11 |
LASER STABILIZATION EXPERIMENTS AND OPTICAL FREQUENCY COMB APPLICATIONSMichael W Kickbush (13105209) 18 July 2022 (has links)
<p>In this Thesis I report on my work done in replicating the Pound-Drever-Hall (PDH) laser stabilization technique as well as applications of PDH to microring resonators and generated Optical Frequency Combs (OFC). These works have been broken down into three sections. First, I replicated the PDH method with a continuous wave (CW) laser along with a Fabry-Pérot Cavity (FPC). Second, I applied the same technique to a 25 GHz Free Spectral Range (FSR) microring resonator fabricated in Silicon Nitride. Third, I applied the PDH technique to a high Quality Factor (Q) high Free Spectral Range (FSR) microring resonator in preparation to lock the repetition rate of two soliton combs beat together. The last experiment was for an application towards a compact optical clock system; such systems will have a wide impact on the infrastructure of our navigation and communication structures in use today.</p>
|
12 |
A time-delay reservoir computing neural network based on a single microring resonator with external optical feedbackDonati, Giovanni 28 July 2023 (has links)
Artificial intelligence is a new paradigm of information processing where machines emulate human intelligence and perform tasks that cannot be done with standard computers. Neuromorphic computing is in particular inspired by how the brain computes. Large network of interconnected neurons whose synapses are varied during a learning phase, and where the information flows in parallel throughout different connections. Photonics platforms represent an interesting possibility where to implement neuromorphic processing schemes, exploiting light and its advantages in terms of speed, low energy consumption and inherent parallelism via wavelength division multiplexing. In particular, a candidate playing a diversity of key roles in integrated networks is the microring resonator. In silicon photonics, the microring resonator can implement the strength of a synapse, the spiking emission of a biological neuron, and it can exhibit a fading memory based on its multiple linear and nonlinear dynamical timescales. This manuscript presents an overview of the main applications of silicon microring resonators in neuromorphic silicon photonics, and then focuses on its implementation in a processing scheme, named time delay reservoir computing (RC). Time delay RC is a hardwarefriendly approach by which implement a large neural network, where this is folded in the nonlinear dynamical response of only one physical node, such as a dynamical system with delay feedback. The manuscript illustrates, both numerically and experimentally, how to make time delay RC exploiting the linear and nonlinear dynamical response of a silicon microring resonator. The microring is coupled to an external optical feedback and the results on a diversity of time series prediction tasks and delayed-boolean tasks are presented. Numerically, it is shown that the microring nonlinearities can be exploited to improve the performance on prediction tasks, such as the Santa Fe and Mackey Glass ones. Experimentally, it is shown how the network can be set to solve delayed boolean tasks with error-free operation, at 12 MHz operational speed, together with possible upgrades and alternative implementations that can boost its performances. / La inteligencia artificial es un nuevo paradigma de procesamiento de información en el que las máquinas emulan la inteligencia humana y realizan tareas que no pueden ser realizadas con ordenadores estándar. La computación neuromórfica está particularmente inspirada en cómo el cerebro realiza cálculos. Consiste en una gran red de neuronas interconectadas cuyas sinapsis varían durante una fase de aprendizaje, y donde la información fluye en paralelo a través de diferentes conexiones. Las plataformas fotónicas representan una interesante posibilidad para implementar esquemas de procesamiento neuromórfico, aprovechando las ventajas de la luz en términos de velocidad, bajo consumo de energía e inherente paralelismo a través de la multiplexación por división de longitud de onda. En particular, un candidato que desempeña una diversidad de roles clave en redes integradas es el micro-anillo resonador. En la fotónica de silicio, el micro-anillo resonador puede implementar la intensidad sináptica, la emisión de pulsos de una neurona biológica, y puede exhibir una memoria que decae con el tiempo basada en sus múltiples escalas temporales dinámicas lineales y no lineales. Esta tesis presenta una visión general de las principales aplicaciones de los resonadores de anillo microscópicos de silicio en la fotónica neuromórfica de silicio y se centra en su implementación en un esquema de procesamiento llamado time delay reservoir computing (RC). Time delay RC es un enfoque favorable para el hardware mediante el cual se implementa una gran red neural, a través de la respuesta dinámica no lineal de solo un nodo físico, como un sistema dinámico sujeto a retroalimentación. Este trabajo ilustra, tanto numérica como experimentalmente, cómo realizar la computación en time delay RC utilizando la respuesta dinámica lineal y no lineal de un resonador de anillo microscópico de silicio. El microanillo resonador está acoplado a una retroalimentación óptica externa y se presentan los resultados de una diversidad de tareas de predicción de series temporales y tareas booleanas retrasadas. Numéricamente, se muestra que las no-linealidades del micro-anillo resonador se pueden aprovechar para mejorar el rendimiento en tareas de predicción, como las de Santa Fe y Mackey Glass. Experimentalmente, se muestra cómo la red se puede configurar para resolver tareas booleanas retrasadas sin errores, a una velocidad operativa de 12 MHz, junto con posibles mejoras e implementaciones alternativas que pueden aumentar su rendimiento.
