• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Switchless Electrostatic Vibration Micro-Power Generators

Mahmoud, Mohamed A. E. January 2010 (has links)
Energy harvesting from the surrounding environment has become a hot topic in research as an alternative powering solution. The concept deals with scavenging, as well as, harvesting energy from the surrounding energy sources. Harvesting vibrations, through Micro-Power Generators (MPGs) , has drawn a lot of attention recently due to the reduction in the power requirement of the current sensors and integrated ciruits, and the abundance of ambient vibrations in many environments. Vibration Micro-Power generators (VMPGs) use one of three transduction mechanisms: piezoelectric, electromagnetic or electrostatic. Although electrostatic MPGs are the most compatible mechanism with ICs technology, many challenges face their optimal operation including low efficiency due to power electronics switching losses, the need for pre-charge, and the inability to operate in vibration environments with low frequencies and amplitudes. The objective of this thesis is to develop novel electrostatic micro-power generators using switchless architecture to achieve low cost, small footprint, self-sustained and optimal power generation in different vibration environments including low frequencies and amplitudes. The first electrostatic MPG uses an out-of-plane capacitive transducer. The new generator is sensitive enough to extract output power at very low base excitations. It is designed to use ready-made electret as a charging source and is therefore portable and self-sustained. Moreover, the new MPG can be configured as a wideband MPG in its impact mode of operation. A bandwidth of up to 9 Hz has been realized in this mode of operation. An improved version of the MPG is also presented that produces almost 1mW output power at a base excitation amplitude and frequency of 0.08g (RMS) and 86 Hz. Two nonlinear models developed for the free-flight and impact modes of operation of the MPG are presented to allow future analysis and optimization of the system. The second electrostatic MPG uses a novel interdigitated in-plane parallel plate electrostatic transducer. The new implementation can achieve 78% more output power than the original cited implementation. The MPG is fabricated using MEMS surface micromachining. The MPG introduces a new beam suspension system in which the source voltage is unlimited by the pull-in instability and low MPG center frequency can be realized. The MPG uses charged silicon nitride as a charging source. The MPG produces 65 mV at a base acceleration amplitude and frequency of 2g and 1.1 kHz. The prototype achieves 27% less resonance frequency with only one eight the size of the previous implementation. A third electrostatic MPG architecture is introduced. The new architecture eliminates the need for restoring force elements (springs) in the MPG. The architecture can realize arbitrarily low MPG center frequency. It is suitable for both rectilinear and cylindrical structures and can be used with different vibration energy transduction methods. A prototype is fabricated and tested to demonstrate the feasibility of this architecture. The center frequency of the prototype is found to be 2 Hz demonstrating low frequency operation. The nonlinear behavior of switchless (continuous) electrostatic MPGs is further studied for optimal power operation. A consistent approximate analytical solution is developed to describe the nonlinear behavior of switchless comb-finger electrostatic MPGs. The method of multiple scales is used to develop such model. The model was found to be valid for MPGs operating under tight electromechanical coupling conditions and for moderately-large base excitations.
2

