• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 12
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 46
  • 30
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Desenvolvimento de metodologias de inspeção e monitoramento de Risers flexíveis através de Técnicas Micromagnéticas de Análise de Tensões

Martins, Carlos Otávio Damas January 2008 (has links)
O crescimento da produção de petróleo em alto mar tem elevado a utilização de Risers flexíveis. Fazendo a conexão entre o poço e a plataforma, estes dutos estão sujeitos aos severos carregamentos causados pela superposição dos esforços mecânicos com o ambiente corrosivo. Deste modo, torna-se de grande importância, o monitoramento da integridade estrutural de Risers flexíveis para a Indústria petrolífera. Neste trabalho, foram desenvolvidas metodologias de caracterização do estado de tensões de arames da armadura de tração de Risers flexíveis de seis polegadas. Através do monitoramento de ensaios de tração foi testada a influência das variações de carregamento, microestrutura e afastamento entre o sensor e o material ferromagnético (Lift off) nas medidas micromagnéticas. Os resultados mostraram a grande aplicabilidade dos métodos micromagnéticos, separando os efeitos das variações de tensões e microestruturais. Analisando-se diferentes técnicas, foram obtidas correlações entre os carregamentos e as tensões (determinadas através da técnica micromagnética) superiores a 90%. Bons resultados também foram obtidos nas análises da influência do Lift off, onde, apesar da grande atenuação de sinais, obteve-se boas correlações entre propriedades mecânicas e micromagnéticas. / The constant growing of the offshore oil production has increase the use of Flexible Risers. Acting as the connection between the well and the platform, these pipelines are subjected to a superposition of mechanical loads and corrosive environment. In this sense, the development of more reliable systems for monitoring the structural integrity of Flexible Risers is becoming more important. This work aims the development of non destructive methodologies for the analysis of the stress state in the steel wires that forms the tensile armor of a six inch Flexible Riser. Through the monitoring of tensile tests, the influences of the load, microstructure and Lift off variations in the micromagnetic measurements had been analyzed. The results showed the good applicability of the micromagnetic methods, in sorting the microstructure effects from the stress analysis. Using the multi - technique approach, a good correlation (up to 90%) between load stress and the NDT stress (determined through the micromagnetic technique) had been found. The Lift off analysis showed promising results too, where, despite the high signal attenuation, good correlations between mechanical and micromagnetic properties had been observed.
12

Micromagnetic Modeling of Thin Film Segmented Medium for Microwave-Assisted Magnetic Recording

Bai, Xiaoyu 01 February 2018 (has links)
In this dissertation, a systematic modeling study has been conducted to investigate the microwaveassisted magnetic recording (MAMR) and its related physics. Two different modeling approaches including effective field modeling and recording signal-to-noise ratio (SNR) modeling has been conducted to understand the MAMR mechanism on segmented thin film granular medium. First the background information about perpendicular magnetic recording (PMR) and its limitation has been introduced. The motivation of studying MAMR is to further improve the recording area density capacity (ADC) of the hard disk drive (HDD) and to overcome the theoretical limitation of PMR. The development of recording thin film medium has also been discussed especially the evolvement of the multilayer composite medium. Since the spin torque oscillator (STO) is the essential component in MAMR, different STO structures have been discussed. The relation between STO setting (thickness, location and frequency) to the ac field distribution has also been explored. In effective field modeling, both head configuration and medium structure optimization have been investigated. The head configuration study includes the effective field distribution in relation to the fieldgeneration- layer thickness, location, and frequency. Especially an interesting potential erasure is detected due to the imperfect circularity of the ac field. Several approaches have been proposed to prevent the erasure. Meanwhile, notched and graded segmentation structure have been compared through effective field analysis in terms of the field gradient and track width. It has been found that MAMR with notched Hk distribution is able to achieve both high field gradient and narrow track width simultaneously. In recording SNR modeling, first the behavior of MAMR with single layer medium has been studied and three phases have been discovered. As proceed to the multi-layer medium, a practical issue which is MAMR with insufficient ac field power and high medium damping has been introduced. Since the fabrication of STO with high ac power is highly difficult, the issue has been investigated from the medium side which is through an optimized medium structure, the provided ac field can be utilized more efficiently. It has been found that more segmentation on upper part of the grain to fit the ac field yields more efficient ac field power usage. Following this scenario, the graded and notched segmentation structure have been studied in terms of SNR and track width. The traditional dilemma between recording SNR and track width in the conventional PMR is partially solve using MAMR with notched segmentation structure.
13

