• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 286
  • 116
  • 84
  • 39
  • 28
  • 19
  • 10
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 725
  • 125
  • 122
  • 100
  • 97
  • 93
  • 74
  • 70
  • 63
  • 58
  • 53
  • 49
  • 42
  • 41
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Interplay of MicroRNA-21 and SATB1 in epidermal keratinocytes during skin aging

Ahmed, M.I., Pickup, M.E., Rimmer, A.G., Alam, M., Mardaryev, Andrei N., Poterlowicz, Krzysztof, Botchkareva, Natalia V., Botchkarev, Vladimir A. 13 January 2020 (has links)
Yes / Nottingham Trent University, United Kingdom, UoA03 QR and Capital Funds (MIA), as well as by the grant from Amway, USA to VAB and NVB.
102

Diverse roles of microRNA-145 in regulating smooth muscle (dys)function in health and disease

Riches-Suman, Kirsten 06 May 2022 (has links)
Yes / MicroRNAs are short, non-coding RNAs that target messenger RNAs for degradation. miR-145 is a vascular-enriched microRNA that is important for smooth muscle cell (SMC) differentiation. Under healthy circumstances, SMC exist in a contractile, differentiated phenotype promoted by miR-145. In cases of disease or injury, SMC can undergo reversible dedifferentiation into a synthetic phenotype, accompanied by inhibition of miR-145 expression. Vascular disorders such as atherosclerosis and neointimal hyperplasia are characterised by aberrant phenotypic switching in SMC. This review will summarise the physiological roles of miR-145 in vascular SMC, including the molecular regulation of differentiation, proliferation and migration. Furthermore, it will discuss the different ways in which miR-145 can be dysregulated and the downstream impact this has on the progression of vascular pathologies. Finally, it will discuss whether miR-145 may be suitable for use as a biomarker of vascular disease.
103

The Role of Urinary Cell-free MicroRNA's as Biomarkers of Lupus Nephritis in Children

Abulaban, Khalid M. 19 June 2015 (has links)
No description available.
104

ROLE OF MIRNA IN LIVER CELL PROLIFERATION DURING HEPATIC REGENERATION AND CANCER

Khrapenko, Lyudmyla Ivanivna 23 August 2010 (has links)
No description available.
105

A STUDY OF MICRORNAS ASSOCIATED WITH MULTIPLE MYELOMA PATHOGENESIS AND MICORRNAS/TP53 FEEDBACK CIRCUIT IN HUMAN CANCERS, MULTIPLE MYELOMA AND GLIOBLASTOMA MULTIFORME

Suh, Sung-Suk 17 July 2012 (has links)
No description available.
106

Molecular analysis of the responses of Caenorhabditis elegans (Bristol N2), Panagrolaimus rigidus (AF36) and Panagrolaimus sp. (PS 1579) (Nematoda) to water stress

Klage, Karsten 05 August 2008 (has links)
This work provides a comparative and genetic analysis of the responses to water stress in desiccation-tolerant and desiccation-sensitive nematodes. Caenorhabditis elegans, a model organism for the study of development, aging, and cell biology was shown to be a desiccation-sensitive organism that survives relative humidities above 40\% for periods of up to seven days. Transcripts from the desiccation-tolerant species Panagrolaimus rigidus AF36 and sp. PS1579, which were expressed uniquely during separate desiccation and osmotic stresses, as well as during recovery from exposure to the dual stresses, were cloned. These sequences were used to search for similarities in the genome sequence data of C. elegans. Putative anhydrobiotic-related transcripts were identified that potentially encode heat shock protein 70, late embryogenic abundant protein, and trehalose-phosphate synthase. Other putative genes that were identified within eight separate libraries encode proteins involved in transcription (histones), protein biosynthesis (ribosomal proteins, elongation factors), protein degradation (ubiquitin, proteases), and transport and cell structure (actin, collagen). Gene ontology analysis of the cloned transcripts revealed that developmental processes are activated during exposure to the stresses as well as during recovery, which may suggest a "rejuvenation" process as a key to survival in Panagrolaimus nematodes. Genes that were up-regulated during desiccation stress in C. elegans were classified as belonging either to an early response (until 12 hours of stress), or to a late response (after 12 hours of stress). The early response was characterized by the up-regulation of a large number of genes encoding mono-oxygenases, which may suggest onset of oxidation stress during desiccation of C. elegans. The late response was characterized by the appearance of transcripts encoding proteins of the immune system, heat shock proteins (protein denaturation), and superoxide dismutases (oxidation damage). Genes in C. elegans that were down-regulated in response to desiccation stress include those encoding proteases and lysozymes (metabolic shutdown). Genes that encode channel proteins (water homeostasis) were found among the transcripts up-regulated during recovery of C. elegans. The up-regulation of gpdh-1 and hmit-1.1, two transcripts linked to hyperosmotic stress, suggest that osmotic stress is experienced by C. elegans. Comparison of these data with those obtained from exposure of C. elegans to a range of other stresses showing that the nematode C. elegans uses specific transcripts for the desiccation response; transcripts that are not induced in other stresses such as heat, anoxia or starvation. In addition, transcripts regulated during desiccation stress of C. elegans were also regulated during dauer formation, which may indicate common stress tolerant mechanisms. Recent studies in mammalian cells and C. elegans have shown that microRNAs are able to degrade and to sequester mRNA especially during stress in so called stress bodies. In this study, C. elegans microRNA knock-outs showed a significant decrease in desiccation stress survival compared to wild type C. elegans which may suggest the importance of microRNAs for stress survival in C. elegans and other organisms. / Ph. D.
107