|
13 |
Modélisation et optimisation de la couche optique de réseaux sur puce / Modeling and optimization of optical layer networks on chipChannoufi, Malèk 28 February 2014 (has links)
Dans le cadre du développement de SoC (Systems-on-Chip) complexes, l'interconnexion des différent IP matériels (Intellectual Property), très distants à l'échelle d'un circuit intégré (typiquement quelques centimètres) et devant s'échanger des volumes de données parfois important, incite, pour des raisons de débit, de latence, de pertes et de consommation, l'adoption d'une méthodologie de conception adéquate pour réaliser des systèmes de plus en plus flexibles. Afin de répondre à ces nouvelles difficultés de conception, de nombreuses recherches ont fait émerger le concept de réseau optique sur puce (Optical Network-on-Chip ou ONoC).Dans cette thèse une étude détaillée d'une nouvelle architecture d'un réseau optique sur puce a été faite. La conception de ce réseau repose sur 2 paradigmes d'interconnexion: concevoir l'architecture dans le cadre d'une puce en 3D et l'empilement en plusieurs niveaux des guides d'onde optique dans la couche réseau optique sur puce. L'élément clef de cette architecture est un microrésonateur à plusieurs niveaux de guide d'onde (Si/SiO2). De ce fait, une étude détaillée sur le comportement optique de ce composant avec des modèles mathématiques et des simulations FEM a été faite dans le but d'optimiser la perte de puissance optique, le nombre des niveaux des guides d'onde empilés et la consommation d'énergie.Après avoir détaillé le fonctionnement de réseau multi-niveaux sur puce proposé "OMNoC", son protocole de routage a été étudié avec le simulateur NS-2, puis optimisé, rédiger et étudier avec C++ et l'outil Parsec Benchmark. Enfin et en tenant compte des études faites sur le comportement optique des guides d'onde et le protocole de routage, une étude desperformances comparatives avec des autres architectures a été élaborée montrant ainsi les avantages et les limites d'une telle méthodologie d'interconnexion. / The developing of complex System on Chip "SoC" interconnecting different cores IP distant in micrometer chip scale, needs important data bandwidth , low latency and the best compromise between optical power loss and crosstalk. According to that, finding new methodology design is necessary to cope to those challenges.Using centric communication becomes the mainly solution to improve communication performance in system on chip and recently many researches are focusing on Optical Network on Chip 'ONoC'.In this thesis, a novel architecture of an optical network on chip is proposed, this architecture is reposed on 2 design paradigms: ONoC based 3D chip and multilevel waveguides based ONoC. The key element of this architecture is the multilevel microresonator (Si/SiO2) which is the optical switch of the network. Optical wave behavior in different geometries have been studied using FEM method in order to find compromise between optical power loss and crosstalk. Operation mode of this ONoC called "OMNoC" is explained, routing protocol is studied using NS-2 simulator too, then optimized and developed using C++ and Benchmark tool. After that and by using FEM results and adopted routing strategy, OMNoC performances are studied and compared with other network architectures proposed in ONoC literature. In conclusion and according to performances analysis and comparisons, OMNoC could be considered as a promising network architecture which offer scalability and give a compromise between optical power loss and crosstalk.