Microstructural Defects in Hot Deformed and As-Transformed τ-MnAl-C

Zhao, Panpan 15 November 2021 (has links)
Detailed microstructural characterisation has been conducted in both ‘as-transformed’ and ‘hot deformed’ samples of 𝜏-MnAl-C using transmission electron microscopy. After hot deformation, true twins, dislocations, intrinsic stacking faults and precipitates of Mn3AlC are the main defects in the recrystallised grains. A significant fraction of non-recrystallised grains existed, which had microstructures based on combinations of high densities of true twins, dislocations, and deformation bands. The formation of the Mn3AlC precipitates was confirmed and related to the reduction of saturation magnetization and the increase in the Curie temperature of 𝜏-MnAl-C after hot deformation. Antiphase boundaries, which are believed to act as nucleation sites for reverse domains, were not observed in the hot deformed sample. Increasing structural disorder is expected for the tetragonal L10 𝜏-MnAl-C (c:a = 0.91) going from coherent true twin boundary to incoherent true twin boundary to the order twin boundary. This was demonstrated from the interface structure in the HAADF-HRSTEM images. The disorder at different types of twin boundaries is also associated with the degree of segregation of the constituent elements. By using STEM-EELS, higher Mn enrichment and Al deficiency was observed at the order twin boundary with a thickness about 6 nm, slightly Mn segregation was observed at incoherent true twin boundary with reduced thickness about 1.5-2 nm and no segregation was found at the coherent true twin boundary. In addition, the distribution of carbon is inhomogeneous across the twin boundary and carbon cluster was found at the twin boundary. Micromagnetic simulations and machine learning were conducted in an international collaboration with Danube University Krems, Austria, which enabled the quantification of the effect of twins on the magnetic properties of 𝜏-MnAl-C.
14

Přepínání chirality vortexů v magnetostaticky svázaných permalloyových nanodiscích / Switching vortex chirality in magnetostatically coupled permalloy nanodisks

Balajka, Jan January 2013 (has links)
The diploma thesis is concerned with switching of vortex circulation in magnetic nanodisks. The results of micromagnetic simulations of hysteresis loops of individual disks with different degrees of asymmetry are presented. The influence of geometric asymmetry of the disk on the shape of the hysteresis loop is discussed as well as switching of vortex circulation in asymmetric nanodisks by external in-plane magnetic field. Simulations of pairs of magnetostatically coupled nanodisks were carried out for different interdisk distances and degrees of asymmetry. By analysing the results of the simulations, the effects of magnetostatic coupling and the asymmetry on resultant circulation of individual vortices were compared and the range of magnetostatic interaction between nanodisks of given dimensions and asymmetry was estimated. Experimental techniques used for fabrication and measurement of the samples are briefly summarized.
15

Phenomenological theory of chiral states in magnets with Dzyaloshinskii-Moriya interactions