Switchless Electrostatic Vibration Micro-Power Generators

Mahmoud, Mohamed A. E. January 2010 (has links)
Energy harvesting from the surrounding environment has become a hot topic in research as an alternative powering solution. The concept deals with scavenging, as well as, harvesting energy from the surrounding energy sources. Harvesting vibrations, through Micro-Power Generators (MPGs) , has drawn a lot of attention recently due to the reduction in the power requirement of the current sensors and integrated ciruits, and the abundance of ambient vibrations in many environments. Vibration Micro-Power generators (VMPGs) use one of three transduction mechanisms: piezoelectric, electromagnetic or electrostatic. Although electrostatic MPGs are the most compatible mechanism with ICs technology, many challenges face their optimal operation including low efficiency due to power electronics switching losses, the need for pre-charge, and the inability to operate in vibration environments with low frequencies and amplitudes. The objective of this thesis is to develop novel electrostatic micro-power generators using switchless architecture to achieve low cost, small footprint, self-sustained and optimal power generation in different vibration environments including low frequencies and amplitudes. The first electrostatic MPG uses an out-of-plane capacitive transducer. The new generator is sensitive enough to extract output power at very low base excitations. It is designed to use ready-made electret as a charging source and is therefore portable and self-sustained. Moreover, the new MPG can be configured as a wideband MPG in its impact mode of operation. A bandwidth of up to 9 Hz has been realized in this mode of operation. An improved version of the MPG is also presented that produces almost 1mW output power at a base excitation amplitude and frequency of 0.08g (RMS) and 86 Hz. Two nonlinear models developed for the free-flight and impact modes of operation of the MPG are presented to allow future analysis and optimization of the system. The second electrostatic MPG uses a novel interdigitated in-plane parallel plate electrostatic transducer. The new implementation can achieve 78% more output power than the original cited implementation. The MPG is fabricated using MEMS surface micromachining. The MPG introduces a new beam suspension system in which the source voltage is unlimited by the pull-in instability and low MPG center frequency can be realized. The MPG uses charged silicon nitride as a charging source. The MPG produces 65 mV at a base acceleration amplitude and frequency of 2g and 1.1 kHz. The prototype achieves 27% less resonance frequency with only one eight the size of the previous implementation. A third electrostatic MPG architecture is introduced. The new architecture eliminates the need for restoring force elements (springs) in the MPG. The architecture can realize arbitrarily low MPG center frequency. It is suitable for both rectilinear and cylindrical structures and can be used with different vibration energy transduction methods. A prototype is fabricated and tested to demonstrate the feasibility of this architecture. The center frequency of the prototype is found to be 2 Hz demonstrating low frequency operation. The nonlinear behavior of switchless (continuous) electrostatic MPGs is further studied for optimal power operation. A consistent approximate analytical solution is developed to describe the nonlinear behavior of switchless comb-finger electrostatic MPGs. The method of multiple scales is used to develop such model. The model was found to be valid for MPGs operating under tight electromechanical coupling conditions and for moderately-large base excitations.
3

IDÍLIO OU PESADELO? A GENEALOGIA DO PODER EM ADMIRÁVEL MUNDO NOVO DE ALDOUS HUXLEY

Joanico, Lennon Moraes 14 October 2016 (has links)
Made available in DSpace on 2017-07-21T14:53:57Z (GMT). No. of bitstreams: 1 Lennon Moraes Joanino.pdf: 566623 bytes, checksum: 473614abf350043d25ca7d6ee232b09c (MD5) Previous issue date: 2016-10-14 / This dissertation aims to examine how the control mechanisms and thus power are organized in the utopian narrative Brave New World, written by Aldous Huxley, as well as highlight the importance of such issues for the narrative’s understanding. For this, the discussion will avail concepts and reflections proposed by philosopher Michel Foucault, specifically, but not exclusively, in Microphysics of Power (2013), in which the theoretic ponders about the micro-power relations, the body, discipline and the individual as the result of power relations. Thereby, the study will problematize the multiplicities of control and power constitutive of the interrelations between the social and the individual, showing the potential positive and negative aspects of power settings in the narrative. With this, it expected that the issues that will be listed here can contribute to the expansion of reflections about Aldous Huxley's work, and also, it can further the discussions concerning to the control and power's issues in other literary works. / Este trabalho tem como objetivo analisar de que modo os mecanismos de controle e, portanto, de poder estão agenciados na narrativa utópica Admirável Mundo Novo, de Aldous Huxley, bem como evidenciar a importância de tais questões para a compreensão da obra. Para tanto, a discussão valer-se-á de conceitos e reflexões propostas pelo filósofo Michel Foucault, mais precisamente, mas não de maneira exclusiva, na obra Microfísica do Poder (2013), na qual o teórico pondera sobre as relações de micropoder, o corpo, a disciplina e o indivíduo como resultante das relações de poder. Desse modo, o estudo problematizará as multiplicidades do controle e poder constitutivos das inter-relações entre o social e o individual, evidenciando os aspectos potencialmente positivos e negativos das configurações de poder na narrativa.Assim, espera-se que as questões que serão aqui elencadas possam contribuir para a ampliação das reflexões relativas à obra de Aldous Huxley, e também, aprofundar discussões concernentes às questões de controle e poder em outras obras literárias.
4