|
14 |
Fonte de luz coerente na banda C de telecomunicações e uso em chips de Si3N4 / Coherent light source on C-band telecom and use on Si3N4 chipsAvila, Pablo Jaime Palacios 19 June 2018 (has links)
Os estados emaranhados da luz são de grande importância para protocolos de comunicação quântica. Uma das principais fontes que vem sendo estudada no Laboratório de Manipulação Coerente de Átomos e Luz - LMCAL é o oscilador paramétrico ótico (OPO) no qual, através de processos paramétricos não lineares de segunda e terceira ordem (x(2) e x(3)), são produzidos feixes intensos que apresentam correlações quânticas. Recentemente, o LMCAL vem explorando o processo de mistura de quatro ondas (fenômeno derivado da susceptibilidade de terceira ordem x(3)) como fonte geradora de feixes emaranhados. Inicialmente, foi realizado a partir de células de rubídio e agora, em colaboração com o grupo de pesquisa da Profa. Michal Lipson da Universidade de Columbia, em chips de nitreto de silício (Si3N4); permitindo assim possibilidades de modulação ultra-rápida, confinamento de luz em volumes muito reduzidos, além da ótica não-linear do OPO. O presente projeto visa estudar as propriedades quânticas da luz nos OPOs em chips de silício, permitindo que sistemas muito eficientes em informação clássica possam ser usados também para implementação de protocolos de informação quântica. / Entangled States of light beams are of great importance for quantum communication protocols. One of the most relevant source of such states which is being studied at the Laboratory of Coherent Manipulation of Atoms and Light - LMCAL (in portuguese) is the Optical Parametric Oscillator (OPO) which through second and third order nonlinear parametric processes (x(2) and x(3)) produces intense fields that have quantum correlations. Recently, LMCAL is exploring four-wave mixing (FWM), a third-order nonlinear parametric process, as a source of entangled beams. Initially, on rubidium cells and now, in collaboration with Prof. Michal Lipson from the Columbia University, on silicon nitride (Si3N4) chips; opening a new avenue for ultrafast modulation, light confinement in reduced light volumes, as well as the nonlinear optics of the OPO. This project is intended to study quantum properties of light of on-chip OPOs in order to achieve the integration of these highly efficient devices for implementations of quantum information protocols.
|
15 |
Fonte de luz coerente na banda C de telecomunicações e uso em chips de Si3N4 / Coherent light source on C-band telecom and use on Si3N4 chipsPablo Jaime Palacios Avila 19 June 2018 (has links)
Os estados emaranhados da luz são de grande importância para protocolos de comunicação quântica. Uma das principais fontes que vem sendo estudada no Laboratório de Manipulação Coerente de Átomos e Luz - LMCAL é o oscilador paramétrico ótico (OPO) no qual, através de processos paramétricos não lineares de segunda e terceira ordem (x(2) e x(3)), são produzidos feixes intensos que apresentam correlações quânticas. Recentemente, o LMCAL vem explorando o processo de mistura de quatro ondas (fenômeno derivado da susceptibilidade de terceira ordem x(3)) como fonte geradora de feixes emaranhados. Inicialmente, foi realizado a partir de células de rubídio e agora, em colaboração com o grupo de pesquisa da Profa. Michal Lipson da Universidade de Columbia, em chips de nitreto de silício (Si3N4); permitindo assim possibilidades de modulação ultra-rápida, confinamento de luz em volumes muito reduzidos, além da ótica não-linear do OPO. O presente projeto visa estudar as propriedades quânticas da luz nos OPOs em chips de silício, permitindo que sistemas muito eficientes em informação clássica possam ser usados também para implementação de protocolos de informação quântica. / Entangled States of light beams are of great importance for quantum communication protocols. One of the most relevant source of such states which is being studied at the Laboratory of Coherent Manipulation of Atoms and Light - LMCAL (in portuguese) is the Optical Parametric Oscillator (OPO) which through second and third order nonlinear parametric processes (x(2) and x(3)) produces intense fields that have quantum correlations. Recently, LMCAL is exploring four-wave mixing (FWM), a third-order nonlinear parametric process, as a source of entangled beams. Initially, on rubidium cells and now, in collaboration with Prof. Michal Lipson from the Columbia University, on silicon nitride (Si3N4) chips; opening a new avenue for ultrafast modulation, light confinement in reduced light volumes, as well as the nonlinear optics of the OPO. This project is intended to study quantum properties of light of on-chip OPOs in order to achieve the integration of these highly efficient devices for implementations of quantum information protocols.
