Spelling suggestions: "subject:"nanoröhrchen"" "subject:"röhrchen""
1 |
Rolled up microtubes for the capture, guidance and release of single spermatozoaMagdanz, Veronika 16 January 2017 (has links) (PDF)
Hybride Mikroschwimmer, die einen biologischen Antrieb und eine künstlich hergestellte Mikrostruktur enthalten sind ein attraktiver Ansatz um kontrollierte Bewegung auf kleinstem Maßstab zu erreichen. In dieser Dissertation wird ein neuer hybrider Mikroschwimmer vorgestellt, der aus ferromagnetischen Nanomembranen besteht, die sich zu Mikroröhrchen aufrollen und in der Lage sind, einzelne Spermien einzufangen. Dieser Mikrobioroboter nutzt die starke Antriebskraft der Spermazelle um das magnetische Mikroröhrchen fortzubewegen. Die vorliegende Arbeit beschreibt, wie dieser Mikroschwimmer seine Bewegung vollzieht und wie verschiedene Faktoren wie Temperatur, Radius der Mikroröhrchen, Eindringtiefe der Spermien in das Röhrchen und Länge der Röhrchen einen Einfluss auf sein Verhalten haben. Richtungskontrolle wird durch externe magnetische Felder realisiert und es wird dargestellt, wie dies zur Trennung der Mikrobioroboter aus einer Mischung von Spermien und Mikroröhrchen genutzt werden kann. Weiterhin werden zwei Oberflächenmodifizierungsmethoden angewandt um die Kupplungseffizienz zwischen Mikroröhrchen und Spermien zu erhöhen. In diesen Methoden wird das extrazelluläre Protein Fibronektin auf die innere Röhrchenoberfläche aufgebracht und dient als Bindungsstoff für Spermien. Schließlich wird durch den Einbau temperatursensitiver Material in die Mikroröhrchen ein ferngesteuerter Freisetzungsmechanismus für die Spermazelle vorgestellt. Dabei falten sich die Mikroröhrchen bei kleinen Temperaturerhöhungen auf und setzen die Zelle frei. Diese Arbeit diskutiert letztendlich das Potential solch eines hybriden Mikroschwimmers für die Anwendung in assistierter Reproduktion. / The search for autonomously moving, highly functional and controllable microdevices is a purpose of current micro/nanobiotechnology research, especially in the area of biomedical applications, for which reason, biocompatible solutions are in demand. In this thesis, a novel type of hybrid microswimmer is fabricated by the combination of rolled up thin nanomembranes with bovine spermatozoa. The microbiorobot presented here uses the powerful motion of the sperm flagella as a propulsion source for the magnetic microtube. This work demonstrates how the microswimmer performs its motion and how several factors such as temperature, radius of the microtube, penetration of the cell inside the microtube and length of the tube have influence on its performance. Directional control mechanisms are offered by external magnetic fields and are presented to be useful for the on-chip separation of the microbiorobots from a mixture of cells and microtubes. Two surface modification methods are presented as means to improve the coupling efficiency between the microtubes and the sperm cells. By these surface functionalizations, the extracellular matrix protein fibronectin is attached on the inner microtube walls and serves as binding agent for the spermatozoa. Finally, a remote release mechanism for the sperm cells is demonstrated by the incorporation of thermoresponsive material into the microtubes, which makes them fold and unfold upon small temperature changes. This work discusses the potential of such microswimmers for the application in assisted reproduction techniques and gives an outlook on future perspectives.
