21 |
Optimization of Cell Culture Procedures for Growing Neural Networks on Microelectrode ArraysSanta Maria, Cara L. 12 1900 (has links)
This thesis describes the development of an optimized method for culturing dissociated, monolayer neuronal networks from murine frontal cortex and midbrain. It is presented as a guidebook for use by cell culture specialists and laboratory personnel who require updated and complete procedures for use with microelectrode array (MEA) recording technology. Specific cell culture protocols, contamination prevention and control, as well common problems encountered within the cell culture facility, are discussed. This volume offers value and utility to the rapidly expanding fields of MEA recording and neuronal cell culture. Due to increasing interest in determining the mechanisms underlying Parkinson's disease, the newly developed procedures for mesencephalon isolation and culture on MEAs are an important research contribution.
|
22 |
Leptin modulation of locomotor and emotional behaviors : the role of STAT3 signaling in dopamine neuronsde Andrade Fernandes, Maria Fernanda 06 1900 (has links)
La leptine circule en proportion de la masse graisseuse du corps et la transduction de son signal à travers la forme longue de son récepteur via un certain nombre de voies neurales , y compris MAPK, PI3-K ,AMPK et JAK2 - STAT3 . Il faut noter que STAT3 constitue une voie clée au récepteur de la leptine par laquelle la leptine module l'expression des gènes impliqués dans la régulation du bilan énergétique.
La plupart des recherches ont porté sur la fonction du récepteur de la leptine au sein de l' hypothalamus, en particulier la fonction du récepteur de la leptine dans le noyau arqué. Toutefois, les récepteurs de la leptine sont également exprimés sur les neurones dopaminergiques de l'aire tégmentale ventrale et la leptine agit sur cette région du cerveau pour influencer la prise alimentaire, la motivation, la locomotion, l'anxiété et la transmission de la dopamine. De plus, la leptine active la STAT3 dans les dopaminergiques et GABAergiques populations neuronales. Bien que ces résultats contribuent à notre compréhension des multiples actions de la leptine dans le système nerveux central, il reste à résoudre les cellules et la signalisation du récepteur de la leptine qui sont responsables des effets neurocomportementaux de la leptine dans le mésencéphale.
Visant à déterminer la contribution de la voie de signalisation STAT3 dans les neurones dopaminergiques du mésencéphale, nous avons généré une lignée de souris knockout conditionnel dans lequel l'activation du gène de STAT3 sur son résidu tyrosine 705 ( Tyr 705 ) est absent spécifiquement dans les neurones dopaminergiques. Avec l'utilisation de ce modèle de souris génétique, nous avons évalué l'impact de l'ablation de la signalisation STAT3 dans les neurones dopaminergiques sur un certain nombre de fonctions liées à la dopamine, y compris l'alimentation, la locomotion, les comportements liés à la récompense, l'émotion et la libération de dopamine dans le noyau accumbens. Fait intéressant, nous avons observé un dimorphisme sexuel dans le phénotype des souris STAT3DAT-KO. L'activation de la voie de signalisation STAT3 dans les neurones dopaminergiques est responsable de l'action de la leptine dans la réduction de la locomotion, récompense liée à l'activité physique, et de l'augmentation de la libération et de la disponibilité de la dopamine chez les souris mâles. Cependant, il ne module pas le comportement émotionnel. D'autre part, les souris femelles STAT3DAT-KO augmentent les niveaux d'anxiété et les niveaux plasmatiques de corticostérone, sans provoquer de changements de la dépression. Cependant, la perte d'activation de STAT3 dans les neurones dopaminergiques ne module pas le comportement locomoteur chez les souris femelles. Notamment, les actions de la leptine dans le mésencéphale pour influencer le comportement alimentaire ne sont pas médiées par l'activation de STAT3 dans les neurones dopaminergiques, considérant que les souris mâles et femelles ont un comportement alimentaire normal.