Implication de la machinerie des microRNA dans la réplication rétrovirale / Involvement of microRNA machinery in retroviral replication

Bouttier, Manuella 29 April 2011 (has links)
Les virus sont des parasites intracellulaires obligatoires, qui détournent la quasi-totalité des voies cellulaires. La voie des miRNA et du RNAi ne font pas exception. D'abord, les miRNA peuvent reconnaître les ARN viraux, permettant le recrutement de la machinerie du RNAi, en particulier AGO2, sur les messagers viraux, ce qui peut moduler la réplication du virus. Pendant ma thèse, nous avons identifié un nouveau moyen de recruter AGO2, sur les messagers viraux, qui n'impliquent pas les miRNA, ni sa capacité à induire l'extinction des gènes. Nous avons montré qu'AGO2 interagit avec GAG et se fixe aux ARN viraux par les séquences d'encapsidation. Ensuite, les virus peuvent moduler le répertoire de miRNA cellulaires, de sorte à créer un contexte favorable à sa propre réplication. Ainsi, nous avions pour objectif, d'identifier de nouveaux partenaires cellulaires de VIH. Nous avons alors analysé des données transcriptomiques, obtenues à partir de cellules infectées par VIH-1 ou VIH-2, et reconstitué des réseaux de régulations impliquant les facteurs de transcription et les miRNA. Nous avons montré que les modulations de miRNA dépendent du mode d'entrée du virus, en particulier de l'utilisation des co-récepteurs. De plus, l'approche de Biologie Intégrative que nous avons suivie, nous a permis de caractériser une nouvelle protéine cellulaire, capable de réguler l'expression du VIH et de restreindre sa réplication. / Viruses are obligatory intracellular parasites that hijack many, if not all, cellular pathways. The RNA interference (RNAi) and the micro(mi)RNA pathways are no exceptions. First, cellular micro(mi)RNAs are able to recognize viral RNAs through imperfect micro-homologies. Similar to the miRNA-mediated repression of cellular translation, this recognition is thought to tether the RNAi machinery, in particular Argonaute(AGO)2, on viral messengers and eventually to modulate virus replication. During my PhD, we have unveiled another pathway by which AGO2 can interact with retroviral mRNAs without involving host miRNAs and translation repression. We have shown that AGO2 interacts with the retroviral GAG core proteins and preferentially binds unspliced retroviral RNAs through the RNA packaging sequences. The interaction between AGO2 and GAG, observed with both the Human Immunodeficiency Virus 1 (HIV-1) and the Primate Foamy Virus 1 (PFV-1), facilitates GAG multimerization and retroviral particle formation. Second, viruses modulate the miRNA repertoire presumably to create favorable conditions for viral replication. Hence, in order to identify novel cellular partners of HIV, we have analyzed transcriptomics data obtained from HIV1 and HIV-2-infected cells and reconstituted Transcription Factor- and miRNA-based regulation networks. Strikingly, we have noticed that the modulations of the transcriptome (coding and non-coding RNAs) depend on the mode of entry of the virus (i.e. co-receptor usage). Our in silico approach also helped us characterize a novel cellular protein able to regulate virus gene expression and
108