|
16 |
Polymer Components for Photonic Integrated CircuitsMarinins, Aleksandrs January 2017 (has links)
Optical polymers are a subject of research and industry implementation for many decades. Optical polymers are inexpensive, easy to process and flexible enough to meet a broad range of application-specific requirements. These advantages allow a development of cost-efficient polymer photonic integrated circuits for on-chip optical communications. However, low refractive index contrast between core and cladding limits light confinement in a core and, consequently, integrated polymer device miniaturization. Also, polymers lack active functionality like light emission, amplification, modulation, etc. In this work, we improved a performance of integrated polymer waveguides and demonstrated active waveguide devices. Also, we present novel Si QD/polymer optical materials. In the integrated device part, we demonstrate optical waveguides with enhanced performance. Decreased radiation losses in air-suspended curved waveguides allow low-loss bending with radii of only 15 µm, which is far better than >100 µm for typical polymer waveguides. Another study shows a positive effect of thermal treatment on acrylate waveguides. By heating higher than polymer glass transition temperature, surface roughness is reflown, minimizing scattering losses. This treatment method enhances microring resonator Q factor more than 2 times. We also fabricated and evaluated all-optical intensity modulator based on PMMA waveguides doped with Si QDs. We developed novel hybrid optical materials. Si QDs are encapsulated into PMMA and OSTE polymers. Obtained materials show stable photoluminescence with high quantum yield. We achieved the highest up to date ~65% QY for solid-state Si QD composites. Demonstrated materials are a step towards Si light sources and active devices. Integrated devices and materials presented in this work enhance the performance and expand functionality of polymer PICs. The components described here can also serve as building blocks for on-chip sensing applications, microfluidics, etc. / <p>QC 20171207</p>
|
17 |
Microring resonators on a suspended membrane circuit for atom-light interactionsTzu Han Chang (13168677) 28 July 2022 (has links)
<p>Developing a hybrid platform that combines nanophotonic circuits and atomic physic may provide new chip-scale devices for quantum application or versatile tools for exploring photon-mediated long-range quantum systems. However, this challenging project demands the excellent integration of cold atom trapping and manipulation technology with cutting-edge nanophotonics circuit design and fabrication. In this thesis project, we aim to develop a novel suspended membrane platform that serves as a quantum interface between laser-cooled, trapped atoms in an ultrahigh vacuum and the photons guided in the nanophotonic circuits based on high-quality silicon nitride microring resonators fabricated on a transparent membrane substrate. </p>
<p><br></p>
<p>The proposed platform meets the stringent performance requirements imposed by nanofabrication and optical physics in an ultra-high vacuum. These include a high yield rate for mm-scale suspended dielectric photonic devices, minimization of the surface roughness to achieve ultrahigh-optical quality, complete control of optical loss/in-coupling rate to achieve critical photon coupling to a microring resonator, and high-efficiency waveguide optical input/output coupler in an ultrahigh vacuum environment. This platform is compatible with laser-cooled and trapped cold atoms. The experimental demonstration of trapping and imaging single atoms on a photonic resonator circuit using optical tweezers has been demonstrated. Our circuit design can potentially reach a record-high cooperativity parameter C$>$500 for single atom-photon coupling, which is of high importance in realizing a coherent quantum nonlinear optical platform and holds great promise as an on-chip atom-cavity QED platform.</p>
|
18 |
Polymer-Optical Waveguides for BiosensingLandgraf, René 15 July 2024 (has links)
The reliable quantitative detection of biomarkers and pathogens at picomolar or even lower concentration would be a great help in point-of-care testing but is not readily available today. Integrated optical waveguides, which interact with the biochemical species to be monitored, are promising candidates for the detection of such ultra-low concentrations.
The focus of this thesis is on optical waveguides in the shape of micro-ring or micro-racetrack resonators that are manufactured by UV-assisted nanoimprint lithography. This replica manufacturing technology is analyzed using analytical and numerical models in order to identify and quantify the main influence factors that determine the limit of detection of such biosensors. Potential biosensor applications are evaluated and general design rules are derived.