Nos résultats démontrent que la voie de signalisation STAT3 dans les neurones dopaminergiques est responsable des effets anxiolytiques de la leptine, et soutient l'hypothèse que la leptine communique l'état d'énergie du corps (i.e. la relation entre la dépense et les apports énergétiques) pour les régions mésolimbiques pour atténuer les effets de motivation et de récompense de plusieurs comportements qui servent à réhabiliter ou à épuiser les réserves d'énergie. En outre, ce travail souligne l'importance d'étudier la modulation de la signalisation de la leptine dans différente types de cellules, afin d'identifier les voies de signalisation et les mécanismes cellulaires impliqués dans les différentes fonctions neuro-comportementales de la leptine. / The adipocyte-derived hormone leptin circulates in proportion to the body fat content and transduces its signal through the long form of its receptor via a number of neural pathways, including MAPK, PI3-K, AMPK and JAK2-STAT3. Of note, STAT3 constitutes a key pathway downstream to the leptin receptor by which leptin modulates the expression of genes involved in energy balance.
Most research has focused on leptin receptor function within the hypothalamus, in particular leptin receptor function within the arcuate nucleus. However, leptin receptors are also expressed on dopaminergic neurons of the ventral tegmental area, and leptin has been shown to target this brain region to influence feeding, motivation, locomotion, anxiety and dopamine tone. Moreover, leptin activates STAT3 in both dopaminergic and GABAergic neuronal populations. Although these findings contribute to our understanding of the multiple actions of leptin in the central nervous system, it remains to be resolved which cells and leptin receptor signaling pathway mediates the neurobehavioral effects of leptin in the midbrain.
Aiming at determining the contribution of STAT3 signaling in midbrain DA neurons, we generated a line of conditional knockout mice in which the main activation site of STAT3 gene (tyr 705) is absent specifically in dopaminergic neurons (STAT3DAT-KO mice). Using this genetic mouse model, we assessed the impact of ablation of STAT3 signaling in dopaminergic neurons on a number of dopamine-related functions, including feeding, locomotion, reward-related behaviors, emotion and nucleus accumbens dopamine release. Interestingly, we observed a sexual dimorphism in the phenotype of STAT3DAT-KO mice. STAT3 signaling in DA neurons mediates the actions of leptin in the midbrain to decrease locomotion and running reward, and to increase dopamine release and availability in male mice. However, it does not modulate emotional behavior. On the other hand, STAT3DAT-KO female mice exhibited increased anxiety-like behavior accompanied by increased plasma corticosterone levels, without changes in behavioral despair relative to littermate controls. However, loss of STAT3 activation in dopaminergic neurons does not modulate locomotor behavior in female mice. Notably, the actions of leptin in the midbrain to influence feeding behavior are not mediated by STAT3 signaling in dopaminergic neurons, as both male and female STAT3DAT-KO mice have normal feeding behavior as compared to littermate controls.
Our results demonstrate that STAT3 signaling in dopaminergic neurons mediates the anxiolytic actions of leptin, and support the hypothesis that leptin communicates body energy status (defined as a relationship between energy intake and energy expenditure) to mesolimbic regions to adjust the motivational and rewarding effects of multiple behaviors that serve to either restore or deplete energy stores. In addition, this work highlight the importance of studying cell-type specific modulation of leptin signaling molecules to tease apart pathways and the mechanisms involved in the different neurobehavioral functions of this adipocyte-derived hormone.
|
23 |
Mechanism of cell adhesion at the midbrain-hindbrain neural plate in the teleost Danio rerioKadner, Diana 30 July 2009 (has links) (PDF)
The correct development of multicellular organisms is tightly regulated by intrinsic and extrinsic factors at specific time points. Disturbance on any level of these multiple processes may result in drastic phenotypes or eventually death of the organism.
The midbrain-hindbrain boundary (also termed isthmic organizer) is a region of high interest as well in early as also in later development. The isthmic region carries organizer identity by the expression and subsequent release of FGF8. False patterning events of this region in early developmental stages would therefore display dramatic results over time. As it has been shown that the midbrain-hindbrain boundary (mhb) in the zebrafish is a compartment (or lineage restriction) boundary I tried to understand the underlying molecular mechanism for its correct establishment.
In this work I focused both on embryological, molecular and genetic means to characterize involved molecules and mechanisms. In the first part of the thesis I followed in vivo cell transplantation assays, having started with an unbiased one. Cells of either side the mhb were challenged with this boundary by bringing them into direct cell contact with their ectopic counterpart. In a biased approach, cells overexpressing mRNA of specific candidate genes were transplanted and their clonal distribution in host embryos was analyzed.