Development and Implementation of a Tissue Specific MicroRNA Prediction Tool for Identifying Targets of the Tumor Suppressor microRNA 17-3p

Budd, William 30 April 2010 (has links)
A unique computational approach was undertaken to identify targets of miR-17-3p that impart an oncogenic potential to the cells of the prostate. Utilizing this approach, we identified insulin growth factor receptor 1 (IGF1R) as a potential target of miR-17-3p. IGF1R imparts an oncogenic approach to the cells by helping cells escape apoptosis, become hypertrophic and increase the production of extracellular proteases that allow cells to detach from neighbors. The regulation of insulin growth factor receptor 1 by human microRNA-17-3p was evaluated using a western blot analysis of prostate cancer cell lines. Protein levels were compared in a cell line that expressed a non-targeting control RNA and a cell line that expressed microRNA-17-3p. The cell line that expressed the non-targeting control had significantly higher levels of IGF1R protein than the cell line expressing more of the active microRNA. Based on this experiment, it appears that microRNA-17-3p might regulate the insulin growth factor receptor 1.
109

Estudo dos níveis plasmáticos de miR-208a na cardiotoxicidade de pacientes submetidos à quimioterapia com antraciclina / Study of the circulating levels of miR-208a in cardiotoxicity from patients under chemotherapy with anthracycline

Rigaud, Vagner Oliveira Carvalho 08 July 2016 (has links)
INTRODUÇÃO: Cardiotoxicidade é frequentemente associada ao uso crônico de doxorubicina (DOX) podendo levar a cardiomiopatia e insuficiência cardíaca. A identificação de miRNAs cardiotoxicidade-específicos e seu potencial como biomarcadores poderia fornecer uma ferramenta prognostica valiosa e uma potencial área de intervenção. METODOLOGIA: Este é um sub-estudo do ensaio clínico prospectivo \"Efeito do Carvedilol na Prevenção da Cardiotoxicidade Induzida por Quimioterapia\" (ensaio CECCY) no qual incluiu 56 pacientes do sexo feminino (idade 49.9±3.3) provenientes do braço placebo. Os pacientes incluídos foram submetidos à quimioterapia com DOX seguido por taxanos. Troponina cardiaca I (cTnI), fração de ejeção do ventrículo esquerdo (FEVE) e microRNAs foram mensurados periodicamente. RESULTADOS: Os níveis circulantes de miR-1, -133b, -146a e -423-5p aumentaram significativamente durante o tratamento (18.6, 11.5, 10.6 e 12.1-vezes respectivamente; p < 0.001) enquanto miR-208a e -208b foram indetectáveis. cTnI aumentou de 6.6 ± 0.3 para 46.7 ± 5.5 pg/ml (p < 0.001) enquanto FEVE tendeu a diminuir de 65.3±0.5 para 63.8±0.9 (p=0.053) após 12 meses; deis pacientes (17.9%) desenvolveram cardiotoxicidade. miR-1 foi associado a mudanças na FEVE (r2=0.363, p < 0.001) enquanto miR-1 e -133b foram associados a cTnI (r2 = 0.675 e 0.758; p < 0.001). Além disso, miR-1 antecipou a cardiotoxicidade e mostrou uma area sobre a curva maior que cTnI para discriminar pacientes que desenvolveram cardiotoxicidade daqueles que não desenvolveram (AUC = 0.849 e 456, p<0.001 e 0.663, respectivamente). CONCLUSÃO: Nossos dados sugerem miR-1 como um potencial novo biomarcador de cardiotoxicidade induzida por DOX em pacientes com câncer de mama. Estes resultados podem levar a novas estratégias de detecção precoce do risco de lesão cardíaca induzida por DOX bem como a introdução de uma nova área para intervenção / INTRODUCTION: Cardiotoxicity is frequently associated with the chronic use of doxorubicin (DOX) and may lead to cardiomyopathy and heart failure. Identification of cardiotoxicity-specific miRNA biomarkers could provide clinicians with a valuable prognosis tool and a potential area for intervention. METHODS: This is an ancillary study from the prospective trial \"Carvedilol Effect in Preventing Chemotherapy-Induced Cardiotoxicity.\" (CECCY trial) which included 56 female patients (49.9±3.3 age) from placebo arm. Enrolled patients were treated with DOX followed by taxanes. Cardiac troponin I (cTnI), left ventricle ejection fraction (LVEF) and miRNAs were measured periodically. RESULTS: Circulating levels of miR-1, -133b, -146a and -423-5p increased along the treatment (18.6, 11.5, 10.6 and 12.1-fold respectively; p < 0.001); miR-208a and -208b were undetectable. cTnI increased from 6.6±0.3 to 46.7 ± 5.5 pg/ml (p < 0.001) while LVEF tended to decrease from 65.3±0.5 to 63.8±0.9 (p=0.053) over 12 months; ten patients (17.9%) developed cardiotoxicity. miR-1 was associated to changes in LVEF (r2=0.363, p < 0.001) while miR-1 and -133b were associated to cTnI (r2 = 0.675 and 0.758; p < 0.001). Furthermore, miR-1 anticipated cardiotoxicity and showed greater area under the curve than cTnI to discriminate between patients who did and did not developed cardiotoxicity (AUC = 0.849 and 456, p < 0.001 and 0.663, respectively). CONCLUSION: Our data suggest circulating miR-1 as a potential new biomarker of DOX-induced cardiotoxicity in breast cancer patients. These results may lead to new earlier strategies to detect drug-induced cardiac injury risk before it develops to an irreversible stage or introduce new area for intervention
110