The resulting measurements confirm the high potential of the chosen approach with respect to excellent sensitivity, low limit of detection and high dynamic range. With suitable optimization of the sensor layout, a further improvement of the performance by one to two orders of magnitude is possible.:Editor’s Preface
Variables and constants
Abbreviations
1 Introductions
1.1 Medical laboratory diagnostics
1.2 Biosensor technologies for point-of-care testing
1.3 Integrated optical waveguides and microresonators
1.4 Outline of the thesis
2 Basics
2.1 Guided waves in planar optical waveguides
2.1.1 Planar optical waveguides
2.1.2 Propagation of optical waves
2.1.3 Coupled modes in waveguides
2.2 Planar optical microresonators
2.2.1 Basic layouts and parameters
2.2.2 Manufacturing
2.2.3 Biosensing
2.3 Functionalization and biofunctionalization
3 UV-NIL Polymer Microresonator Biosensor Design
3.1 UV-assisted nanoimprint lithography
3.2 Waveguide cross-sections and refractive indices
3.2.1 Analytical waveguide modeling
3.2.2 Mode diagrams
3.2.3 Conclusions
3.3 Waveguide coupling
3.4 Waveguide losses
3.4.1 Absorption loss
3.4.2 Roughness loss
3.4..3 Substrate loss
3.4.4 Radiation loss due to bending
3.5 Sensitivity of the effective index to analyte binding
3.6 Overall sensitivity and detection limit
3.7 Generic design guidelines
3.8 Parameter selection for UV-NIL polymer waveguides
3.9 Comparison of polymer and silicon-based waveguides
3.9.1 Waveguide geometry
3.9.2 Radiation loss due to bending
3.9.3 Material damping
3.9.4 Surface roughness
3.9.5 Coupling channel widths and coupling coefficients
3.9.6 Conclusions
4 Characterization and Proof of Concept
4.1 Manufacturing-based design limits and chosen designs
4.2 Measurement setup and characterization process
4.3 Optical properties of UV-NIL polymer microresonators
4.4 Proof of concept
4.4.1 Sensitivity to bulk solutions
4.4.2 Reproducibility and drift
4.4.3 Comparison with theory
4.4.4 Comparison with literature
4.4.5 Sensitivity improvement
4.5 Asymmetry of the resonance curves
4.5.1 Cavity lifetime
4.5.2 Thermal influence
4.5.3 Summary
4.6 Conclusions
5 Integration into a biosensor platform
5.1 Chemical functionalization by oxygen plasma
5.2 Preparation of a biosensor characterization assay
5.2.1 Binding of fluorescent nanoparticles onto polymer surfaces
5.3 Microfluidic system
5.3.1 Programmable microfluidic system
5.3.2 System evaluation and improvement
5.4 Conclusions
6 Conclusions
Declaration of authorship
Acknowledgements
Publications and awards / Der zuverlässige quantitative Nachweis von Biomarkern und Krankheitserregern in pikomolarer oder noch niedrigerer Konzentration wäre eine große Hilfe bei Tests am Point-of-Care, ist aber heute nicht ohne weiteres verfügbar. Integrierte optische Wellenleiter, die mit den zu überwachenden biochemischen Spezies interagieren, sind vielversprechende Kandidaten für den Nachweis solcher ultraniedriger Konzentrationen.
Der Schwerpunkt dieser Arbeit liegt auf optischen Wellenleitern in Form von Mikro-Ring- oder Mikro-Spur-Resonatoren, die durch UV-unterstützte Nanoimprint-Lithographie hergestellt werden. Diese Replika-Herstellungstechnologie wird mit Hilfe analytischer und numerischer Modelle analysiert, um die wichtigsten Einflussfaktoren zu identifizieren und zu quantifizieren, die die Nachweisgrenze solcher Biosensoren bestimmen. Potenzielle Biosensoranwendungen werden bewertet und allgemeine Designregeln abgeleitet.