Energy harvesting from human passive power

Mateu Sáez, Maria Loreto 05 June 2009 (has links)
Las tendencias en la tecnología actual permiten la reducción tanto en tamaño como en potencia consumida de los sistemas digitales complejos. Esta disminución en el tamaño y el consumo da lugar al concepto de dispositivos portátiles que se integren en la vida pertenencias personales y cotidianas como ropa, relojes, gafas, etc. La fuente de alimentación es un factor limitante en la movilidad de los dispositivos portátiles que se ve reducida por la duración de la batería. Además, debido a los costos y difícil accesibilidad, la sustitución o recarga de las baterías a menudo no es viable para los dispositivos portátiles integrados en ropa inteligente. Los dispositivos vestibles están distribuidos en las pertenencias personales y, por tanto, la recolección de energía del usuario es una alternativa para su alimentación. Dispositivos vestibles pueden crear, al igual que los sensores de una red de sensores inalámbricos (WSN), una red de área corporal. El principal objetivo de esta tesis es el estudio de generadores piezoeléctricos, inductivos y termoeléctricos que recolectan energía del cuerpo humano de forma pasiva. El principio físico de un transductor es el mismo independientemente de si la fuente proviene del entorno o del cuerpo humano. Sin embargo, las limitaciones relacionadas con la baja tensión, corriente y niveles de frecuencia conllevan nuevos requerimientos que no están presentes en el caso de la utilización de las fuentes que ofrece el entorno y que suponen el principal desafío de esta tesis. El tipo de energía entrada y transductor a utilizar forman un tándem donde la elección de uno impone el otro. Es importante que las mediciones se realicen diferentes partes del cuerpo humano, mientras se realizan diferentes actividades físicas para localizar las posiciones y las actividades que producen más energía. El acoplamiento mecánico entre transductor y cuerpo humano depende de la ubicación del transductor y la actividad que se realiza. Un diseño específico, teniendo esto en cuenta puede aumentar más de un 200% la eficiencia del transductor como se ha demostrado con láminas piezoeléctricas situadas en plantillas de zapatos. Se han realizado mediciones de aceleraciones en diferentes partes del cuerpo y diferentes actividades para cuantificar la cantidad de energía disponible en actividades cotidianas. Se ha realizado una simulación a nivel de sistema, modelando los elementos de un sistema de energía autoalimentado. El transductor se ha modelado usando las ecuaciones físicas que lo describen con el objetivo de incluir la parte mecánica del sistema. Se han utilizado modelos eléctricos y de comportamiento para el resto de los componentes. De esta manera, el proceso de diseño de la aplicación en su conjunto (incluyendo la carga y un elemento de almacenamiento de energía cuando es necesario) se simplifica a la hora de lograr los requisitos planteados. Obviamente, la carga debe ser un dispositivo de bajo consumo como por ejemplo un transmisor RF. En este caso, es preferible alimentar la carga de forma discontinua, sin una batería, como se deduce de los resultados obtenidos mediante simulación. Sin embargo, la evolución de los transmisores RF de baja potencia puede cambiar esta conclusión en función sobre todo de la evolución del consumo de energía en stand-by y el tiempo de configuración para la operación de transmisión. Se ha deducido a partir del análisis de los generadores inductivos que el análisis en el dominio temporal permite calcular algunas magnitudes que no están disponibles en el dominio frecuencial. Por ejemplo, la potencia máxima se puede calcular en el dominio frecuencial, pero para aplicaciones de recolección de energía es más interesante saber el valor de la energía recuperada durante un cierto tiempo o la potencia media ya que la potencia generada por las actividades humanas pueden ser muy discontinua. Se ha demostrado que los transductores recolectores de energía son capaces de suministrar alimentación a dispositivos electrónicos de baja potencia, como quedó demostrado con un transmisor RF alimentado por una termogenerador que emplea el gradiente de temperatura existente entre el cuerpo humano y el entorno (3-5 K) y que es capaz de realizar medidas y transmitirlas una vez cada segundo / The trends in technology allow the decrease in both size and power consumption of complex digital systems. This decrease in size and power gives rise to the concept of wearable devices which are integrated in everyday personal belongings like clothes, watch, glasses, et cetera. Power supply is a limiting factor in the mobility of the wearable device which gets restricted to the lifetime of the battery. Furthermore, due to the costs and inaccessible locations, the replacement or recharging of batteries is often not feasible for wearable devices integrated in smart clothes. Wearable devices are devices distributed in personal belongings and thus, an alternative for powering them is to harvest energy from the user. Therefore, the energy can be harvested, distributed and supplied over the human body. Wearable devices can create, like the sensors of a Wireless Sensor Network (WSN), a Body Area Network. A study of piezoelectric, inductive and thermoelectric generators that harvest passive human power is the main objective of this thesis. The physical principle of an energy harvesting generator is obviously the same no matter whether it is employed with an environmental or human body source. Nevertheless, the limitations related to low voltage, current and frequency levels obtained from human body sources bring new requirements to the energy harvesting topic that were not present in the case of the environment sources. This analysis is the motivation for this thesis. The type of input energy and transducer form a tandem since the election of one imposes the other. It is important that measurements are done in different parts of the human body while doing different physical activities to locate which positions and activities produce more energy. The mechanical coupling between the transducer and the human body depends on the location of the transducer and the activity that is done. A specific design taking this into account can increase more than a 200% the efficiency of the transducer as has been demonstrated with piezoelectric films located in the insoles of shoes. Acceleration measurements have been performed in different body locations and different physical activities, in order to quantify the amount of available energy associated with usual human movements. A system-level simulation has been implemented modeling the elements of an energy self-powered system. Physical equations have been used for the transducer in order to include the mechanical part of the system and electrical and behavioral models for the rest of the components. In this way, the process of the design of the complete application (including the load and an energy storage element when it is necessary) is simplified to achieve the expected requirements. Obviously, the load must be a low power consumption device as for example a RF transmitter. In this case, it is preferable to operate it in a discontinuous way without a battery as it is deduced from simulation results obtained. However, the evolution in low power transmission modules can change this conclusion depending mostly on the evolution of the power consumption in stand-by mode and the configuration time in transmission operation. It has been deduced from the analysis of inductive generators that time-domain analysis allows to calculate some magnitudes that are not available in frequency domain. For example, the maximum power can be calculated in frequency domain, but for energy harvesting applications it is more interesting to know the value of the recovered energy during a certain time, or the average power since the power generated by human activities can be highly discontinuous. It has been demonstrated that energy harvesting transducers are able to supply power to present-day low power electronic devices as was demonstrated with a RF transmitter powered by a thermogenerator that employs the temperature gradient between human body and the environment (3-5 K) and that it is able to sense and transmit data once every second.
5