In the second part of the thesis I started interfering with specific candidate genes by transiently knocking down their protein translation. The adhesion molecules of the Eph/ephrin class had been shown to restrict cell mixing and thereby creating compartment boundaries in other tissues, such as the hindbrain, in the zebrafish and other organisms. Additionally, we generated several stable genetic mutant lines in cooperation with the Tilling facility at the Max-Planck-Institute. The only acquired potential null mutant ephrinB2bhu2971 was analyzed and characterized further. I observed that a knock down or knock out of only one of the ephrinB2 ligands does not seem to be sufficient for a loss of compartment boundary formation. The combinatory approach of blocking translation of EphrinB2a in ephrinB2bhu2971 mutants gave very complex and interesting phenotypes, which need to be investigated further.
|
24 |
The role of bone morphogenetic proteins in the development of the vertebrate midbrainEom, Dae Seok 08 February 2011 (has links)
The purpose of the thesis is to explore the role of BMP signaling in developing vertebrate midbrain. BMP signaling plays important roles in various tissues and stages of neural development to regulate cell fate, proliferation, differentiation, morphogenesis and more. We observed that several major BMPs are expressed not only at the roof plate but also the floor plate of the midbrain. This has led us to ask the role of BMP signaling in dorsal and ventral midbrain patterning. Despite ventral experiments, we found that BMP signaling does not regulate ventral cell fate specification in the midbrain. Instead BMPs profoundly influence the shape and early morphogenesis of the midbrain neural plate as it closes into a neural tube.
During neural tube closure, one of the early events occurring at the ventral midline is median hinge point (MHP) formation. Failure to form MHP leads to neural tube closure defects, the 2nd most common birth defects in humans. However, the molecular mechanisms underlying MHP formation are not well known. We found that the lowest BMP signaling occurs at the MHP during early neurulation and BMP blockade is necessary and sufficient for MHP formation. Interestingly, we also demonstrated that BMP blockade directs MHP formation by regulating the apicobasal polarity pathway and this regulation may be mediated by biochemical interactions between pSMAD5 and the apical protein, PAR3. Additionally, our time-lapse data suggest that BMP blockade slows cell cycle progression by increasing duration of G1 to S transition and S phase which leads cell nuclei stay at the basal location longer. This mimics basal nuclear migration seen at the MHP where low BMP signaling occurs. Thus, we conclude that BMP signaling regulates neural tube closure via the apicobasal polarity pathway and in a cell cycle dependent manner at the ventral midline.
We observed that BMP signaling is necessary and sufficient for the dorsal cell fate specification in a context-dependent manner and ventral BMP signaling affects dorsal cell fates.
Taken together, we propose the idea that BMP signaling has distinct roles in different contexts. BMPs regulate tissue morphogenesis in the ventral midbrain and dorsally cell fate specification. / text
|
25 |
Étude du rôle des récepteurs NMDA du mésencéphale ventral dans la récompense induite par la stimulation électrique du mésencéphale postérieur chez le rongeur.Bergeron, Sabrina 07 1900 (has links)
La voie dopaminergique mésolimbique qui prend son origine dans le mésencéphale ventral et qui projette vers des régions rostrales du système limbique fait partie du substrat nerveux qui contrôle la récompense et les comportements motivés. Il a été suggéré qu’un signal de récompense est produit lorsque le patron de décharge des neurones dopaminergiques passe d’un mode tonique à un mode phasique, une transition qui est initiée par l’action du glutamate aux récepteurs N-Méthyl-D-aspartate (NMDA). Étant donné qu’une altération du système de récompense est souvent associée à des anomalies cliniques telles que l’addiction compulsive et à des troubles émotionnels tels que l’anhédonie, nous avons étudié le rôle des récepteurs NMDA dans la récompense induite par la stimulation électrique intracérébrale. Puisque les récepteurs NMDA sont composés de sous-unités distinctes, GluN1, GluN2 et GluN3, nous avons étudié le rôle de deux sous-unités qui sont présentes dans le mésencéphale ventral : GluN2A et GluN2B.