Butenko, Ganna 25 June 2013 (has links) (PDF)
This thesis presents the theoretical studies of chiral magnetic structures, which exist or are affected by antisymmetric Dzyaloshinskii-Moriya interactions. The theoretical approach is based on the phenomenological model of ferromagnetic materials lacking inversion symmetry. Equilibrium magnetic states are described as static structures in the micromagnetic low temperature limit with a fixed magnitude of the magnetization. The studies are focused on two cases: (i) magnetization structures that are affected by chiral exchange so that a particular chirality of these structures is selected, and (ii) novel solitonic states that are called chiral Skyrmions and only exist because of the chiral exchange. Vortex states in magnetic nanodisks provide the simplest example of a handed magnetization structure, where effects of the chiral couplings may become noticeable. A chiral exchange here favours one chirality of such a vortex state over the other. This effect can stem from surface-induced or other defect-related chiral Dzyaloshinskii-Moriya exchange. The different chiral versions of the vortex states are shown to display strong dependencies on the materials properties of such nanodisks. Within a micromagnetic model for these effects, numerical calculations of the shape, size, and stability of the vortices in equilibrium as functions of magnetic field and the material and geometrical parameters provide a general analysis of the influence of the broken mirror symmetry caused by the surface/interfaces or structural defect on their properties. The Dzyaloshinskii-Moriya interactions impose differences in the energies and sizes of vortices with different chirality: these couplings can considerably increase sizes of vortices with one sense of rotation and suppress vortices with opposite sense of rotation. Torsions related to lattice defects can cause similar to the surface-induced chiral couplings. A general phenomenological magneto-elastic formulation for this torsional chirality selection is given. It is applied to calculate similar effects on vortex states in magnetic disks with a screw dislocation at their center. In systems with strong chiral exchange the magnetic equilibrium states themselves become chiral twisted structures. The most interesting structures in this context are the two-dimensional solitonic states that are now known as chiral Skyrmions. The properties and stability of multiply twisted states composed of these particle-like units are the subject of the second part of this thesis. These states compete with the well known onedimensionally modulated helical states in non-centrosymmetric magnetic systems. Studies of modulated states in cubic helimagnets have shown, that in absence of additional effects, the only thermodynamically stable state is a cone helix. Uniaxial distortions, that can be caused by uniaxial stresses in the bulk samples or arise due to surface effects in thin films, suppress the helical states and stabilize Skyrmion lattices in a broad range of thermodynamical parameters. Using the phenomenological theory for modulated and localized states in chiral magnets, the equilibrium parameters of the Skyrmion and helical states have been derived as functions of applied magnetic field and induced uniaxial anisotropy. These results show that due to a combined effect of induced uniaxial anisotropy and an applied magnetic field, Skyrmion lattices can be formed as thermodynamically stable states. The theoretical results provide a comprehensive description of the evolution of modulated states in an applied magnetic field depending on type of anisotropy. The cases of a uniaxial anisotropy of easy axis and easy plane type with fields applied along its axis are investigated in detail. Existence of Skyrmion-lattice states in the easy axis case as thermodynamic field-induced phase is demonstrated. The results explain recent observation of Skyrmion lattices by magnetic Lorentz microscopy in thin foils of cubic chiral magnets. In systems with easy plane type of anisotropy, Skyrmion states do not form thermodynamic phases in applied fields along the axis. However, distorted Skyrmion phases can exist in fields applied perpendicularly to the axis. In this configuration of anisotropy axis and fields, both the helical states and the Skyrmions display elliptical distortions. The investigated micromagnetic model maps out the basic helical and Skyrmionic states expected to exist in cubic and nearly cubic chiral magnets.
16

Study of static spin distributions and dynamics of magnetic domain walls in soft magnetic nanostructures

Yang, Jusang 26 July 2013 (has links)
The static and dynamic properties of spin distributions within domain walls(DWs) confined by Permalloy nanowire conduits are investigated by numerical simulations and high-speed magneto-optic polarimetry. Phase boundaries and critical points associated with DW spin distributions of various topologies are accurately determined using high-performance computing resources. Field-driven mobility curves that characterize DW propagation velocities in 20 nm thick nanowires are calculated with increasing the width of nanowires. Beyond the simple one-dimensional solution, the simulations reveal the four distinct dynamic modes. Oscillations of the field-driven DW velocity in Permalloy nanowires are observed above the Walker breakdown condition using high-speed magneto-optic polarimetry. A one-dimensional analytical model and numerical simulations of DW motion and spin dynamics are used to interpret the experimental data. Velocity oscillations are shown to be much more sensitive to properties of the DW guide structure (which also affect DW mobility) than the DW spin precessional frequency, which is a local property of the material. Transverse bias field effects on field-driven DW velocity are studied experimentally and numerically. DW velocities and spin configurations are determined as functions of longitudinal drive field, transverse bias field, and nanowire width. For a nanowire that supports vortex wall structures, factor of ten enhancements of the DW velocity are observed above the critical longitudinal drive-field (that marks the onset of oscillatory DW motion) when a transverse bias field is applied. The bias-field enhancement of DW velocity is explained by numerical simulations of the spin distribution and dynamics within a propagating DW that reveal dynamic stabilization of coupled vortex structures and suppression of oscillatory motion in the nanowire conduit resulting in uniform DW motion at high speed. Current-driven and current-assisted field-driven domain wall dynamics in ferromagnetic nanowires have thermal effects resulting from Joule heating, which make difficult to separate the spin-torque effects on DW displacements. To understand the thermal effects on DW dynamics, the temperature dependence of field-driven DW velocity is explored using high-bandwidth scanning Kerr polarimetry. Walker critical fields are decreased with increasing temperature and temperature-induced dynamic mode changes are observed. The results show that Joule heating effects are playing an important role in current-driven/current-assisted field-driven DW dynamics. / text
17

