : Application to the fabrication of microlenses on optical components by direct writing

Dika, Ihab 21 September 2015 (has links)
L’objectif de cette thèse est de développer un nouveau matériau photopolymère pouvant être microstructuré dans la gamme de longueur d'onde du proche infrarouge (NIR). Le but final de ce travail est de proposer des solutions innovantes pour l'intégration de micro-optique sur les VCSELs (Vertical-Cavity Surface-Emitting Laser), sources lumineuses miniaturisées utilisées dans de nombreuses applications en optique, photonique, capteurs ou biologie. Le verrou technologique principal a consisté à développer et étudier le photopolymère adéquat pour la microfabrication déclenchée par le VCSEL. La difficulté principale tient à la longueur d'onde de photopolymérisation qui est fixé par le VCSEL et qui a obligé à développer un système moléculaire nouveau pour une polymérisation radicalaire à 780 et 850 nm. Une part importante du travail a consisté à étudier les mécanismes photophysiques et photochimiques des matériaux permettant de proposer des systèmes efficaces, sur le plan de la photophysique, de la photochimie de photopolymérisation et également une approche originale a été développée pour appréhender de façon quantitative les phénomènes de diffusion du colorant dans la matrice polymère. Sur la base des systèmes moléculaires proposés, la démonstration de l'intégration de microlentilles sur VCSEL par ce procédé innovant a pu être démontré. Les VCSELs lentillés ont été caractérisés et des propriétés très intéressantes pour la focalisation ont été démontrées. / The objective of this thesis is to develop a new photopolymer material that can be microstructured in the wavelength range of near-infrared (NIR). The ultimate aim of this work is to propose innovative solutions for micro-optical integration on VCSELs (Vertical-Cavity Surface-Emitting Laser). These miniaturized light sources are used in many applications in optics, photonics, sensors or biology. The main technological challenge was to develop and explore a new photopolymer compatible with a microfabrication initiated by the VCSEL. The main difficulty was to develop a new molecular system for radical polymerization at 780 and 850 nm, which is the wavelength emitted by the VCSEL. An important part of the work consisted to study the photophysical and photochemical mechanisms of this photopolymer in order to provide efficient systems in terms of photophysics, photochemistry of the photopolymerization. An original approach was developed to quantitatively apprehend the phenomena dye diffusion in the polymer matrix. Based on the proposed molecular systems, demonstrating the integration of microlenses on VCSELs by this innovative process could be shown. The lensed VCSELs have been characterized and very interesting properties for focusing have been demonstrated.
14

Design And Assessment Of Compact Optical Systems Towards Special Effects Imaging

Chaoulov, Vesselin 01 January 2005 (has links)
A main challenge in the field of special effects is to create special effects in real time in a way that the user can preview the effect before taking the actual picture or movie sequence. There are many techniques currently used to create computer-simulated special effects, however current techniques in computer graphics do not provide the option for the creation of real-time texture synthesis. Thus, while computer graphics is a powerful tool in the field of special effects, it is neither portable nor does it provide work in real-time capabilities. Real-time special effects may, however, be created optically. Such approach will provide not only real-time image processing at the speed of light but also a preview option allowing the user or the artist to preview the effect on various parts of the object in order to optimize the outcome. The work presented in this dissertation was inspired by the idea of optically created special effects, such as painterly effects, encoded in images captured by photographic or motion picture cameras. As part of the presented work, compact relay optics was assessed, developed, and a working prototype was built. It was concluded that even though compact relay optics can be achieved, further push for compactness and cost-effectiveness was impossible in the paradigm of bulk macro-optics systems. Thus, a paradigm for imaging with multi-aperture micro-optics was proposed and demonstrated for the first time, which constitutes one of the key contributions of this work. This new paradigm was further extended to the most general case of magnifying multi-aperture micro-optical systems. Such paradigm allows an extreme reduction in size of the imaging optics by a factor of about 10 and a reduction in weight by a factor of about 500. Furthermore, an experimental quantification of the feasibility of optically created special effects was completed, and consequently raytracing software was developed, which was later commercialized by SmARTLens(TM). While the art forms created via raytracing were powerful, they did not predict all effects acquired experimentally. Thus, finally, as key contribution of this work, the principles of scalar diffraction theory were applied to optical imaging of extended objects under quasi-monochromatic incoherent illumination in order to provide a path to more accurately model the proposed optical imaging process for special effects obtained in the hardware. The existing theoretical framework was generalized to non-paraxial in- and out-of-focus imaging and results were obtained to verify the generalized framework. In the generalized non-paraxial framework, even the most complex linear systems, without any assumptions for shift invariance, can be modeled and analyzed.
15