Les résultats montrent que des injections mésencéphaliques de R-CPP et de PPPA, des antagonistes préférentiels aux sous-unités GluN2A/B, ont produit une augmentation dose-dépendante de l’effet de récompense, un effet qui était, à certains temps après les injections, accompagné d’une augmentation du nombre de réponses maximales. Ces effets n’ont pas été observés après l’injection d’une large gamme de doses de Ro04-5595, un antagoniste des sous-unités GluN2B. Ces résultats suggèrent que le glutamate mésencéphalique exerce une modulation négative sur le circuit de récompense, un effet dû à son action au niveau des récepteurs NMDA composés des sous-unités GluN2A. / The mesolimbic dopaminergic pathway, originating from the ventral midbrain and projecting to rostral limbic structures, is part of a neural substrate that controls reward and incentive behaviors. It has been suggested that the rewarding effect is produced by a tonic to phasic shift in dopamine cell firing and a transduction process initiated by the action of glutamate at the N-Methyl-D-aspartate (NMDA) receptors. Given that an alteration in reward signaling is often associated with clinical symptoms of compulsive addictive behaviors and emotional disturbances such as anhedonia, we investigated the role of NMDA receptors in reward induced by intracranial electrical stimulation. Since NMDA receptors are composed of distinct subunits, GluN1, GluN2 and GluN3, we investigated the role of the main GluN2 subunits that are expressed in the ventral midbrain, GluN2A and GluN2B.
Results show that ventral midbrain injections of R-CPP or PPPA, preferential GluN2A/2B antagonists, produce a dose-orderly enhancement of reward, an effect that was, at some time after the injection, accompanied by an increase in maximum response rates. These effects were not observed following ventral midbrain injections of a wide range of doses of the selective GluN2B antagonist, Ro-04-5595. These findings suggest that ventral midbrain glutamate exerts a negative modulation on reward induced by electrical stimulation of the posterior mesencephalon, an effect most likely mediated by NMDA receptors composed of GluN2A subunits.
|
26 |
Étude du rôle des récepteurs NMDA du mésencéphale ventral dans la récompense induite par la stimulation électrique du mésencéphale postérieur chez le rongeurBergeron, Sabrina 07 1900 (has links)
No description available.
|
27 |
United in Diversity : A Physiological and Molecular Characterization of Subpopulations in the Basal Ganglia CircuitryViereckel, Thomas January 2017 (has links)
The Basal Ganglia consist of a number of different nuclei that form a diverse circuitry of GABAergic, dopaminergic and glutamatergic neurons. This complex network is further organized in subcircuits that govern limbic and motor functions in humans and other vertebrates. Due to the interconnection of the individual structures, dysfunction in one area or cell population can affect the entire network, leading to synaptic and molecular alterations in the circuitry as a whole. The studies in this doctoral thesis aimed at characterizing restricted subpopulations of neurons in the Basal Ganglia circuitry and their importance in the wider function of the network. To this end, we identified subpopulations of neurons in the subthalamic nucleus (STN), substantia nigra (SN) and ventral tegmental area (VTA), characterized their molecular profile and investigated their physiological role in the circuitry. Within the mouse STN, reduction of glutamatergic neurotransmission in a subpopulation expressing Paired-like homeodomain transcription factor 2 (Pitx2) led to structural alterations in the nucleus as well as biochemical alterations of the dopaminergic system in the Nucleus accumbens (NAc) and changes in reward-related behavior. In the ventral midbrain, we identified and characterized novel marker genes selective to the VTA or SN. Of these, transient receptor potential cation channel subfamily V member 1 (TrpV1) marks a population of mainly glutamatergic neurons in the VTA which project to the NAc, while gastrin releasing peptide (Grp) is expressed in a population of dopaminergic neurons neuroprotected in Parkinson's disease. Furthermore, we discovered that disruption of glutamatergic co-release of dopaminergic neurons expressing dopamine transporter (DAT), diminishes fast EPSCs and glutamate release but does not affect the acquisition of reward-related behavioral tasks. To selectively quantify glutamate release from specific subpopulations, we devised a technique combining glutamate-amperometry and optogenetics. This was used to measure glutamate released from Pitx2-expressing synaptic terminals in the Globus pallidus as well as DAT- or TrpV1-expressing terminals in the NAc. In summary, this doctoral thesis has furthered understanding of the function and importance of specific subpopulations within the Basal Ganglia circuitry and provides a novel means to investigate glutamate in the intact rodent brain within clearly defined, restricted cell populations.