Theoretical and experimental contribution to the study of exchange-spring magnets

Tayade, Renuka 03 July 2014 (has links) (PDF)
This thesis is divided into two parts, experimental part presenting the synthesis of exchange spring magnets and theoretical part showing the magnetization dynamics of exchange spring magnets. For the synthesis, ferrite and metal alloy based magnets using mechanical milling and ultrasonic mixing are studied. This part discusses the difficulty in controlling the microstructure during synthesis. Several samples with varying volume fractions of the soft phase are synthesized. It is found that mechanical milling initiates a reaction and this leads to disintegration of the ferrite phase into its intermediate phases. Samples prepared using ultrasonic mixing however show presence of the ferrite phase up to very large volume fraction of the soft alloy phase which provides better perspective for the synthesis. Dynamics of the exchange spring system is studied theoretically using micromagnetic theory. Microwave assisted magnetization reversal are studied in the bulk bilayer exchange coupled system. We investigate the nonlinear magnetization reversal dynamics in a perpendicular exchange spring media using the Landau-Lifshitz equation. In the limit of the infinite thickness of the system, the propagation field leads the reversal of the system. The reduction of the switching field and the magnetization profile in the extended system are studied numerically. The possibility to study the dynamics analytically is discussed and an approximation where two P-modes are coupled by an interaction field is presented. The ansatz used for the interaction field is validated by comparison with the numerical results. This approach is shown to be equivalent to two exchange coupled macrospins.
18

Aplicação de métodos eletromagnéticos para a avaliação das propriedades magnéticas e condição microestrutural de aços elétricos de grão não orientado

Dias, Allan Romário de Paula January 2013 (has links)
O desenvolvimento de motores e equipamentos elétricos de alta eficiência energética tem representado um desafio para o desenvolvimento tecnológico. Além da criação de novos materiais, a busca pela melhoria nas propriedades daqueles já existentes surge como uma rota para otimização energética de motores elétricos. É nesse contexto que nos últimos anos as pesquisas em aços para aplicações magné-ticas, os aços elétricos, foram retomadas buscando novas rotas e processos de fa-bricação desses materiais aliando a redução de custos com a otimização das propri-edades do material. Com o aumento da produção surge a necessidade de desenvol-ver-se formas de inspeção para o controle de qualidade desses materiais que forne-çam resposta rápida e de baixo custo. Assim, surge como alternativa os métodos eletromagnéticos como ferramenta de inspeção por ensaios não destrutivos. Neste trabalho, buscou-se a otimização das propriedades de aços elétricos variando sua composição química e microestrutura, com o objetivo de estudar a influência nas propriedades magnéticas e, então, a aplicação dos métodos micromagnéticos para a inspeção da microestrutura do material com foco na criação de um método de inspe-ção para controle de qualidade que permita sua implementação durante o processo produtivo, sem a necessidade de extração de material para a detecção de defeitos e, dessa forma, foi possível verificar a viabilidade da ferramenta para esse fim. / The development of highly efficient electrical devices and engines comes up as a challenge for technological development. Summed up to new materials devel-opment, the improvement of material’s properties rises as a route for optimization of electrical machines. In this context, in the last years the researches on electrical steels have been focused on finding new manufacturing routes focused on cost re-duction and achievement of better magnetic properties, in order to waste less energy during work. Increases in steel volume production lead to a need to finding Low cost methods which supply fast results , for quality control and assurance for these mate-rials.. Electromagnetic methods show up as nondestructive tool for this purpose. In this work, several non-oriented electrical steel were prepared , with various micro-structural conditions which caused varying magnetic properties among the samples; micromagnetic methods were used as a tool for non-destructive evaluation of their microstructure and magnetic properties. The inspection aimed at building a model for in-production line quality assurance of this sort of material.
19

Nucleation and propagation of magnetic domain walls in cylindrical nanowires with diameter modulations / Nucléation et propagation de parois de domaine magnétiques dans des nanofils cylindriques avec des modulations en diamètre