Additive Lithography Fabrication And Integration Of Micro Optics

Pitchumani, Mahesh 01 January 2006 (has links)
Optical elements are the fundamental components in photonic systems and are used to transform an input optical beam into a desired beam profile or to couple the input beam into waveguides, fibers, or other optical systems or devices. Macroscopic optical elements are easily fabricated using grinding and polishing techniques, but few methods exist for inexpensive fabrication of micro optical elements. In this work we present an innovative technique termed Additive Lithography that makes use of binary masks and controlled partial exposures to sculpt photoresist into the desired optical surface relief profile. We explore various masking schemes for fabricating a variety of optical elements with unprecedented flexibility and precision. These masking schemes used in conjunction with the additive lithographic method allows us to carefully control the photoresist exposure and reflow processes for fabricating complex aspheric lens elements, including aspheric elements whose fabrication often proves highly problematic. It will be demonstrated that employing additive lithography for volume sculpting followed by controlled reflow can also allow us to fabricate refractive beam shaping elements. Finally we will discuss the dry etching techniques used to transfer these optical elements into the glass substrate. Thus the additive lithography technique will be demonstrated as an inexpensive, high throughput and efficient process in the fabrication of micro optical elements.
16

Design And Fabrication Of Space Variant Micro Optical Elements

Srinivasan, Pradeep 01 January 2009 (has links)
A wide range of applications currently utilize conventional optical elements to individually transform the phase, polarization, and spectral transmission/reflection of the incident radiation to realize the desired system level function. The material properties and the feasibility of fabrication primarily impact the device and system functionality that can be realized. With the advancement in micro/nano patterning, growth, deposition and etching technology, devices with novel and multiplexed optical functionalities have become feasible. As a result, it has become possible to engineer the device response in the near and far field by controlling the phase, polarization or spectral response at the micro scale. One of the methods that have been explored to realize unique optical functionalities is by varying the structural properties of the device as a function of spatial location at the sub-micron scale across the device aperture. Spatially varying the structural parameters of these devices is analogous to local modifications of the material properties. In this dissertation, the optical response of interference transmission filters, guided mode resonance reflection filters, and diffraction gratings operated in Littrow condition with strategically introduced spatial variation have been investigated. Spatial variations in optical interference filters were used to demonstrate wavelength tunable spatial filters. The effect was realized by integrating diffractive and continuous phase functions on the defect layer of a one-dimensional photonic crystal structure. Guided mode resonance filters are free space optical filters that provide narrow spectral reflection by combining grating and waveguide dispersion effects. Frequency dependent spatial reflection profiles were achieved by spatially varying the grating fill fraction in designed contours. Diffraction gratings with space variant fill fractions operating in Littrow condition were used to provide graded feedback profiles to improve the beam quality and spatial brightness of broad area diode lasers. The fabrication of space variant structures is challenging and has been accomplished primarily by techniques such as ruling, electron beam writing or complex deposition methods. In order to vary the desired structural parameter in a designed manner, a novel technique for the fabrication of space variant structures using projection lithography with a fidelity that rivals any of the current technologies was also developed as a part of this work. The devices exhibit wavelength dependent beam shaping properties in addition to spatial and spectral filtering and have potential applications in advanced imaging systems, graded reflectivity laser mirrors, and engineered illumination. The design, modeling, microfabrication and experimental characterization of space variant micro optical elements with novel optical functionalities are presented.
17