Efeito de SMADs<i/> e de microRNAs na expressão gênica de TGF-&#946;1 e seu papel na angiogênese em pacientes com mielofibrose e trombocitemia essencial / Effects of SMADs and microRNAs in TGF-&#946;1 gene expression and its role in the angiogenesis pathophysiology in myelofibrosis and essential thrombocythemia patients.

Nunes, Daniela Prudente Teixeira 07 August 2015 (has links)
OBJETIVO: Investigar o efeito da expressão de RNAm dos SMADs e de microRNAs (miRNAs) que possuem o TGFB1 como alvo na expressão gênica (RNAm e proteína) de TGF-&#946;1 e seu papel na fisiopatologia da angiogênese em pacientes com mielofibrose (MF) e trombocitemia essencial (TE). MÉTODOS: Foram incluídos 21 pacientes com MF primária (MFP), 21 com MF pós-TE (MFPTE) e 24 com TE, além de 98 indivíduos controles pareados de acordo com gênero e idade com os pacientes. As análises realizadas no sangue periférico foram: quantificação das concentrações plasmáticas e de RNAm de TGFB1, VEGFA e FGF2; quantificação de RNAm de SMADs 1 a 7 e de miRNAs 193a-5p, 369-5p, 542-5p, 590-3p, e 590- 5p; e detecção das mutações JAK2V617F (com quantificação alélica), MPLW515K/L e CALR. Em 26 biópsias de medula óssea dos pacientes, foram determinados o grau de microvasculatura (angiogênese estimada - CD34), a imunoexpressão de TGF-b1 ativo, TGF-&#946;1 latente e c-MPL. RESULTADOS: As concentrações de TGF- &#946;1 plasmático foram semelhantes entre os pacientes e controles, enquanto o VEGFA plasmático foi maior em todos os grupos de pacientes comparados aos seus controles. O FGF2 plasmático também foi maior em todos os grupos de pacientes, e a expressão de seu RNAm foi maior nos pacientes com TE do que em seus controles. As expressões de SMADs e de miRNAs foram semelhantes entre pacientes e controles. TGF-&#946;1 e FGF2 plasmáticos apresentaram correlações positivas nos pacientes com MFP, e correlações negativas nos seus controles, assim como nos controles de MFPTE. Em todos os grupos estudados foi observada correlação positiva entre TGF-&#946;1 e VEGFA plasmáticos. Além disso, foram demonstrados diferentes perfis de correlações entre a expressão gênica de TGF-&#946;1 e os diversos SMADs e miRNAs em cada grupo de pacientes e controles. Os pacientes com MFP com maior angiogênese (de acordo com a mediana da concentração plasmática de VEGFA e FGF2) apresentaram maiores concentrações plasmáticas de TGF-&#946;1 do que aqueles com menor angiogênese. A angiogênese medular estimada (CD34) não foi diferente entre os três grupos de pacientes estudados. Além disso, não foram encontradas correlações entre a imunoexpressão de CD34 e as expressões de RNAm de TGFB1, VEGFA e FGF2 medulares nem em leucócitos de sangue periférico, ou a concentrações plasmáticas de TGF-&#946;1, VEGFA e FGF2. As imunoexpressões de TGF-b1 ativo, TGF-&#946;1 latente e c-MPL foram semelhantes entre os três grupos de pacientes. As frequências das mutações avaliadas foram similares às descritas na literatura. Os pacientes com MFPTE portadores de mutação CALR apresentaram menores concentrações plasmáticas de VEGFA e FGF2 do que os JAK2V617F positivos, enquanto os pacientes com TE portadores de mutação CALR exibiram menores concentrações plasmáticas de TGF-&#946;1 do que os portadores de JAK2V617F. CONCLUSÕES: O presente trabalho permitiu confirmar a correlação positiva entre o TGF-&#946;1 com outros dois marcadores de angiogênese (VEGFA e FGF2). As expressões de SMADs e de miRNAs estudados foram semelhantes entre pacientes e controles, visto