Microfabricated Fuel Cells To Power Integrated Circuits

Moore, Christopher Wayne 12 May 2005 (has links)
Microfabricated fuel cells have been designed and constructed on silicon integrated circuit wafers using many processes common in integrated circuit fabrication, including sputtering, polymer spin coating, reactive ion etching, and photolithography. Fuel delivery microchannels were made through the use of sacrificial polymers. The characteristics of different sacrificial polymers were studied to find the most suitable for this work. A polypropylene carbonate solution containing a photo-acid generator could be directly patterned with ultraviolet exposure and thermal decomposition. The material that would serve as the fuel cells proton exchange membrane (PEM) encapsulated the microchannels. Silicon dioxide deposited by plasma enhanced chemical vapor deposition (PECVD) at relatively low temperatures exhibited material properties that made it suitable as a thin-film PEM in these devices. By adding phosphorous to the silicon dioxide recipe during deposition, a phosphosilicate glass was formed that had an increased ionic conductivity. Various polymers were tested for use as the PEM or in combination with oxide to form a composite PEM. While it did not work well alone, using Nafion on top of the glass layer to form a dual-layer PEM greatly enhanced the fuel cell performance, including yield and long-term reliability. Platinum and platinum/ruthenium catalyst layers were sputter deposited. Experiments were performed to find a range of thicknesses that resulted in porous layers allowing contact between reactants, catalyst, and the PEM. When using the deposited glasses, multiple layers of catalyst could be deposited between thin layers of the electrolyte, resulting in higher catalyst loading while maintaining porosity. The current and power output were greatly improved with these additional catalyst layers.
6