|
2 |
Rolled up microtubes for the capture, guidance and release of single spermatozoaMagdanz, Veronika 24 October 2016 (has links)
Hybride Mikroschwimmer, die einen biologischen Antrieb und eine künstlich hergestellte Mikrostruktur enthalten sind ein attraktiver Ansatz um kontrollierte Bewegung auf kleinstem Maßstab zu erreichen. In dieser Dissertation wird ein neuer hybrider Mikroschwimmer vorgestellt, der aus ferromagnetischen Nanomembranen besteht, die sich zu Mikroröhrchen aufrollen und in der Lage sind, einzelne Spermien einzufangen. Dieser Mikrobioroboter nutzt die starke Antriebskraft der Spermazelle um das magnetische Mikroröhrchen fortzubewegen. Die vorliegende Arbeit beschreibt, wie dieser Mikroschwimmer seine Bewegung vollzieht und wie verschiedene Faktoren wie Temperatur, Radius der Mikroröhrchen, Eindringtiefe der Spermien in das Röhrchen und Länge der Röhrchen einen Einfluss auf sein Verhalten haben. Richtungskontrolle wird durch externe magnetische Felder realisiert und es wird dargestellt, wie dies zur Trennung der Mikrobioroboter aus einer Mischung von Spermien und Mikroröhrchen genutzt werden kann. Weiterhin werden zwei Oberflächenmodifizierungsmethoden angewandt um die Kupplungseffizienz zwischen Mikroröhrchen und Spermien zu erhöhen. In diesen Methoden wird das extrazelluläre Protein Fibronektin auf die innere Röhrchenoberfläche aufgebracht und dient als Bindungsstoff für Spermien. Schließlich wird durch den Einbau temperatursensitiver Material in die Mikroröhrchen ein ferngesteuerter Freisetzungsmechanismus für die Spermazelle vorgestellt. Dabei falten sich die Mikroröhrchen bei kleinen Temperaturerhöhungen auf und setzen die Zelle frei. Diese Arbeit diskutiert letztendlich das Potential solch eines hybriden Mikroschwimmers für die Anwendung in assistierter Reproduktion.:TABLE OF CONTENTS
SELBSTSTÄNDIGKEITSERKLÄRUNG 0
ABSTRACT 1
TABLE OF CONTENTS 3
1 MOTIVATION AND GOALS 5
1.1 MINIATURIZATION: “THERE IS PLENTY OF ROOM AT THE BOTTOM…” 5
1.2 SPERMBOTS: POTENTIAL IMPACT 7
2 BACKGROUND AND STATE-OF-THE-ART 11
2.1 MICROBIOROBOTICS 11
2.2 SPERM MORPHOLOGY AND THEIR JOURNEY TO THE EGG 15
2.3 INFERTILITY AND ASSISTED REPRODUCTION TECHNIQUES 19
2.4 SINGLE CELL RELEASE 22
2.5 STIMULI-RESPONSIVE MATERIALS 25
3 MATERIAL AND METHODS 29
3.1 ROLLED UP TECHNOLOGY 29
3.2 TREATMENT OF BOVINE SPERMATOZOA 32
3.2.1 Preparation of Spermbots 32
3.2.2 Speed Measurements 33
3.2.3 Separation On Chip 33
3.3 SURFACE MODIFICATION OF MICROTUBES 34
3.3.1 Surface Chemistry 35
3.3.2 Microcontact printing 39
3.4 POLYMER TUBE FABRICATION 44
3.4.1 Synthesis of photosensitive monomer 4-Acryloylbenzophenone 44
3.4.2 Synthesis of poly (N-isopropylacrylamide-co-Acryloylbenzophenone) 46
3.4.3 Photolithography of polymeric films 48
3.5 VIABILITY TESTS 51
4 RESULTS AND DISCUSSION 53
4.1 CHARACTERIZATION OF SPERMBOTS 55
4.2 TEMPERATURE INFLUENCE 60
4.3 MAGNETIC CONTROL 62
4.4 SEPARATION ON CHIP 68
4.5 EFFECT OF DECREASED MICROTUBE LENGTH 72
4.6 COUPLING EFFICIENCY 74
4.7 THERMORESPONSIVE POLYMERIC MICROTUBES FOR CELL RELEASE 80
4.8 SPERM VIABILITY TESTS 94
5 SUMMARY AND CONCLUSIONS 97
6 OUTLOOK 101
7 LIST OF FIGURES 107
8 LIST OF TABLES 113
9 ABBREVIATIONS 115
10 CURRICULUM VITAE 117
11 LIST OF PUBLICATIONS 119
JOURNAL ARTICLES 119
CONTRIBUTIONS TO COLLECTED EDITIONS/PROCEEDINGS 121
12 ACKNOWLEDGEMENTS 123
13 REFERENCES 125 / The search for autonomously moving, highly functional and controllable microdevices is a purpose of current micro/nanobiotechnology research, especially in the area of biomedical applications, for which reason, biocompatible solutions are in demand. In this thesis, a novel type of hybrid microswimmer is fabricated by the combination of rolled up thin nanomembranes with bovine spermatozoa. The microbiorobot presented here uses the powerful motion of the sperm flagella as a propulsion source for the magnetic microtube. This work demonstrates how the microswimmer performs its motion and how several factors such as temperature, radius of the microtube, penetration of the cell inside the microtube and length of the tube have influence on its performance. Directional control mechanisms are offered by external magnetic fields and are presented to be useful for the on-chip separation of the microbiorobots from a mixture of cells and microtubes. Two surface modification methods are presented as means to improve the coupling efficiency between the microtubes and the sperm cells. By these surface functionalizations, the extracellular matrix protein fibronectin is attached on the inner microtube walls and serves as binding agent for the spermatozoa. Finally, a remote release mechanism for the sperm cells is demonstrated by the incorporation of thermoresponsive material into the microtubes, which makes them fold and unfold upon small temperature changes. This work discusses the potential of such microswimmers for the application in assisted reproduction techniques and gives an outlook on future perspectives.:TABLE OF CONTENTS
