• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 256
  • 127
  • 27
  • Tagged with
  • 401
  • 143
  • 96
  • 74
  • 61
  • 55
  • 54
  • 41
  • 38
  • 29
  • 28
  • 28
  • 28
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Détection de l’ADN par spectrométrie de diffusion Raman exaltée de surface couplée à la microfluidique / DNA detection by surface enhanced Raman spectroscopy coupled with microfluidic

Prado, Enora 10 November 2011 (has links)
Ce travail présente une méthode originale de détection et de quantification, sans étape de marquage, de la proportion de bases libres contenues dans des acides nucléiques. La spectrométrie de diffusion Raman exaltée de surface (DRES ou SERS en anglais) nous a permis d’obtenir la signature spectrale spécifique des nucléotides caractéristiques des ARN (adénosine, cytosine, guanosine et uridine), en utilisant des colloïdes d’argent comme substrat-DRES et des ajouts de MgCl2 comme agent d’agrégation. Les conditions de détection ont été optimisées pour établir un protocole de quantification de la proportion des nucléobases non-appariées par spectrométrie DRES. Les limites de détection obtenues sont de l’ordre de quelques dizaines de picomoles. L’amélioration de la reproductibilité des mesures par spectrométrie DRES passe par le contrôle précis des temps de réaction (adsorption et agrégation), qui peut être contrôlé grâce à l’utilisation de plateformes microfluidiques adaptées. Nous avons mis en œuvre deux types de plateformes microfluidiques, l’une basée sur des écoulements monophasiques et l’autre sur la génération de gouttes. Les espèces à analyser sont contenus dans les gouttes, permettant la détection in situ par spectrométrie DRES des divers nucléotides. / This work deals with the development of an original label-free method for free bases proportions detection and quantification of nucleic acids. The surface enhanced Raman spectroscopy (SERS) allowed obtaining the specific spectral signature of characteristic nucleotides of RNA (adenosine, cytosine, guanosine and uridine), using silver colloids as SERS substrate and MgCl2 addition as aggregating agent. Then, the condition detection have optimizing to establish a label-free quantification protocol of free nucleobases proportion by SERS spectroscopy. The detection limits obtained are order of few picomoles. The reproducibility improvement of SERS detection requires the precise control of time reaction (adsorption and aggregation), which could be control thanks to microfluidic chips use. We have implemented two different microfluidic chips, one based on single-phase flows and one other based on droplets generation. The analyzed species are containing in droplets, allowing in situ detection by spectroscopy SERS of various nucleotides.
52

