Spelling suggestions: "subject:"micrometeorological""
1 |
Microlocal analysis of the doppler transform on R³ /Ramaseshan, Karthik. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (p. 30-31).
|
2 |
A support theorem and an inversion formula for the geodesic ray transform /Krishnan, Venkateswaran P., January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (p. 51-56).
|
3 |
Radon transforms and microlocal analysis in Compton scattering tomographyWebber, James January 2018 (has links)
In this thesis we present new ideas and mathematical insights in the field of Compton Scattering Tomography (CST), an X-ray and gamma ray imaging technique which uses Compton scattered data to reconstruct an electron density of the target. This is an area not considered extensively in the literature, with only two dimensional gamma ray (monochromatic source) CST problems being analysed thus far. The analytic treatment of the polychromatic source case is left untouched and while there are three dimensional acquisition geometries in CST which consider the reconstruction of gamma ray source intensities, an explicit three dimensional electron density reconstruction from Compton scatter data is yet to be obtained. Noting this gap in the literature, we aim to make new and significant advancements in CST, in particular in answering the questions of the three dimensional density reconstruction and polychromatic source problem. Specifically we provide novel and conclusive results on the stability and uniqueness properties of two and three dimensional inverse problems in CST through an analysis of a disc transform and a generalized spindle torus transform. In the final chapter of the thesis we give a novel analysis of the stability of a spindle torus transform from a microlocal perspective. The practical application of our inversion methods to fields in X-ray and gamma ray imaging are also assessed through simulation work.
|
4 |
Asymptotic solutions and resonances for Klein-Gordon and Schrödinger operatorsAMAR-SERVAT, Emmanuelle 18 December 2002 (has links) (PDF)
Mon travail de thèse se situe dans le cadre de l'analyse semi-classique. Il se divise en trois parties. Dans la première, j'ai étudié l'opérateur de Klein-Gordon semi-classique en dimension un. Dans la zone où le potentiel reste sous le niveau d'énergie, il existe pour cet opérateur des constructions de solutions WKB, similaires à celles développées pour l'opérateur de Schrödinger. Sous certaines hypothèses, on a prolongé ces solutions hors de cette zone, grâce aux méthodes utilisées près des points tournants pour l'opérateur de Schrödinger. On a ensuite étudié un exemple pour lequel on peut faire des calculs explicites. Enfin, en dimension quelconque, on a obtenu une nouvelle majoration des fonctions propres, lorsque la distance d'Agmon associée à cet opérateur a un gradient lipschitzien. La deuxième partie concerne l'opérateur de Schrödinger et l'étude des résonances en dimension un. Lorsque le potentiel présente deux puits et une mer pour les niveaux d'énergies considérés, on a obtenu des conditions de non croisement des résonances ainsi que leur graphe, grâce à la construction de modes. En présence d'un nombre quelconque de puits, cela permet également de calculer une estimation de la partie imaginaire des résonances dans le cas d'une interaction simple. Enfin, dans la troisième partie, on considère un opérateur de Schrödinger dont le potentiel présente un maximum non dégénéré. On a étudié les résonances générées par une courbe homocline qui passe par ce maximum. En dimension un, on a obtenu une condition de quantification, et par suite les résonances recherchées. En dimension quelconque, on a construit une solution asymptotique sortante le long de cette courbe, en adaptant la méthode de B. Helffer et J. Sjöstrand pour le fond de puits non résonnant. Une transformation FBI permet ensuite de conjecturer un premier niveau de résonances.
|
5 |
Sur la rigidité des variétés riemanniennes / On the rigidity of Riemannian manifoldsLefeuvre, Thibault 19 December 2019 (has links)
Une variété riemannienne est dite rigide lorsque la longueur des géodésiques périodiques (cas des variétés fermées) ou des géodésiques diffusées (cas des variétés ouvertes) permet de reconstruire globalement la géométrie de la variété. Cette notion trouve naturellement son origine dans des dispositifs d’imagerie numérique tels que la tomographie par rayons X. Grâce une approche résolument analytique initiée par Guillarmou et fondée sur de l’analyse microlocale (plus particulièrement sur certaines techniques récentes dues à Faure-Sjostrand et Dyatlov-Zworski permettant une étude analytique fine des flots Anosov), nous montrons que le spectre marqué des longueurs, c’est-à-dire la donnée des longueurs des géodésiques périodiques marquées par l’homotopie, d’une variété fermée Anosov ou Anosov à pointes hyperboliques détermine localement la métrique de la variété. Dans le cas d’une variété ouverte avec ensemble capté hyperbolique, nous montrons que la distance marquée au bord, c’est-à-dire la donnée de la longueur des géodésiques diffusées marquées par l’homotopie, détermine localement la métrique. Enfin, dans le cas d’une surface asymptotiquement hyperbolique, nous montrons qu’une notion de distance renormalisée entre paire de points au bord à l’infini permet de reconstruire globalement la géométrie de la surface. / A Riemannian manifold is said to be rigid if the length of periodic geodesics (in the case of a closed manifold) or scattered geodesics (in the case of an open manifold) allows to recover the full geometry of the manifold. This notion naturally arises in imaging devices such as X-ray tomography. Thanks to a analytic framework introduced by Guillarmou and based on microlocal analysis (and more precisely on the analytic study of hyperbolic flows of Faure-Sjostrand and Dyatlov-Zworski), we show that the marked length spectrum, that is the lengths of the periodic geodesics marked by homotopy, of a closed Anosov manifold or of an Anosov manifold with hyperbolic cusps locally determines its metric. In the case of an open manifold with hyperbolic trapped set, we show that the length of the scattered geodesics marked by homotopy locally determines the metric. Eventually, in the case of an asymptotically hyperbolic surface, we show that a suitable notion of renormalized distance between pair of points on the boundary at infinity allows to globally reconstruct the geometry of the surface.