|
28 |
Altered top-down and bottom-up processing of fear conditioning in panic disorder with agoraphobiaLueken, U., Straube, B., Reinhardt, I., Maslowski, N. I., Wittchen, H.-U., Ströhle, A., Wittmann, A., Pfleiderer, B., Konrad, C., Ewert, A., Uhlmann, C., Arolt, V., Jansen, A., Kircher, T. 11 June 2020 (has links)
Background: Although several neurophysiological models have been proposed for panic disorder with agoraphobia (PD/AG), there is limited evidence from functional magnetic resonance imaging (fMRI) studies on key neural networks in PD/AG. Fear conditioning has been proposed to represent a central pathway for the development and maintenance of this disorder; however, its neural substrates remain elusive. The present study aimed to investigate the neural correlates of fear conditioning in PD/AG patients.
Method: The blood oxygen level-dependent (BOLD) response was measured using fMRI during a fear conditioning task. Indicators of differential conditioning, simple conditioning and safety signal processing were investigated in 60 PD/AG patients and 60 matched healthy controls.
Results: Differential conditioning was associated with enhanced activation of the bilateral dorsal inferior frontal gyrus (IFG) whereas simple conditioning and safety signal processing were related to increased midbrain activation in PD/AG patients versus controls. Anxiety sensitivity was associated positively with the magnitude of midbrain activation.
Conclusions: The results suggest changes in top-down and bottom-up processes during fear conditioning in PD/AG that can be interpreted within a neural framework of defensive reactions mediating threat through distal (forebrain) versus proximal (midbrain) brain structures. Evidence is accumulating that this network plays a key role in the aetiopathogenesis of panic disorder.
|
29 |
Mechanism of cell adhesion at the midbrain-hindbrain neural plate in the teleost Danio rerioKadner, Diana 09 June 2009 (has links)
The correct development of multicellular organisms is tightly regulated by intrinsic and extrinsic factors at specific time points. Disturbance on any level of these multiple processes may result in drastic phenotypes or eventually death of the organism.
The midbrain-hindbrain boundary (also termed isthmic organizer) is a region of high interest as well in early as also in later development. The isthmic region carries organizer identity by the expression and subsequent release of FGF8. False patterning events of this region in early developmental stages would therefore display dramatic results over time. As it has been shown that the midbrain-hindbrain boundary (mhb) in the zebrafish is a compartment (or lineage restriction) boundary I tried to understand the underlying molecular mechanism for its correct establishment.
In this work I focused both on embryological, molecular and genetic means to characterize involved molecules and mechanisms. In the first part of the thesis I followed in vivo cell transplantation assays, having started with an unbiased one. Cells of either side the mhb were challenged with this boundary by bringing them into direct cell contact with their ectopic counterpart. In a biased approach, cells overexpressing mRNA of specific candidate genes were transplanted and their clonal distribution in host embryos was analyzed.
In the second part of the thesis I started interfering with specific candidate genes by transiently knocking down their protein translation. The adhesion molecules of the Eph/ephrin class had been shown to restrict cell mixing and thereby creating compartment boundaries in other tissues, such as the hindbrain, in the zebrafish and other organisms. Additionally, we generated several stable genetic mutant lines in cooperation with the Tilling facility at the Max-Planck-Institute. The only acquired potential null mutant ephrinB2bhu2971 was analyzed and characterized further. I observed that a knock down or knock out of only one of the ephrinB2 ligands does not seem to be sufficient for a loss of compartment boundary formation. The combinatory approach of blocking translation of EphrinB2a in ephrinB2bhu2971 mutants gave very complex and interesting phenotypes, which need to be investigated further.
|
30 |
Cholinergic Projections to the Inferior ColliculusNoftz, William Andrew 31 August 2020 (has links)
No description available.
|
Page generated in 0.0518 seconds