Compteur microfluidique de radioactivité sanguine

Mélançon-Emond, Jean-Nicolas January 2015 (has links)
Les études pharmacocinétiques réalisées grâce à la tomographie d’émission par positrons chez le petit animal requièrent la mesure de la concentration du radiotraceur dans le sang, la fonction d’entrée, pendant la séquence d’imagerie. Un détecteur de positrons placé sur une canule prélevant le sang de l’animal a été démontré comme un moyen avantageux de mesurer la fonction d’entrée chez les rongeurs, mais souffre d’une efficacité de détection limitée. Une nouvelle génération de compteur a été développée afin de surmonter ce problème. Des cartouches microfluidiques, fabriquées par impression 3D dans un matériau biocompatible, remplacent les cathéters traditionnellement utilisés et permettent de diminuer la perte d’énergie des positrons dans les parois. De plus, un circuit de différentiation, implanté via une topologie d’amplificateur d’instrumentation, permet la suppression du bruit induit par le fluide conducteur présent entre une paire de détecteurs opposés. Le système est ainsi beaucoup moins vulnérable que ses prédécesseurs aux interférences électromagnétiques présentes dans l’environnement expérimental. L’efficacité de détection du système utilisant un seul détecteur avec un cathéter PE-50 a été caractérisée comme étant de 17,3 % pour le [indice supérieur 18]F, 25,2 % pour le [indice supérieur 11]C et 1,3 % pour le [indice supérieur 99m]Tc, soit des augmentations de facteurs 4, 2 et 6,5 respectivement, lorsque comparé au système en cathéter antérieur. Une caractérisation subséquente à deux détecteurs a vu les efficacités de détection du [indice supérieur 18]F et du [indice supérieur 11]C augmenter d’un facteur 1,9, soit presque doubler. Une diffusion du liquide hors du microcanal a été observée lors de l’utilisation des cartouches microfluidiques, ce qui modifie le volume de détection au cours de l’acquisition et rend impossible la détermination de l’efficacité de détection avec un microcanal. Bien que ceci démontre que la technologie d’impression 3D choisie est inadaptée à l’utilisation dans une application microfluidique, de récents développements dans le domaine font de la stéréolithographie un remplacement fort prometteur pour la fabrication de microcanaux. L’utilisation de cathéters de polyimide avec parois très minces, comme alternative à la microfluidique, a entraîné des augmentations d’efficacité de détection de 3,2 % et 5,7 % pour les isotopes [indice supérieur 18]F et [indice supérieur 11]C respectivement. L’effet du cathéter de polyimide est encore plus marquant avec le [indice supérieur 99m]Tc, faisant passer l’efficacité de détection de 1,0 % à 1,8 %. Ce fort gain s’explique par la détection d’électrons de conversion de faible énergie, indétectables avec un cathéter traditionnel. De plus, l’utilisation d’un unique cathéter élimine la complexité inhérente au raccord entre un cathéter et une composante microfluidique. L’appareil développé permettra une mesure plus précise de la fonction d’entrée et, utilisé de pair avec des techniques d’imagerie moléculaire, facilitera les études pharmacocinétiques visant le développement de nouveaux traitements et radiotraceurs.
53

