• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microfluidique supercritique pour la compréhension des systèmes CO2 / eau sous pression et en température : Application à la gestion durable de la filière CO2

Liu, Na 22 November 2013 (has links) (PDF)
Le stockage géologique du CO2 est une stratégie prometteuse pour limiter la concentration de CO2anthropique dans l'atmosphère. Les aquifères salins (AS) ont été identifiés comme des optionsviables car ils possèdent de grandes capacités potentielles de stockage. Toutefois, les processusrelatifs au piégeage du CO2 souffrent d'un manque de connaissances fondamentales car il existe peude méthodes d'expérimentation rapides et reproductibles, travaillant dans les conditions du stockagegéologique. Ainsi, nous avons développé des microréacteurs haute pression, véritables laboratoiresgéologiques sur puce (GLoCs), recréant les conditions de porosité et de perméabilité des AS pour :(i) Mesurer la solubilité du CO2 dans l'eau et les saumures via un couplage microsystèmes /spectroscopie Raman ;(ii) Etudier les mécanismes d'invasion du CO2 dans les formations géologiques, incluantnotamment les écoulements diphasiques en milieux poreux, les séparations de phases etla précipitation des carbonates.
2

Microfluidique supercritique pour la compréhension des systèmes CO2 / eau sous pression et en température : Application à la gestion durable de la filière CO2 / Supercritical Microfluidics for understanding CO2 / water systems under pressure and temperature : Application to the sustainable management of the anthropogenic CO2

Liu, Na 22 November 2013 (has links)
Le stockage géologique du CO2 est une stratégie prometteuse pour limiter la concentration de CO2anthropique dans l’atmosphère. Les aquifères salins (AS) ont été identifiés comme des optionsviables car ils possèdent de grandes capacités potentielles de stockage. Toutefois, les processusrelatifs au piégeage du CO2 souffrent d’un manque de connaissances fondamentales car il existe peude méthodes d’expérimentation rapides et reproductibles, travaillant dans les conditions du stockagegéologique. Ainsi, nous avons développé des microréacteurs haute pression, véritables laboratoiresgéologiques sur puce (GLoCs), recréant les conditions de porosité et de perméabilité des AS pour :(i) Mesurer la solubilité du CO2 dans l’eau et les saumures via un couplage microsystèmes /spectroscopie Raman ;(ii) Etudier les mécanismes d’invasion du CO2 dans les formations géologiques, incluantnotamment les écoulements diphasiques en milieux poreux, les séparations de phases etla précipitation des carbonates. / CO2 geological storage is a promising strategy to control the anthropogenic CO2 concentration in theatmosphere. Deep saline aquifers (DSA) were identified as viable options since they exhibit largestorage capacity. However, processes inherent to CO2 trapping suffer from a lack of fundamentalknowledge, since there are too few fast and reproducible experimental approaches able to work atgeological storage conditions. Therefore, to address these limitations, we have developed highpressure microreactors, so-called “geological labs on a chip” - GloCs – allowing mimicking porosityand permeability conditions of DSA for:(i) Measuring solubility of CO2 in water and brine through the combination of microsystemsand confocal Raman spectroscopy,(ii) Studying invasion mechanisms of CO2 in geological formations, including in particularbiphasic flows in porous media, phase separation and carbonates precipitation.
3