Free space optical interconnects for speckled computing

Reardon, Christopher P. January 2009 (has links)
The aim of this project was to produce an integrate-able free space optical transceiver for Specks. Specks are tiny computing units that together can form a powerful network called a SpeckNet. The SpeckNet platform is developed by the SpeckNet consortium, which consists of five Scottish Universities and combines computer science, electrical engineering and digital signal processing groups. The principal goal of creating an optical transceiver was achieved by integrating in-house fabricated VCSELs (with lasing thresholds below 400 uA) and custom designed detectors on the SpeckNet platform. The transceiver has a very low power consumption (approximately 100 uW), which removes the need for synchronous communication through the SpeckNet thus making the network more efficient. I describe both static and dynamic beam control techniques. For static control, I used micro-lenses. I fabricated the lenses by greyscale electron beam lithography and integrated them directly on VCSEL arrays. I achieved a steering angle of 10 degrees with this design. I also looked at integrated gratings etched straight into a VCSEL and observed beam steering with an efficiency of 60% For dynamic control, I implemented a liquid crystal (LC) design. I built a LC cell with 30 individually controlled pixels, but I only achieved a steering angle of 1 degree. Furthermore, I investigated two different techniques for achieving beam steering by interference, using coupled VCSELs (a phased array approach). Firstly, using photonic crystals etched into the surface of the VCSEL, I built coupled laser cavities. Secondly, I designed and built bow-tie type VCSELs that were optically coupled but electrically isolated. These designs work by differential current injection causing an interference effect in the VCSELs far field. This technique is the first stepping stone towards realising a phased optical array. Finally, I considered signal detection. Using the same VCSEL material, I built a resonant-cavity detector. This detector had a better background rejection ratio than commercially available silicon devices.
18

Conception et réalisation de microsystèmes optiques (MOEMS) en polymère pour l'optique adaptative intégrée sur diodes laser verticales (VCSELs) / Design, fabrication and integration of active polymer optical microsystems (MOEMES) on VCSELs laser diodes

Abada, Sami 11 December 2015 (has links)
Ces travaux de thèse portent sur la conception, la réalisation et d'une nouvelle génération de MOEMS (Micro-Optical-Electrical-Mechanical System) pour le contrôle actif du faisceau laser émis par des matrices de VCSELs (Vertical-Cavity Surface-Emitting Lasers). Le microsystème à base de polymères que nous avons conçu est compatible avec une intégration monolithique en post-processing. Il est composé d'une membrane suspendue associée à une microlentille réfractive. Le plan de focalisation est contrôlé dynamiquement grâce au déplacement vertical de la membrane grâce à un actionnement électrothermique. La géométrie du MOEMS a été optimisée à l'aide notamment de simulations électro-thermo-mécaniques pour minimiser l'énergie de commande et fiabiliser les dispositifs. Nous avons ensuite développé l'ensemble des briques technologiques pour la fabrication collective de ce dispositif sur des matrices de VCSELs. En particulier, une technique originale de transfert thermique doux de films secs photosensibles épais a été mise au point au moyen d'un équipement de nano-impression, pour permettre un dépôt uniforme et précis sur des substrats fragiles ou de faible taille. En outre, nous avons développé un procédé simple et totalement planaire pour la fabrication du MOEMS et optimisé un procédé de dépôt par jets d'encre pour l'intégration finale des microlentilles, avec la possibilité de choisir la distance focale la plus adaptée à la fin du process. La caractérisation des microsystèmes que nous avons réalisés a conduit à l'obtention de déplacements mécaniques de 8µm pour seulement 12.5mW appliqués, ce qui constitue une validation de nos résultats de modélisation. Enfin, des premiers résultats de focalisation dynamique du faisceau VCSELs sont présentés. / This thesis deals with the study and the fabrication of a novel type of polymer MOEMS (Micro Optical Electrical Mechanical Systems) to achieve passive or active beam shaping of Vertical-Cavity Surface-Emitting Lasers (VCSELs). To improve the photonic integration of these compact laser sources in optical communication and detection systems (sensors, biomedical analysis), we designed a polymer-based optical microsystem that is suitable with a post-processing integration on VCSELs. Its operation principle is based on the out-of-plane displacement of a suspended SU-8 membrane including a polymer refractive microlens at its surface. Thanks to electro-thermal actuation, the vertical displacement of the membrane allows to dynamically modify the microlens-source distance and leads to a vertical shift of the laser beam waist position. MOEMS actuation power and reliability were optimized owing to a comprehensive tri-dimensional thermo-electro-mechanical model that takes into account SU-8 material properties and precise geometry of the device. Technological steps necessary for the collective fabrication of such MOEMS on VCSELs arrays were also developed. In particular, we report on a new photoresist film transfer method we developed to achieve a highly uniform fabrication of high aspect ratio MOEMS on small-sized or fragile samples such as GaAs-based VCSELs wafers. This method that we call "soft thermal printing" is based on the use of a thermal nano-imprint set-up. Moreover, a simple and planar process for MOEMS fabrication was successfully tested. A dedicated inkjet printing process for drop-on-demand deposition of the microlens on the membrane center was also developed. Finally, the fabricated MOEMS were characterized. A vertical displacement as high as 8µm was observed for only 12.5mW applied, in good agreement with our 3D modeling results and first results on 850nm VCSEL dynamic beam focusing were obtained, demonstrating the interest of our approach.
19