Microscale shock tube / Micro-tube à choc

Mirshekari, Gholamreza January 2008 (has links)
Abstract : This project aims at the simulation, design, fabrication and testing of a microscale shock tube. A step by step procedure has been followed to develop the different components of the microscale shock tube and then combine them together to realize the final device. The document reports on the numerical simulation of flows in a microscale shock tube, the experimental study of gas flow in microchannels, the design, microfabrication, and the test of a microscale shock tube. In the first step, a one-dimensional numerical model for simulation of transport effects at small-scale, appeared in low Reynolds number shock tubes is developed. The conservation equations have been integrated in the lateral directions and threedimensional effects have been introduced as carefully controlled sources of mass, momentum and energy, into the one-dimensional model. The unsteady flow of gas behind the shock wave is reduced to a quasi-steady laminar flow solution, similar to the Blasius solution. The resulting one-dimensional equations are solved numerically and the simulations are performed for previously reported low Reynolds number shock tube experiments. Good agreement between the shock structure simulation and the attenuation due to the boundary layers has been observed. The simulation for predicting the performance of a microscale shock tube shows the large attenuation of shock wave at low pressure ratios. In the next step the steady flow inside microchannels has been experimentally studied. A set of microchannels with different geometries were fabricated. These microchannels have been used to measure the pressure drop as a function of flow rate in a steady compressible flow. The results of the experiments confirm that the flow inside the microscale shock tube follows the laminar model over the experiment's range of Knudsen number. The microscale shock tube is fabricated by deposition and patterning of different thin layers of selected materials on the silicon substrate. The direct sensing piezoelectric sensors were fabricated and integrated with microchannels patterned on the substrate. The channels were then covered with another substrate. This shock tube is 2000 µm long and it has a 2000 µm wide and 17 µm high rectangular cross section equipped with 5 piezoelectric sensors along the tube. The packaged microscale shock tube was installed in an ordinary shock tube and shock waves with different Mach numbers were directed into the channel. A one-dimensional inviscid calculation as well as viscous simulation using the one-dimensional model have also been performed for the above mentioned geometry. The comparison of results with those of the same geometry for an inviscid flow shows the considerable attenuation of shock strength and deceleration of the shock wave for both incident and reflected shock waves in the channel. The comparison of results with numerically generated results with the one-dimensional model presents good agreement for incident shock waves. // Résumé : Ce projet vise à la simulation, la conception, la fabrication et l'essai d'un tube à choc a l'échelle micrométrique. Une procédure étape par étape a été suivie pour développer les différentes composantes du tube à choc à l'échelle micrométrique, puis les assembler pour la réalisation finale du dispositif. Le document rend compte de la simulation numérique, de l'étude expérimentale de l'écoulement du gaz dans les microcanaux, de la conception, de la microfabrication, et de l'essai d'un tube à choc à l'échelle micrométrique. Dans la première étape, un modèle numérique unidimensionnel pour la simulation des effets de transport à des petites échelles dans des tubes à choc à faible nombre de Reynolds, est développé. Les équations de conservation ont été intégrés latéralement et les effets tridimensionnels ont été mis en place avec des sources bien contrôlées de masse, du moment et de l'énergie, dans un modelé à une dimension. L'écoulement non stable du gaz après le choc est réduit à un flux laminaire quasi permanent, solution similaire à la solution de Blasius. Les équations unidimensionnelles résultantes sont résolues numériquement et des simulations sont effectuées pour des expériences précédemment rapportées de tube à choc en faible nombre de Reynolds. II y a une bonne correspondance entre la structure du choc et la simulation. L'atténuation due à la couche limite a été observée. La simulation pour prédire les performances d'un tube à choc à l'échelle micrométrique a montré la grande atténuation de l'onde de choc à faible taux de pression. Dans l'étape suivante, le flux constant à l'intérieur des microcanaux a été étudié expérimentalement. Quelques microcanaux avec différentes géométries ont été fabriqués. Ces microcanaux ont été utilises pour mesurer la chute de pression en fonction du débit dans un écoulement compressible flux stable. Les résultats de l'expérience confirment que l'écoulement à l'intérieur du tube à choc à l'échelle micrométrique suit le modèle laminaire sur un large éventail de nombre de Knudsen. Le tube à choc à l'échelle micrométrique est fabrique par les dépôts et gravure des différentes couches minces de certains matériaux sur un substrat de silicium. Des capteurs piézoélectriques à détection directe sont fabriques et intégrés avec les microcanaux caïques sur le substrat. Les canaux sont ensuite recouverts d'un autre substrat. Le tube à choc est long de 2000 µm et a une section rectangulaire de 2000 µm de large et 17 µm de haut et es téquipé avec 5 capteurs piézoélectriques dans le tube. Le tube à choc à l'échelle micrométrique est installé dans un tube à choc standard afin d'entre exposés à une onde de choc avec différents nombres de Mach. Un calcul unidimensionnel inviscide ainsi que la simulation visqueuse avec le modèle unidimensionnel a aussi été effectué pour cette géometrie. La comparaison des résultats avec ceux obtenus avec la même géométrie avec avec un flux Inviscid montre une large atténuation de la force de choc et une décélération de l'onde de choc pour les deux ondes de choc incidentes et réfléchies dans le canal. La comparaison de résultats avec les résultats générés numériquement par modèle unidimensionnel pressent un bon accord pour onde de choc de l'incident.
54

Cinétiques de concentration de suspensions colloïdales par évaporation microfluidique : de la solution diluée aux cristaux colloïdaux

Merlin, Aurore 26 November 2010 (has links) (PDF)
Cette thèse est consacrée à l'étude de processus de concentration de solutions colloïdales par voie microfluidique, pour former des matériaux denses et structurés. A partir d'un outil basé sur la perméation de l'eau à travers le PDMS : le microévaporateur, nous proposons de contrôler le séchage de solution pour maîtriser la concentration de solutés afin de former des états denses organisés au choix, alternant cristaux et états amorphes de colloïdes. En adaptant les outils de microévaporation à différentes techniques d'observations, la nucléation et la croissance d'états denses ont été finement étudiées et correlées à un modèle simple de la microévaporation. Ces études expérimentales ont montré le contrôle précis qu'apporte le microévaporateur sur les cinétiques de concentration d'espèces chimiques pour la formation d'états denses de particules. Des études complémentaires ont aussi mis en évidence l'existence d'une dynamique de construction de cristaux colloïdaux avec des réorganisations au niveau du front ainsi qu'un effet de compaction présents lors de la croissance de l'état dense.
55