Loi d'Archie dans les micromodèles

Kozlov, Boris 27 June 2012 (has links) (PDF)
La conductivité électrique des milieux poreux est un vaste sujet de recherche possédant des nombreuses applications industrielles. Notamment dans l'industrie pétrolière, les propriétés électriques des roches sont utilisées pour déterminer la quantité d'hydrocarbures dans les puits. En 1942 Gustav Archie a proposé une loi empirique pour la conductivité des roches. Depuis cette loi est largement utilisée dans l'industrie pétrolière et les études géophysiques. Actuellement, le champ d'application de cette loi est réduit à des roches spécifiques. Dans la partie théorique nous nous intéressons aux fondements de la loi d'Archie. L'une des approches existantes de justification de la loi d'Archie consiste en adaptation de la théorie de percolation. Ainsi nous nous intéressons à l'étude de domaine de validité de la loi sur la conductivité électrique établie par la théorie de percolation pour des réseaux infinis des résistances aléatoires. La partie expérimentale porte sur les expériences dans les micromodèles - des réseaux transparents, réguliers, bidimensionnels ayant des dimensions entre 50 et 500 microns. Depuis plusieurs dizaines d'années ces systèmes sont utilisés afin de comprendre la propagation des fluides dans les milieux poreux. Dans notre étude nous mettons en place la mesure de conductivité dans ces micromodèles et la technique d'altération de mouillage. Nous étudions ainsi expérimentalement la conductivité des milieux poreux bidimensionnels à la mouillabilité homogène et hétérogène.
4

Évolution des propriétés pétrophysiques d'écoulement pendant une injection de CO2 et impact induit au niveau de l'injectivité / Changes in petrophysical properties during a CO2 injection and resulting impact on the injectivity

Algive, Lionnel 06 November 2009 (has links)
En vue de contrôler les émissions de gaz à effet de serre, il est envisagé d’injecter du CO2 dans des réservoirs géologiques. Or le CO2 n'est pas un gaz inerte. En modifiant la composition chimique de l'eau in situ, il est à l'origine d'interactions roche/fluide. Ces réactions géochimiques impactent les propriétés d'écoulement. Aussi, pour s'assurer de la viabilité et de la pérennité du stockage, les opérateurs ont besoin de simulations tenant compte de ces écoulements réactifs. Cependant les paramètres de l'équation macroscopique de transport utilisée sont affectés par les réactions surfaciques. Or, ces spécificités dues au transfert de masse ne sont pas prises en compte actuellement. De même, la loi perméabilité-porosité (K-F) n’est estimée que semi-empiriquement. Le but de cette thèse a été de développer une méthode pour obtenir les coefficients macroscopiques précédents et les relations K-F, en résolvant les équations gouvernant les phénomènes à l'échelle du pore. Pour ce faire, nous avons utilisé l'approche réseau de pores. L'avantage du modèle réseau est qu'il prend en compte explicitement la structure tout en conceptualisant cette dernière à un ensemble de pores et de canaux à la morphologie simplifiée (sphères, cylindres). L'étude est basée sur deux changements d'échelles successifs : du local au pore, puis du pore à la carotte. Le problème de transport réactif est résolu pour des éléments basiques, analytiquement ou numériquement. Puis, en faisant appel aux solutions précédemment trouvées, le transport réactif est traité sur l'ensemble du réseau. Notre model fut validé par des observations sur micromodèles, puis à l'aide d'une expérience d'altération acide / The geological storage of CO2 is considered as an attractive option to reduce the greenhouse gas emissions in the atmosphere. CO2 is not an inert gas, however. Its dissolution in brine forms a weak acid that has the potential to react with the host rock formation. The induced pores structure modification impacts the flow properties. Thus, to ensure the viability and sustainability of CO2 storage, operators need simulations that take into account the specificities of reactive transport. However, the macroscopic coefficients of the reactive transport equation are modified from the values of an inert tracer by surface reactions. These specificities due to mass transfer are currently not considered. Similarly, the permeability-porosity (K-F) relationship is only estimated semi-empirically. The aim of this thesis was to develop a method to obtain the macroscopic coefficients and the K-F laws, by solving the equations governing the pore-scale phenomena. To do this, we used the Pore Network Modelling approach (PNM). The advantage of the PNM is that it explicitly takes into account the pore structure, while conceptualizing the latter to a set of pores and throats whose morphology is simplified into spheres or cylinders for instance. The study is based into two successive upscalings: from local-scale to pore-scale, then from pore-scale to core-scale. The reactive transport problem is solved for basic elements, analytically or numerically. Then, using the solutions previously found at the pore scale, the reactive transport phenomena are treated throughout the network. Our model was validated by observations on micromodels and by a comparison with an acid-induced alteration experiment

Page generated in 0.0961 seconds