não haver diferenças na expressão gênica de TGF-&#946;1. Entretanto, disparidades encontradas nas correlações entre a expressão gênica de TGF-&#946;1 e diferentes SMADs e miRNAs nos pacientes e controles poderiam indicar que a regulação da expressão gênica de TGF-&#946;1 nas doenças estudadas seja distinta da apresentada nos indivíduos sem essas doenças. / AIM: To investigate the effects of the expression of SMADs mRNA and microRNAs (miRNAs) that target TGFB1 in TGF-&#946;1 gene expression (mRNA and protein) and its role in the angiogenesis pathophysiology in myelofibrosis (MF) and essential thrombocythemia (ET) patients. METHODS: Twenty-one primary MF (PMF), twenty-one MF post-ET (MPET) and twenty-four ET patients were included, besides 98 controls matched for gender and age with patients. In peripheral blood were assessed: TGF-&#946;1, VEGFA and FGF2 plasmatic levels and mRNA quantification; SMADs 1 to 7 mRNA quantification and miRNAs 193a-5p, 369-5p, 542-5p, 590-3p, and 590-5p quantification; and detection of JAK2V617F (and allele burden), MPLW515K/L and CALR mutations. Estimated angiogenesis (microvessel grade - CD34), active TGF-b1, latent TGF-&#946; and c-MPL immunoexpression were determined in 26 bone marrow biopsies. RESULTS: Plasmatic TGF-&#946;1 levels were similar in patients and controls, while all the patients groups had higher plasmatic VEGFA than controls. Plasmatic FGF2 was higher in all the patients groups, and its mRNA expression was higher in ET patients than in controls. No differences in SMADs and miRNAs expression were found between patients and controls. There was a positive correlation between plasmatic TGF-&#946;1 and FGF2 in PMF, and a negative correlation between these variables in their controls, as well as in MPET controls. In all studied groups, there was a positive correlation between plasmatic TGF-&#946;1 and VEGF. In addition, different profiles of correlations were demonstrated between TGF-&#946;1 gene expression and the several SMADs and miRNAs studied in each group of patients and controls. PMF patients with higher angiogenesis (according to the median of VEGFA and FGF2 plasma levels) had higher plasmatic TGF-&#946;1 levels than those with lower angiogenesis. Estimated angiogenesis (CD34) in bone marrow biopsies were not different among PMF, MPET and ET patients. Moreover, there were no correlation between CD34 immunoexpression and TGFB1, VEGFA and FGF2 mRNA bone marrow or peripheral blood expression or plasmatic levels, as well as latent TGF-&#946;1, active TGF-b1, and c-MPL immunoexpression were similar in patients studied groups. The frequencies of evaluated mutations were similar to previously reported. MPET patients harboring CALR mutations had lower plasmatic VEGFA and FGF2 than JAK2V617F mutated, while ET patients carrying CALR mutations had lower plasmatic TGF-&#946;1 than JAK2V617F mutated. CONCLUSIONS: This study confirmed the positive correlation among TGF-&#946;1 and two other markers of angiogenesis (VEGFA and FGF2). SMADs and miRNAs expressions were similar between patients and controls, since there were no differences in TGF-&#946;1 gene expression between patients and controls. However, disparities found in the correlations between TGF-&#946;1 gene expression and different SMADs and miRNAs in patients and controls may indicate that TGF-&#946;1 gene expression regulation in studied diseases is distinct from those presented by individuals without these diseases.

Page generated in 0.0327 seconds