Pervaporation microfluidique pour le criblage et mesures de concentration in situ

Marin, Annick 01 October 2009 (has links) (PDF)
Ce travail de thèse présente la conception et la réalisation d'un dispositif microfluidique en PDMS (Polydiméthylsiloxane) pour exploration des diagrammes de phase. Le microsystème est basé sur le principe de pervaporation (évaporation à travers une membrane) et comporte des microchambres indépendantes de 5nL de solution dont on fait varier la concentration au court du temps. Il est possible de concentrer jusqu'à l'observation de transitions de phases (démixtion, nucléation, cristallisation, ...). Nous avons montré que la pervaporation est une piste intéressante pour l'exploration de diagrammes de phases. En parallèle, nous avons développé un outil original de mesure in situ en temps réel de la concentration, paramètre essentiel du criblage. Cet outil, basé sur le principe de réfractométrie, a pour avantage d'être non intrusif et ne requiert aucune modification particulière du microsystème. La méthode consiste à utiliser les parois des microcanaux comme éléments optiques. Nous montrons que cette méthode permet de mesurer un coefficient de diffusion et un rapport de viscosité dans une jonction en T sans ajout de traceurs ni utilisation de la fluorescence. Nous avons utilisé cette méthode de mesure de la concentration lors d'expériences sur des systèmes modèles (solutions ioniques, surfactants, polymères, protéines, ...).
56

Réalisation de micro-chambres d'analyse chimique : microcapteurs de pH et microfluidiques associés

Kherrat, Abdelghani 31 May 2012 (has links) (PDF)
Ce travail porte sur la réalisation d'un système d'analyse chimique constitué d'un réseau de micro-chambres abritant des microcapteurs de pH de type transistors à effet de champ à grille suspendue très sensibles aux charges contenues dans l'espace sous le pont-grille. Les transistors à grille suspendue ont été fabriqués en utilisant les procédés de la microtechnologie de surface. Une couche d'isolation finale a été choisie afin de permettre l'utilisation de ces transistors en solution comme capteurs de pH. L'intégration des canaux microfluidiques réalisés en Polydiméthylsiloxane (PDMS) sur les transistors à grille suspendue ont permis d'effectuer une série de mesures de pH, soit en statique, soit en flux continu et de travailler sur les conditions optimales de rinçage des capteurs. L'effet de la hauteur de gap sous le pont de grille sur la sensibilité au pH est présenté. Par ailleurs, de premières mesures dans le domaine fréquentiel ont pu être faites sur des transistors sans et avec les microcanaux en PDMS. Ceci nous a permis d'observer un comportement fréquentiel particulier et dépendant de l'ambiance autour des transistors, et en particulier du pH, ce qui permet de développer une nouvelle méthode de mesure du pH.
57

Conception, simulation et réalisation d'un micro actionneur à base de matériau énergétique pour l'actionnement microfluidique