Design, Fabrication And Implementation Of A Vibration Based Mems Energy Scavenger For Wireless Microsystems

Sari, Ibrahim 01 September 2008 (has links) (PDF)
This thesis study presents the design, simulation, micro fabrication, and testing steps of microelectromechanical systems (MEMS) based electromagnetic micro power generators. These generators are capable of generating power using already available environmental vibrations, by implementing the electromagnetic induction technique. There are mainly two objectives of the study: (i) to increase the bandwidth of the traditional micro generators and (ii) to improve their efficiency at low frequency environmental vibrations of 1-100 Hz where most vibrations exist. Four main types of generators have been proposed within the scope of this thesis study. The first type of generator is mainly composed of 20 parylene cantilevers on which coils are fabricated, where the cantilevers are capable of resonating with external vibrations with respect to a stationary magnet. This generator has dimensions of 9.5&times / 8&times / 6 mm3, and it has been shown that 0.67 mV of voltage and 56 pW of power output can be obtained from a single cantilever of this design at a vibration frequency of 3.45 kHz. The second type generator aims to increase the bandwidth of the traditional designs by implementing cantilevers with varying length. This generator is sized 14&times / 12.5&times / 8 mm3, and the mechanical design and energy generation concept is similar to the first design. The test results show that by using 40 cantilevers with a length increment of 3 &amp / #956 / m, the overall bandwidth of the generator can be increased to 1000 Hz. It has also been shown that 9 mV of constant voltage and 1.7 nW of constant power output can be obtained from the overall device in a vibration frequency range of 3.5 to 4.5 kHz. The third type is a standard large mass coil type generator that has been widely used in the literature. In this case, the generator is composed of a stationary base with a coil and a magnet-diaphragm assembly capable of resonating with vibrations. The fabricated device has dimensions of 8.5&times / 7&times / 2.5 mm3, and it has been considered in this study for benchmarking purposes only. The test results show that 0.3 mV of voltage and 40 pW of power output can be obtained from the fabricated design at a vibration frequency of 113 Hz. The final design aims to mechanically up-convert low frequency environmental vibrations of 1-100 Hz to a much higher frequency range of 2-3 kHz. This type of generator has been implemented for the first time in the literature. The generator is composed of two parts / a diaphragm-magnet assembly on the top, and 20 cantilevers that have coils connected in series at the base. The diaphragm oscillates by low frequency environmental vibrations, and catches and releases the cantilevers from the tip points where magnetic nickel (Ni) areas are deposited. The released cantilevers then start decaying out oscillations that is at their damped natural frequency of 2-3 kHz. It has been shown with tests that frequency up-conversion is realized in micro scale. The fabricated device has dimensions of 8.5&times / 7&times / 2.5 mm3, and a maximum voltage and power output of 0.57 mV and 0.25 nW can be obtained, respectively, from a single cantilever of the fabricated prototype at a vibration frequency of 113 Hz.
7

Design And Prototyping Of An Electromagnetic Mems Energy Harvester For Low Frequency Vibrations

Turkyilmaz, Serol 01 September 2011 (has links) (PDF)
This thesis study presents the design, simulation, and fabrication of a low frequency electromagnetic micro power generator. This power generator can effectively harvest energy from low frequency external vibrations (1-100 Hz). The main objective of the study is to increase the efficiency of the previously proposed structure in METU-MEMS Center, which uses the frequency up-conversion technique to harvest energy from low frequency vibration. The proposed structure has been demonstrated by constructing several macro scale prototypes. In one of the constucted prototypes, the diaphragms are connected to a fixed frame via metal springs. The upper diaphragm having lower resonance frequency carries a magnet, and the lower diaphragm carries a hand wound coil and a magnetic piece for converting 6 Hz external vibrations up to 85 Hz, resulting a maximum voltage and power levels of 11.1 mV and 5.1 &micro / W, respectively. In an improved prototype, the metal springs are replaced with rubber ones, providing higher energy conversion efficiency and flexibility to tune the resonance frequency of both diaphragms to desired values. This prototype provides 104 &micro / W maximum power and 37.7 mV maximum voltage in response to vibration levels of 30 Hz. The proposed structure is also suitable to be realized by using microfabrication techniques. Hence, the structure to be microfabricated is studied and optimized for this purpose. When scaled to microelectromechanical dimensions, the expected maximum power and voltage from the 10 x 8.5 x 2.5 mm3 generator is 119 nW and 15.2 mV, respectively. A microfabrication process has also been designed for the proposed generator structure. According to this process, the structure consists of a stack of two pieces, each carrying different diaphragms. The diaphragms are made of parylene, and the coil and the magnetic piece are electroplated copper and nickel, respectively. As a result of this study, a new topology is proposed for harvesting energy at low frequency vibrations by the frequency up-conversion technique, and an efficiency improvement is expected with more than three orders of magnitude (119 nanoWatts output for the same size) compared to the study realized in our laboratory in converting low frequency (70-150 Hz) environmental vibrations to electrical energy.
8