Die daraus resultierenden Messungen bestätigen das hohe Potenzial des gewählten Ansatzes in Bezug auf ausgezeichnete Empfindlichkeit, niedrige Nachweisgrenze und hohen Dynamikbereich. Bei geeigneter Optimierung des Sensorlayouts ist eine weitere Verbesserung der Leistung um ein bis zwei Größenordnungen möglich.:Editor’s Preface
Variables and constants
Abbreviations
1 Introductions
1.1 Medical laboratory diagnostics
1.2 Biosensor technologies for point-of-care testing
1.3 Integrated optical waveguides and microresonators
1.4 Outline of the thesis
2 Basics
2.1 Guided waves in planar optical waveguides
2.1.1 Planar optical waveguides
2.1.2 Propagation of optical waves
2.1.3 Coupled modes in waveguides
2.2 Planar optical microresonators
2.2.1 Basic layouts and parameters
2.2.2 Manufacturing
2.2.3 Biosensing
2.3 Functionalization and biofunctionalization
3 UV-NIL Polymer Microresonator Biosensor Design
3.1 UV-assisted nanoimprint lithography
3.2 Waveguide cross-sections and refractive indices
3.2.1 Analytical waveguide modeling
3.2.2 Mode diagrams
3.2.3 Conclusions
3.3 Waveguide coupling
3.4 Waveguide losses
3.4.1 Absorption loss
3.4.2 Roughness loss
3.4..3 Substrate loss
3.4.4 Radiation loss due to bending
3.5 Sensitivity of the effective index to analyte binding
3.6 Overall sensitivity and detection limit
3.7 Generic design guidelines
3.8 Parameter selection for UV-NIL polymer waveguides
3.9 Comparison of polymer and silicon-based waveguides
3.9.1 Waveguide geometry
3.9.2 Radiation loss due to bending
3.9.3 Material damping
3.9.4 Surface roughness
3.9.5 Coupling channel widths and coupling coefficients
3.9.6 Conclusions
4 Characterization and Proof of Concept
4.1 Manufacturing-based design limits and chosen designs
4.2 Measurement setup and characterization process
4.3 Optical properties of UV-NIL polymer microresonators
4.4 Proof of concept
4.4.1 Sensitivity to bulk solutions
4.4.2 Reproducibility and drift
4.4.3 Comparison with theory
4.4.4 Comparison with literature
4.4.5 Sensitivity improvement
4.5 Asymmetry of the resonance curves
4.5.1 Cavity lifetime
4.5.2 Thermal influence
4.5.3 Summary
4.6 Conclusions
5 Integration into a biosensor platform
5.1 Chemical functionalization by oxygen plasma
5.2 Preparation of a biosensor characterization assay
5.2.1 Binding of fluorescent nanoparticles onto polymer surfaces
5.3 Microfluidic system
5.3.1 Programmable microfluidic system
5.3.2 System evaluation and improvement
5.4 Conclusions
6 Conclusions
Declaration of authorship
Acknowledgements
Publications and awards
|
19 |
Design And Analysis Of Integrated Optic Resonators For Biosensing ApplicationsMalathi, S 12 1900 (has links) (PDF)
In this thesis, we have designed and optimized strip waveguide based micro-ring and micro-ring and micro-racetrack resonators for biosensing applications. Silicon-On-Insulator (SOI) platform which offers several advantages over other materials such as Lithium Niobate, Silica on Silicon and Silicon nitride is considered here. High index contrast enables us to miniaturize the biosensor devices and monolithic integration of source and detectors on the same chip. We have considered the dispersive nature of the waveguide and proceeded towards optimization.
Finite difference schemes and Finite Difference Time Domain (FDTD) methods are the primary tools used to model the biosensor. Various structures such as channel waveguides and beam structures are analyzed on the basis of their suitability for sensing applications. Strip and Rib waveguides are the two geometries considered in our studies.
In an optical guiding structure, effective index of the propagating optical mode can be induced by two different phenomena:
i. Homogeneous Sensing
In this category, effective index of a propagating optical mode changes with uniformly distributed analytes extending over a distance well exceeding the evanescent field penetration depth. The sample serves as the waveguide cover.
ii. Surface Sensing
In the case of surface sensing, analytes bound to the surface of the waveguide. The effective index of an optical mode changes with the refractive index as well as the thickness of an adlayer. A thin layer of adsorbed or bound molecules transported from liquid or gaseous medium serving as waveguide cover is referred as an adlayer. Both homogeneous and surface sensing schemes are addresses in this work.
By bulk sensing method, the characteristics of bioclad covering the device are studied. Optimization of the resonator structure involves the analysis of following parameters:
• Gap between the ring and bus waveguides
• Free spectral range
• Extinction ratio
• Quality factor
We have achieved a maximum bulk sensitivity of 115 nm / RIU with ring waveguide width of 450 nm and bus width of 350 nm which is better than an earlier reported value of
70 nm/ RIU.