Trapp, Beatrix 29 May 2018 (has links)
Dans les dispositifs actuels de sauvegarde de données, les bits d'informations sont stockées sous la forme de paroi de domaines dans une couche mince, voire des media "patternés". Le support reste donc 2D. De nos jours, la densité de stockage tend vers une valeur maximale qu'il est difficile de dépasser pour des raisons fondamentales et technologiques. Ainsi, récemment des efforts ont été réalisés pour développer des dispositifs 3D qui allient la polyvalence de la mémoire RAM solide avec un coût comparable à celui des disques durs actuels.Un nouveau concept théorique particulièrement intéressant pour une mémoire magnétique en 3D a été proposé en 2004 par S. Parkin et al.. Cette mémoire de type registre à décalage est constituée d'un réseau de nanofils magnétiques verticaux avec une section transversale cylindrique ou bien rectangulaire. Dans ce nouveau type de mémoire, les bits sont codés sous forme d'une série de parois de domaine. Cette dernière peut être déplacée vers une tête de lecture intégrée par des impulsions de courant polarisé en spin de quelques nanosecondes.Les parois de domaines magnétiques dans des nanofils cylindriques ont suscité l'intérêt de la communauté scientifique en raison de leur application possible dans un dispositif fonctionnel ainsi qu'en raison de nouvelles propriétés intéressantes qui résultent du confinement géométrique des parois. A ce jour, seules quelques études expérimentales sur de telles parois de domaines existent. Elles ont mis en évidence la difficulté de maîtriser la propagation de parois dues à des forts effets de piégeage. Jusqu'à présent, l'origine microscopique de ce piégeage n'a été que partiellement comprise. On s'attend à ce qu’indépendamment de la qualité géométrique du fil, la microstructure du matériau puisse jouer un rôle non négligeable.Dans le cadre du projet européen FP7 m3D, l'objectif de mon travail de thèse a été d'étudier la propagation des parois de domaine dans des nanofils cylindriques avec des modulations de diamètre. L'énergie de ces parois de domaine augmentant avec le diamètre du fil, on s'attend à ce que des excroissances (ou des constrictions) agissent comme des barrières d'énergie artificielles (respectivement puits). Par conséquent, une propagation de paroi de domaine contrôlée via la géométrie du fil semble possible.La première partie de mon travail concerne l'optimisation des matériaux. Des fils d'un alliage de NiCo (diamètre de 100-200nm et longueur de plusieurs dizaines de micromètres) avec deux géométries distinctes ont été fabriqués par électrodéposition en collaboration avec le groupe du Prof. J. Bachmann à l' Université d'Erlangen. Pour chaque géométrie, j'ai exploré l'effet de la composition de l'alliage ainsi que d'un recuit sur la microstructure du matériau. Par la suite, la propagation des parois de domaine dans des nanofils individuels a été étudiée sous l'influence d'un champ magnétique quasi-statique ou d'une impulsion de champ magnétique avec une durée d'impulsion de l'ordre de la nanoseconde. Dans la dernière partie de ma thèse, j'ai effectué des simulations micromagnétiques complémentaires pour étudier l'effet de la géométrie des modulations sur le piégeage de ces parois de domaine magnétiques. / In all current data storage devices, the information bits are stored in form of domain walls in a thin film or in patterned media on a two-dimensional surface . Within the next decade, further increase of the storage density in these devices is expected to come to a halt due to several fundamental and technological issues. Thus there have recently been efforts to develop three-dimensional devices combining the versatility of solid state RAM with the cost efficiency of common hard disk drives.A particularly interesting theoretical concept for a three-dimensional magnetic memory has been proposed in 2004 by S. Parkin et al. . Their racetrack memory consists of a vertical array of magnetic nanowires with either cylindrical or rectangular cross section. The bits are encoded in a series of up to 100 domain walls per wire. Using nanosecond spin polarized current pulses these walls are shifted past an integrated read head.Magnetic domain walls in cylindrical nanowires have raised the interest of the scientific community due to their possible application in a functional device as well as due to exciting new properties which arise from the geometric confinement. Up to date, only a few pioneering experimental studies on such domain walls exist. They indicate strong pinning effects preventing a deterministic domain wall propagation. So far the microscopic origin of this pinning has only partially been understood. It is expected however that beside the wire geometry the material microstructure may play a considerable role.Situated within the framework of the European FP 7 project m3D, the objective of my work has been to investigate the domain wall propagation in cylindrical nanowires with diameter modulations by means of magnetic force microscopy and micromagnetic simulation. As the domain wall energy increases with the wire diameter, protrusions (resp. notches) are expected to act as an artificial energy barrier (resp. well). Consequently, a deterministic domain wall propagation controlled via the wire geometry seems possible.A first part of my work concerns material optimization. For this, NiCo alloy wires (100-200nm diameter and multiple tens of micrometers in length) with two distinct geometries have been fabricated by template assisted electrodeposition (Chemist collaborators at Univ. Erlangen, Prof. J.Bachmann). I have then explored the impact of the alloy composition as well as of possible post-fabrication annealing on the material microstructure. Subsequently, domain wall propagation in individual nanowires has been investigated under the influence of either a quasistatic magnetic field or a nanosecond magnetic field pulse. In addition I have performed complementary micromagnetic simulations to study the effect of the modulation geometry on the domain wall pinning.
20