Návrh vodní mikroelektrárny pro malé spády a malé průtoky / Design of a micro waterpower turbines for low head and low dicharge

Macek, Libor January 2016 (has links)
This diploma thesis discusses the issue of finding type of water turbine for very low heads and low discharges, which could be operated as mobile micro hydropower plant in island mode. Thesis deals with summary of appropriate choices of water turbine for needs of micro hydropower plant. Essential part of diploma thesis deals with design of optimized waterwheel. Waterwheel was chosen because commercial high-speed turbines have low efficiency for low heads. Waterwheel was manufactured and measured in laboratories of Fluid engineering. Measurement output was discharge and efficiency characteristic of turbine. The price calculation was made after manufacture.
9

Conception et caractérisation de microgénérateurs piézoélectriques pour microsystèmes autonomes / Design and characterization of MEMS micro power generators for autonomous systems on chip

Defosseux, Maxime 04 October 2011 (has links)
Le contexte de cette thèse est la récupération d'énergie afin de rendre des capteurs autonomes. L'objectif de ce travail est de répondre à la problématique du couplage des microgénérateurs piézoélectriques résonants à la source de vibration mécanique. Cela nécessite de travailler à plus basse fréquence et sur des gammes de fréquences plus importantes. Pour travailler à plus basses fréquences, des poutres encastrées libres utilisant l'AlN comme matériau piézoélectrique ont été conçues, fabriquées et caractérisées. La possibilité de récupérer 0.6µW à 214Hz pour un volume de moins de 3mm3 a été prouvée. Comparées à la littérature, de très bonnes figures de mérite ont été démontrées. Pour travailler sur des gammes de fréquences plus importantes, une méthode innovante de raidissement non linéaire de la structure a été proposée et prouvée expérimentalement, avec une adaptation de la fréquence de résonance de plus de 50% en dessous de 500Hz / This PhD thesis context is about energy harvesting in order to have autonomous sensors. The problematic of the coupling of piezoelectric mechanical energy harvesters with the mechanical vibration source has been studied. To be efficient, the harvesters have to work at lower frequencies and on larger frequency ranges. To work at lower frequencies, we designed, fabricated and characterized AlN piezoelectric clamped free beams. We proved that it was possible to harvest 0.6µW for a volume of less than 3mm3. Our devices have very good figures of merit compared to literature. To work on wider frequency ranges, we propose an innovative nonlinear hardening method. It has been proven experimentally, with an adaptability of the resonance frequency of more than 50% under 500Hz.
10

Formação moral: uma análise da teoria do desenvolvimento moral de Piaget e Kohlberg à luz de perspectivas divergentes