Development and characterization of an optical coherence tomography micro-system : Application to dermatology / Développement et caracterisation d'un microsystème de tomographie par cohérence optique plein champ à balayage en longueur d'onde : Application à la dermatologie

Perrin, Stephane 24 June 2016 (has links)
Ce manuscrit de thèse de doctorat présente la conception et la réalisation d’un système d’imageriepour le diagnostic précoce des pathologies de la peau. Un diagnostic précoce permet de réduire lesactes chirurgicaux inutiles. Il est important de mettre en avant que seulement 20% des pathologiesfaisant office d’une opération chirurgicale, sont malignes. De plus, les pronostics de l’année 2015avançaient trois millions de nouveaux cas de cancer de la peau diagnostiqués aux ´ Etats-Unis. Basésur la tomographie par cohérence optique à balayage en longueur d’onde et une configuration pleinchamp et multi-canaux, le système d’imagerie médicale est capable d’imager en volume les couchesinternes de la peau et donc de fournir un diagnostic médical pour le professionnel de santé. Pourune fabrication en série du système portatif, les composants optiques sont micro-fabriqués sur dessubstrats et assemblés verticalement. Ces micro-composants optiques requièrent une caractérisationspécifique. Pour cela, deux systèmes ont ainsi été développés pour estimer leurs performancesoptiques. Ce travail a été réalisé dans le cadre du projet Européen VIAMOS (Vertically IntegratedArray-type Mirau-based OCT System). / The manuscript concerns the optical design and the development of a non-invasive new imagingsystem for the early diagnosis of skin pathologies. Indeed, an early diagnosis can make the differencebetween malignant and benign skin lesion in order to minimize unnecessary surgical procedure.Furthermore, prognosis for the year 2015 was that more than three millions new skin cancer caseswill be diagnosed in the United States. Based on the swept source optical coherence tomographytechnique in full-field and multiple channels configuration, the imaging system is able to perform avolumetric image of the subsurface of the skin, and thus can help in taking a better medical decision.Furthermore, for a batch-fabrication of the hand-held device, micro-optical components were made atwafer-level and vertically assembled using multi-wafer bonding. This miniaturized system requiresspecific characterization. Thus, two systems were also developed for imaging quality evaluation ofmicro-optical elements. This work has been supported by the VIAMOS (Vertically Integrated ArraytypeMirau-based OCT System) European project.

Page generated in 0.0547 seconds