Ardila Rodriguez, Gustavo Aldolfo 21 January 2008 (has links) (PDF)
L'intégration sur puce d'opérations successives d'un protocole plus ou moins complexe d'analyse biologique ou chimique et mettant en jeu la circulation de petits volumes d'échantillons et de réactifs dans des canalisations de taille micrométrique constitue le coeur des technologies microfluidiques. Les technologies de réalisation de micro canalisations sont aujourd'hui bien maîtrisées. Cependant, la manipulation des fluides et l'intégration technologique des éléments de contrôle comme les valves, les actionneurs, les mélangeurs dans les micro canalisations posent des problèmes essentiellement liés aux très faibles dimensionnalités. Des solutions originales et pratiques pour manipuler des volumes très faibles (entre 1nl et 10nl) doivent être développées pour déplacer, mélanger ou séparer ces liquides. Dans ce cadre, nous avons proposé un projet de recherche ANR Blanc (PYRACT) animé par le LAAS et associant des équipes de recherche des laboratoires LCC et IRMCP. Les travaux de thèse s'insérant dans le cadre du projet PYRACT, ont porté sur la conception, la simulation et la réalisation d'un micro actionneur à base de matériau énergétique pour la manipulation de faibles quantités de fluides (10-100nl). L'actionneur, tel que nous l'avons conçu, consiste en une plate-forme chauffante sur laquelle sont déposés en couche très mince un matériau énergétique et une membrane élastique permettant de faire l'étanchéité entre le gaz d'actionnement et le fluide. Le principe de fonctionnement est simple : lorsque le matériau énergétique atteint 225°C, sa décomposition exothermique (333J/g) génère des gaz (N2, H2O, O2) qui augmentent la pression sous la membrane fine élastique (30¼m). La pression ainsi générée et la déformation induite de la membrane élastique permettent d'actionner le fluide dans la micro canalisation. Ce concept simple d'actionnement présente l'avantage d'être compact, intégrable directement dans la canalisation contenant le fluide à actionner, biocompatible, bas c oût et nécessite seulement quelques mW (quelques V) pour générer des surpressions qui peuvent être réglées entre quelques dizaines de kPa et quelques centaines de kPa. Son caractère monocoup le rend adapté aux applications portables et jetables. Tout d'abord, un modèle multi physique a été développé sous COMSOL pour simuler le fonctionnement de l'actionneur intégré dans une micro canalisation. Ensuite, un modèle global de conception a été construit permettant de prédire les performances de l'actionnement (pression, déformation, volume et vitesse du fluide éjecté) en fonction des caractéristiques de l'actionneur et de la puissance électrique d'actionnement. Enfin, deux démonstrateurs ont été fabriqués : un actionneur de 1mm²×100¼m et un de 0.25mm²×100¼m. Un travail important a porté sur l'intégration technologique en utilisant des procédés compatibles MEMS et microfluidique des différents matériaux (énergétique et de structure) sur des surfaces très petites et nécessitant des traitements de surface particuliers. Le principe d'actionnement a été validé.
58

Non-local rheology of soft glassy materials / Rhéologie non locale des matériaux vitreux mous

Mansard, Vincent 10 September 2012 (has links)
Les matériaux vitreux mous (émulsion concentrée, mousse, suspension concentrée...) présentent un comportement rhéologique entre solide et liquide. Aux petites contraintes le système reste élastique, mais au-dessus d’une contrainte seuil, le système s’écoule comme un liquide visqueux. Ce comportement se trouve dans de nombreux fluides industriels comme dans les cosmétiques, l’agro-alimentaire ou encore le béton. Une contrainte seuil n’apparait que au dessus d’une certaine fractions volumique. Au dessus de cette fraction les particules se bloquent entre elle, la relaxation n’est plus possible et l’écoulement devient fortement coopératif.Cette coopérativité influe sur la rhéologie à petite échelle, Quand le confinement devient de l’ordre de quelques particules, la viscosité ne dépend plus uniquement, comme habituellement, de la contrainte locale mais aussi de la contrainte au voisinage. C’est ce qu’on appelle rhéologie non-localeJ’ai étudié expérimentalement ce comportement en utilisant les outils de micro fluidiques. J’ai étudié une micro-émulsion concentrée s’écoulant dans un microcanal en observant directement l’écoulement des gouttes avec un microscope confocal. Les résultats sont comparés au model “Kinetic-Elasto-Plastic” de Bocquet et al. 2009 et à des simulations de dynamique moléculaire. / Soft glassy materials (concentrated emulsion, foams, concentrated suspension…) present rheological properties between solids and liquid. Under small stress they stay elastic but at stress higher than a yield stress they begin to flow as a liquid. Those fluids are used in cosmetics, food industry or building materials as concrete. The yield stress behavior only appears when the volume fraction is high enough, where the particles are blocked by their neighbors. So the systems cannot relax and the flow become highly cooperative.This cooperativity impacts the rheology at small scale. When the confinement is of the order of few particles, the viscosity does not only depend on the local stress as usually but also on the stress in the neighborhood. This is called non-local rheology.I studied experimentally this behavior by flowing concentrated emulsion in a microchannel and observing directly the flow of the droplet with a confocal microscopy. The results from these microfluidics experiments are compared to predictions of the Kinetic Elasto Plastic model of Bocquet et al. 2009 and molecular dynamic simulation of jammed soft particles.
59