Pontes, Rafaela Batista Domingues 30 September 2010 (has links)
Made available in DSpace on 2015-05-07T15:08:18Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 751890 bytes, checksum: 1c509e025a4e66448d092bac40fb51a4 (MD5) Previous issue date: 2010-09-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The question of learning of values in the roll of human behavior has aroused the interest of scholars of many specialities. In the context of education, the search to understand the formation of beliefs and values, the reason for aggressive, unfair, solidary and compassionated attitudes, has been constantly searched by researchers. But, is there really a crisis of values, or are the values in crisis? More than stick to this question, this study aims to understand a little more about the moral formation in its theoretical essence. Therefore, was sought in Jean Piaget and Lawrence Kohlberg's cognitive evolutionary perspective about the moral development, to highlight the points on which these have contributed to the advancement of the understanding of moral formation. A critical analysis is made of such perspective when thoughts of Richard Shweder and Jonathan Haidt are evidenced. Besides this extreme criticism of the evolutionary cognitive perspective, shall be also placed the contributions of Michel Foucault about the understanding of moral formation in the school environment, that in a characteristically particular way about the microphysics of Power, shows the micro relations in this same, and that goes through moral attitudes developed in such institutions. In this study about the theme of moral formation, the Brazilian National Curriculum Parameters must be analyzed, particularly what this document proposes on morality as Transversal Theme Ethics. The aim of this study is to analyze critically Piaget and Kohlberg's theory of moral development and compare it to other authors with different and divergent perspectives from evolutionary cognitive, through documentary analysis of the National Curriculum Parameters - Transversal Theme Ethics. Starting from this movement of documents analysis of Piaget and Kolhberg s theories observation, some results are shown on the understanding of how useful this can be to moral formation during the educational process in the school environment, as well as can contribute with new possibilities to act, to think and to live; way of life that goes beyond the walls of the school. Understanding the mechanisms of how the morality is being produced and aware of micro power relations existing in school institutions is fundamental to find new ways or even to have greater awareness of the path that everyone, or the great majority of society, is following. This study gives the opportunity to reflect about theories established, with the intent of producing new information networks, that may indicate new paths for the understanding of the process of moral formation. / A questão da aprendizagem de valores no campo dos comportamentos humanos vem despertando o interesse de estudiosos de variadas especialidades. No âmbito da educação a busca por entender a formação de crenças e valores, o porquê de atitudes agressivas, injustas, solidárias, compassivas, tem sido busca constante dos pesquisadores. Mas, será mesmo que há uma crise de valores, ou será que os valores em si estão em crise? Mais que se ater a este questionamento, o presente estudo procura compreender um pouco mais sobre a formação moral em seu cerne teórico. Para tanto, buscou-se, na perspectiva cognitiva evolutiva de Jean Piaget e Lawrence Kohlberg acerca do desenvolvimento moral ressaltar os pontos em que estas contribuíram no avanço do entendimento da formação moral. É feita uma análise crítica de tal perspectiva quando pensamentos de Richard Shweder e Jonathan Haidt são evidenciados. Além dessa crítica extremista à perspectiva cognitiva evolutiva, ainda serão colocadas, as contribuições de Michel Foucault acerca do entendimento da formação moral no ambiente escolar, que de maneira caracteristicamente particular acerca da microfísica do poder, evidencia as microrrelações existentes nas mesmas, e que ultrapassam atitudes morais desenvolvidas em tais instituições. Nesse mergulho à temática da formação moral, não se poderia deixar de analisar também os Parâmetros Curriculares Nacionais, mais particularmente no que este documento propõe no tocante à moralidade enquanto Tema Transversal Ética. O objetivo geral desse estudo é, então, analisar de maneira crítica, a teoria do desenvolvimento moral de Piaget e Kohlberg, colocando-as em diálogo com demais autores com perspectivas diferentes e divergentes à cognitiva evolutiva, através da análise documental dos Parâmetros Curriculares Nacionais - Tema Transversal Ética. A partir desse movimento, que não se encerra em si, de análise documentais, bem como de análise das teorias de Piaget e Kohlberg alguns resultados emergem no entendimento de como esta pode ser útil ao desenvolvimento moral durante o processo educativo no ambiente escolar, bem como pode comprometer novas possibilidades de agir, pensar e viver; forma de vida, estas, inclusive, que extrapolam os muros da escola. Entender os mecanismos de como a moralidade está sendo produzida e ter noção das relações de micro-poder existentes nas instituições escolares é fundamental para buscar novos caminhos ou mesmo ter maior consciência do caminho a que todos, ou a grande maioria da sociedade vêm seguindo. Este estudo oportuniza fazer uma reflexão sobre as teorizações estabelecidas, a fim de se produzir novas redes de informação, que possam sugerir novos caminhos à compreensão do processo de formação moral.

Page generated in 0.0497 seconds