|
6 |
MICROLOCAL METHODS IN TOMOGRAPHY AND ELASTICITYYang Zhang (9025490) 29 June 2020 (has links)
<div>This thesis compiles my work on three projects.</div><div>The first project studies the cancellation of singularities in the inversion of two X-ray type transforms in the presence of conjugate points. The second project studies the recovery of singularities for the weighted cone transform. The third project studies the phenomenon of Rayleigh waves and Stoneley waves in the isotropic elastic wave equation of variable coefficients with a curved boundary.</div>
|
7 |
Résonances du laplacien sur les variétés à pointes / The resonances of the Laplace operator on cusp manifoldsBonthonneau, Yannick 10 July 2015 (has links)
Cette thèse à pour objet l’étude des résonances du laplacien sur les variétés à pointes. Ce sont des variétés dont les bouts sont des pointes hyperboliques réelles. Ces objets ont été introduits par Selberg pour les surfaces à pointes de courbure constante dans les années 50. Leur définition a ensuite été étendue en courbure variable par Lax et Phillips. Les résonances sont les poles d’une famille méromorphe de fonctions propres généralisées du laplacien. Elles sont associées au spectre continu du laplacien. Pour analyser ce spectre continu, plusieurs directions de recherche sont explorées ici. D’une part, on obtient des résultats sur la localisation de ces résonances. En particulier, si la courbure est négative, on montre que pour un ensemble générique de métriques, les résonances se séparent en deux ensembles. Le premier est contenu dans une bande près du spectre continu. L’autre partie est composé de résonances qui s’éloignent du spectre. Ceci laisse une zone de taille log sans résonance.D’autre part, on étudie les mesures microlocales associées à certaines suites de paramètre spectraux. En particulier, on montre que pour des suites de paramètres spectraux qui s’approche du spectre, mais pas trop vite, la mesure microlocale associée est nécessairement la mesure de Liouville. Cette propriété est valable quand la courbure de la variété est négative. / In this thesis, we study the resonances of the Laplace operator on cusp manifolds. They are manifolds whose ends are real hyperbolic cusps. The resonances were introduced by Selberg in the 50's for the constant curvature cusp surfaces. Their definition was later extended to the case of variable curvature by Lax and Phillips. The resonances are the poles of a meromorphic family of generalized eigenfunctions of the Laplace operator. They are associated to the continuous spectrum of the Laplace operator. To analyze this continuous spectrum, different directions of research are investigated.On the one hand, we obtain results on the localization of resonances. In particular, if the curvature is negative, for a generic set of metrics, they split into two sets. The first one is included in a band near the spectrum. The other is composed of resonances that are far from the spectrum. This leaves a log zone without resonances. On the other hand, we study the microlocal measures associated to certain sequences of spectral parameters. In particular we show that for some sequences of parameters that converge to the spectrum, but not too fast, the associated microlocal measure has to be the Liouville measure. This property holds when the curvature is negative.
|
8 |
Regularity And Propagation Phenomena In Some Linear And Non-Linear Partial Differential Equations With Particular Reference To Microlocal AnalysisJain, Rahul 03 1900 (has links) (PDF)
No description available.
|
9 |
Microlocal analyticity of Feynman integralsSchultka, Konrad 18 September 2019 (has links)
Wir geben eine rigorose Konstruktion von analytisch-regularisierten
Feynman-Integralen im D-dimensionalen Minkowski-Raum als meromorphe
Distributionen in den externen Impulsen, sowohl in der Impuls- als auch in der
parametrischen Darstellung. Wir zeigen, dass ihre Pole durch die üblichen
Power-counting Formeln gegeben sind, und dass ihr singulärer Träger in
mikrolokalen Verallgemeinerungen der (+alpha)-Landauflächen enthalten ist.
Als weitere Anwendungen geben wir eine Konstruktion von dimensional
regularisierten Integralen im Minkowski-Raum und beweisen Diskontinuitätsformeln
für parametrische Amplituden. / We give a rigorous construction of analytically regularized Feynman integrals in
D-dimensional Minkowski space as meromorphic distributions in the external
momenta, both in the momentum and parametric representation. We show that their
pole structure is given by the usual power-counting formula and that their
singular support is contained in a microlocal generalization of the
alpha-Landau surfaces. As further applications, we give a construction of
dimensionally regularized integrals in Minkowski space and prove discontinuity
formula for parametric amplitudes.
|
10 |
Singularities of two-point functions in Quantum Field TheoryWrochna, Michal 16 August 2013 (has links)
No description available.
|
Page generated in 0.0623 seconds