Ecoulements de suspensions concentrées de globules rouges en micro-canaux : étude expérimentale / Flows of concentrated suspensions of red blood cells in microchannels : an experimental study

Roman, Sophie 13 December 2012 (has links)
Le sang est une suspension concentrée (45 % en volume) de cellules déformables, les globules rouges, dans un liquide newtonien, le plasma. Dans la microcirculation, i.e. le sous-ensemble du système de circulation sanguine où s'effectuent les échanges de matière entre le sang et les tissus, les tailles de vaisseaux sont comparables à la taille d'un globule rouge (environ 10 µm). En conséquence, les effets dynamiques liés à la présence de ces cellules induisent des comportements rhéologiques complexes, qui jouent un rôle important dans le transport de l'oxygène vers les tissus. En particulier, aux bifurcations microvasculaires divergentes, les débits de globules rouges et de plasma peuvent se répartir de façon non proportionnelle entre les deux branches filles. La fraction volumique de globules rouges (hématocrite) dans l'une des branches filles est alors plus élevée que celle de la branche d'entrée, et la fraction volumique dans l'autre branche y est plus faible. Cet effet, connu sous le nom d'effet de séparation de phase, induit une très grande hétérogénéité de l'hématocrite d'un vaisseau à l'autre dans la microcirculation. Il induit également un couplage entre l'architecture du réseau microvasculaire et la dynamique de l'écoulement sanguin dans ce réseau. L'objectif de ce travail de thèse est d'étudier finement l'effet de séparation de phase in vitro, dans un régime représentatif des conditions physiologiques, au moyen de dispositifs microfluidiques modélisant les bifurcations microvasculaires et de suspensions de globules rouges. Dans ce but, un dispositif expérimental microfluidique a d'abord été élaboré. Puis, les aspects métrologiques spécifiques aux suspensions concentrées ont été abordés afin de quantifier les paramètres de l'écoulement. En particulier, la technique de dual-slit a été comprise et optimisée, assurant une mesure précise de profils de vitesse de globules rouges en microcanaux. Des métrologies spécifiques à nos conditions expérimentales ont également été mises en place pour déterminer l'hématocrite. Ces techniques ont été validées par vérification du principe de conservation de la masse entre les trois branches d'une bifurcation, et elles nous ont permis de caractériser les écoulements de globules rouges dans des micro-canaux de différentes tailles (10 à 100 µm), et ce pour de larges gammes de débits et de concentrations. Enfin, l'écoulement de suspensions de globules rouges a été étudié au niveau de micro-bifurcations, dans l'objectif de caractériser l'effet de séparation de phase pour des tailles de canaux et des gammes d'hématocrites qui n'ont pas été étudiés auparavant en conditions d'écoulement maîtrisées. / Blood is a concentrated suspension (45% by volume) of deformable red blood cells, flowing in a Newtonian fluid called plasma. The microcirculation is the part of the blood circulation system where the exchanges of material (e.g. nutrients, oxygen) between the blood and tissues take place. The microvessels are characterized by diameters less than 100 microns, which is similar in size to the size of a red blood cell ( 10 microns). As a result, the presence of these cells considerably influences the dynamics of microvascular flows and induces complex rheological behaviors. In particular, at diverging microvascular bifurcations, red blood cells and plasma may be nonproportionally distributed between two daughter vessels : one gets a higher red blood cell volume fraction (hematocrit) than the feeding vessel, while the other gets a lower one. This effect, known as the phase separation effect, causes a tremendous heterogeneity of the hematocrit among vessels in microvascular networks and induces a coupling between the microvascular architecture and the blood flow dynamics. The aim of this thesis is to investigate the phase separation effect in vitro, in physiological conditions, using red blood cell suspensions and microfluidic devices modeling microvascular bifurcations. For this purpose, a microfluidic experimental device was first developed. Then the metrological aspects specific to concentrated suspensions were addressed in order to quantify all the flow parameters. In particular, the dual-slit technique has been understood and optimized, ensuring accurate measurement of velocity profiles of red blood cells in microchannels. Measurement methods for our experimental conditions were also implemented to determine the hematocrit. All these techniques have been validated by verification of the principle of mass conservation between the three branches of a bifurcation. They allowed us to characterize the flow of red blood cells in microchannels of different sizes (10 to 100 microns) and for wide ranges of flow rates and concentrations. Finally, the flow of red blood cell suspensions was investigated at micro-bifurcations, with the aim of characterizing the phase separation effect for channel sizes and hematocrit ranges never studied in controlled flow conditions.
60