Utilização de técnicas eletromagnéticas para detecção de danos térmicos em aço 300M empregado em trens de pouso

Tagliari, Mariana dos Reis January 2012 (has links)
Trens de pouso de aeronaves podem vir a apresentar defeitos induzidos termicamente devido a condições severas que podem ocorrer durante pousos e inspeções rotineiras em que são submetidos periodicamente. A microestrutura resultante das regiões que compreendem os defeitos pode comprometer o bom desempenho em fadiga do componente devido a alteração das propriedades mecânicas envolvidas. Sua detecção no cenário atual atualmente faz-se de maneira dispendiosa em tempo e custo, sendo executada invasivamente através da remoção da camada de cromo presente, seguida da imersão do componente em tanques contendo o reagente químico de nital, que irá revelar possíveis queimas no substrato. Posteriormente, se o componente apresentar danos, estes são reparados e então a eletrodeposição de cromo novamente é realizada e o componente é posto em uso. O objetivo deste trabalho é apresentar uma metodologia de inspeção micromagnética não destrutiva para a detecção de danos térmicos, baseada em norma interna da BOEING. Estas técnicas são baseadas na aplicação de um campo magnético no material a ser inspecionado, o qual irá interagir e revelar as características microestruturais presentes, sem a remoção do cromo, tornando possível uma inspeção confiável, rápida e de baixo valor. Aqui será apresentado como foi desenvolvido um padrão para servir de gabarito a futuras inspeções, além de melhorias sugeridas à norma da BOEING para um melhor aproveitamento da técnica nesta aplicação específica. A metodologia empregada utilizou de uma chapa de aço 300M que sofreu processos de tratamento térmico e shot-peening, posteriormente submetida a danos térmicos impostos através de laser de CO2 de baixa potência, e parcialmente revestida com cromo duro. As regiões danificadas foram avaliadas micromagneticamente através da imposição de um campo magnético alternado sob diferentes frequências de excitação, através de um equipamento comercial disponível no laboratório, e a influência do revestimento de cromo foi estudada. Os resultados apresentaram elevada sensibilidade da técnica na avaliação de danos térmicos na presença e ausência de cromo na superfície, porém para o sensor utilizado neste estudo, há uma limitação quanto a espessura da camada de cromo existente. / The landing gear of aircrafts may present thermally induced defects due to the severe conditions that can occur during landings and also during the routine inspections to which they are submitted periodically. The microstructure resulting from the regions comprising the defect may impair the proper fatigue performance of the component due to the change of the mechanical properties involved. Its detection, in the current scenario, is expensive time and costwise, being executed invasively by removing the existing layer of chromium followed by immersion of the component in tanks containing the chemical reagent Nital, which will show possible burnings on the substrate. Subsequently, if the component presents damages, they are repaired and then the re-chrome plating on the component is carried out and it is put to use. The aim of this dissertation is to present a non-destructive, micromagnetic inspection methodology, for the detection of thermal damage, based on BOEING internal standards. These techniques are based on applying a magnetic field in the material to be inspected, which will interact and disclose the microstructural characteristics of the part without removal of the microstructural characteristics of the part without removal of the chrome, making possible a reliable, fast and low cost inspection. Here it will be presented how a standard was developed to serve as a norm for future inspections, and suggested improvements to BOEING's rule for a better use of the technique in this specific application. The methodology employed used a steel plate to 300M which had undergone heat treatment processes and shot-peening and thereafter subjected to thermal damage imposed through low power CO2 laser , and partially coated with hard chrome. The damaged regions were evaluated micromagnetically through the imposition of an alternating magnetic field under different excitation frequencies, through a commercially available equipment in the laboratory, and the influence of chromium coating was studied. The results showed high sensitivity of the technique to assess thermal damage in the presence and absence of chromium on the surface, but for the sensor used in this study, there is a limit on the thickness of the existing chromium.

Page generated in 0.0598 seconds