We have proposed a novel detection scheme consisting of a micro-racetrack resonator formed over a cantilever structure. The devoice works on the principle of opto-mechanical coupling to detect conformational changes due to biomolecular adherence. BSA (Bovine Serum Albumin) and IgG ( Immuno Globulin G) are the two proteins considered in the work. Mechanical analysis of the beam for tensile and compressive stresses and corresponding spectral responses of the racetrack resonators are analyzed both by semi-analytical and method and numerical analyzes. We compared various aspects of rib and strip waveguide racetrack resonators. We have proved by numerical simulation, that the device is capable of distinguishing tensile and compressive stress. Two strip waveguides of dimensions : 450 nm X 220 nm and 400 nm X 180 nm, former supporting both Quasi-TE and Quasi-TM modes where as the second configuration allows only Quasi-TE mode alone. Sensitivity of the cantilever sensor is : 0.3196 x 10-3 nm/ µɛ at 1550 nm wavelength.
|
20 |
Etude de microrésonateurs optiques polymères en anneaux en vue de leur intégration sur une plateforme de microfluidique digitale : application à la détection d'ions métalliques de Cr (VI) dans l'eau / Study of a polymer microring resonator for further integration in a digital microfluidic system : application to hexavalent chromium sensing in waterMeziane, Farida 26 February 2016 (has links)
La détection sensible et sélective des métaux lourds, en particulier les métaux detransition, est d’une grande importance pour la santé publique ainsi que pour la surveillancede l’environnement. Les méthodes actuelles de référence, de par leur non portabilité, limitentla possibilité de disposer de mesures à haute résolution spatiale et temporelle. Lesmicrocapteurs optiques offrent un moyen attrayant et pratique pour surmonter ces limitationsde coût global et de temps d’analyse, en permettant la mesure en temps réel sur site.Pour démontrer ce potentiel, ces travaux de thèse sont orientés sur la détermination duchrome hexavalent Cr(VI) en solution à l’aide d’une réaction colorimétrique avec le 1,5-diphénylcarbazide (DPC), permettant de créer un complexe présentant un maximumd’absorption dans le domaine du visible. Ces travaux s’inscrivent dans la volonté dedévelopper un véritable laboratoire sur puce, intégrant la fonction fluidique parélectromouillage sur diélectrique pour créer la réaction colorimétrique, ainsi que la fonctionde mesure par intégration d’un capteur optique dédié à la mesure d’absorption dans desmicrovolumes (< μL). Pour la mesure d'absorption sur de si faibles volumes, l'utilisation demicrorésonateurs vise à augmenter de façon importante le chemin optique effectif et ainsi lasensibilité du capteur.Nous décrivons nos travaux sur la conception, la fabrication de la plateformemicrofluidique digitale ainsi que du résonateur optique en anneaux à des dimensionssubmicroniques par photolithographie par projection. Les matériaux polymères sontprivilégiés pour une intégration totale bas coût à terme, ainsi qu’un substrat verre, dont lespropriétés sont particulièrement adaptées aux applications optiques dans le domaine duvisible. / The selective and sensitive detection of heavy metals, such as transition metals, is ofparamount importance for health and safety an environmental monitoring. Current referencemethods, due to their lack of portability, are limiting factors to obtain high-resolution spatialand temporal data. Optical sensors offer an attractive and convenient way to overcome theselimitations of cost and time per analysis by offering real time, on-site measurementcapabilities.In order to demonstrate this potential, this thesis is focused on the detection and quantificationof hexavalent chromium Cr(VI) in water samples by a colorimetric reaction based on areaction with the 1,5-diphenylcarbazide (DPC), that produces a complex possessing anabsorption maximum in the visible range. This works endorse the goal of creating a true labon-chip, integrating both the fluidic function based on ElectroWetting on Dielectric (EWOD)to create the colorimetric reaction, and the sensing function based on the integration of anoptical sensor able to measure absorption variations in micro-volumes (< μL). In order toobtain sufficient sensitivity on such small volumes, optical microring resonators are used inthis work, due to their ability to enhance the effective optical path length by constructiveinterferences.This thesis describes the conception and fabrication of the EWOD microfluidic platform, aswell as the conception, simulation and fabrication of submicronic microring resonators usingstepper lithography. Polymer materials and glass substrates are selected, due to their greatoptical properties in the visible range, their compatibility with the EWOD platform, and theirintegrability at a reasonable cost.
|
Page generated in 0.0787 seconds