Développement d' un outil microfluidique polyvalent pour l' étude de la cristallisation : application à la nucléation de principes actifs pharmaceutiques

Ildefonso, Manuel 29 June 2012 (has links)
Le but de cette thèse est de développer un outil microfluidique d'étude de la cristallisation (et plus particulièrement de la nucléation) le plus adapté aux contraintes de l'industrie. C'est-à-dire un outil permettant de réaliser un grand nombre d'expériences de cristallisation tout en utilisant le moins de produits possible et en restant simple à mettre en place expérimentalement. Seule la microfluidique permet, en utilisant des volumes de l'ordre du nL, de répondre simultanément à ces deux contraintes. Les systèmes microfluidiques permettent en effet de générer des gouttes de quelques nanolitres qui sont autant de microcristallisoires permettant l'étude de la nucléation. Ce travail présente la mise au point de systèmes microfluidiques et des méthodes analytiques associées dédiés à l'étude de la nucléation de principes actifs pharmaceutiques. Un système microfluidique existant a été adapté afin de répondre dans un premier temps aux problèmes posés par la cristallisation de protéines dans l'eau. Ce système a permis de mesurer la limite de zone métastable ainsi que la fréquence de nucléation d'une protéine modèle, le lysozyme, également utilisée comme principe actif. Puis ce système a été à nouveau adapté afin de permettre l'étude de la nucléation dans des solvants organiques variés et donc l'étude d'un grand nombre de principes actifs pharmaceutiques. À l'occasion de cette nouvelle adaptation, des méthodes plus polyvalentes d'études de la nucléation ont dû être mises au point afin de résoudre les nouveaux problèmes soulevés. / The aim of this work is to develop a microfluidic tool to study crystallization (and specifically nucleation) adapted to industrial issue, that's mean doing a lot of experiment with only few materials. Microfluidic, thanks to using nanoliters volume, are able to solve simultaneously both issues. Microfluidic system allows us to generate plenty of nanoliters droplets and each droplet is a microcristallizer to study nucleation. Here I present the development of a microfluidic system and the related analytical method dedicated to nucleation study of active pharmaceutical ingredient. As a first step we adapt an existing microfluidic system to study the nucleation of protein in water. Thanks to this system we are able to measure the metastable zone width and nucleation frequency of model protein used as an active pharmaceutical ingredient, the lysozyme. In a second step we modify this system in order to allow nucleation study in organic solvent. Thanks to this new system we can study the nucleations of different APIs using polyvalent methods develop to avoid nucleation problems due to the crystallization of API. This microfluidic system and the method develop to study nucleation of API are really polyvalent and let us imagine to extend their applicative field to all industrial field where using nanoliter volume can reduce the cost (protein crystallization) and/or risk (explosives, radioactive hazard).

Page generated in 0.0611 seconds