SELBSTSTÄNDIGKEITSERKLÄRUNG 0
ABSTRACT 1
TABLE OF CONTENTS 3
1 MOTIVATION AND GOALS 5
1.1 MINIATURIZATION: “THERE IS PLENTY OF ROOM AT THE BOTTOM…” 5
1.2 SPERMBOTS: POTENTIAL IMPACT 7
2 BACKGROUND AND STATE-OF-THE-ART 11
2.1 MICROBIOROBOTICS 11
2.2 SPERM MORPHOLOGY AND THEIR JOURNEY TO THE EGG 15
2.3 INFERTILITY AND ASSISTED REPRODUCTION TECHNIQUES 19
2.4 SINGLE CELL RELEASE 22
2.5 STIMULI-RESPONSIVE MATERIALS 25
3 MATERIAL AND METHODS 29
3.1 ROLLED UP TECHNOLOGY 29
3.2 TREATMENT OF BOVINE SPERMATOZOA 32
3.2.1 Preparation of Spermbots 32
3.2.2 Speed Measurements 33
3.2.3 Separation On Chip 33
3.3 SURFACE MODIFICATION OF MICROTUBES 34
3.3.1 Surface Chemistry 35
3.3.2 Microcontact printing 39
3.4 POLYMER TUBE FABRICATION 44
3.4.1 Synthesis of photosensitive monomer 4-Acryloylbenzophenone 44
3.4.2 Synthesis of poly (N-isopropylacrylamide-co-Acryloylbenzophenone) 46
3.4.3 Photolithography of polymeric films 48
3.5 VIABILITY TESTS 51
4 RESULTS AND DISCUSSION 53
4.1 CHARACTERIZATION OF SPERMBOTS 55
4.2 TEMPERATURE INFLUENCE 60
4.3 MAGNETIC CONTROL 62
4.4 SEPARATION ON CHIP 68
4.5 EFFECT OF DECREASED MICROTUBE LENGTH 72
4.6 COUPLING EFFICIENCY 74
4.7 THERMORESPONSIVE POLYMERIC MICROTUBES FOR CELL RELEASE 80
4.8 SPERM VIABILITY TESTS 94
5 SUMMARY AND CONCLUSIONS 97
6 OUTLOOK 101
7 LIST OF FIGURES 107
8 LIST OF TABLES 113
9 ABBREVIATIONS 115
10 CURRICULUM VITAE 117
11 LIST OF PUBLICATIONS 119
JOURNAL ARTICLES 119
CONTRIBUTIONS TO COLLECTED EDITIONS/PROCEEDINGS 121
12 ACKNOWLEDGEMENTS 123
13 REFERENCES 125
|
3 |
Sensing and Transport Properties of Hybrid Organic/Inorganic DevicesVervacke, Céline 14 October 2014 (has links) (PDF)
Over the past two decades, organic semiconductors played a growing part as active layers in several electronic systems such as sensors, field‑effect transistors or light emitting diodes to cite a few. In fact, organic materials offer a high versatility and flexibility. However, pure organic systems often lack stability and robustness, which can be overcome by combining them with inorganic scaffolds.
In this work, a conducting polymer, polypyrrole (PPy) is employed to create new sensor elements based on the combination of both inorganic and organic layers. Electrical measurements, infrared spectroscopy and current sensing atomic force microscopy provides a better understanding of the polymer behavior upon immersion in aqueous solutions. The observed discharge in water leads to a straightforward application of the device as an in‑flow sensor for several acids like HCl, H2SO4 and H3PO4. The wide range of sensing concentrations as well as the low detection limit place the present detector among the best reported so far in the literature.
In a further step to turn towards lab‑in‑a‑tube devices, tubular‑shaped‑integrated microelectrodes are developed by using the rolled‑up technology. As a proof of concept, the successful integration of PPy as an active layer and its use as a gas sensor for volatile organic compounds (VOCs) is demonstrated.
Finally, by adapting the rolled‑up top electrodes, as developed by Bof Bufon et al. for self‑assembled monolayers (SAMs), thin PPy films (<50 nm) are vertically contacted and their electrical characteristics measured as a function of temperature and electric field. From the transport investigations, it is observed that an insulating‑to‑metallic transition occurs in the polymeric film by increasing the bias voltage. Other molecular layers like CuPc can be incorporated in these platforms, opening the way towards emerging organic devices.
|
4 |
Nanomembrane-based hybrid semiconductor-superconductor heterostructuresThurmer, Dominic J. 05 September 2011 (has links) (PDF)
The combination of modern self-assembly techniques with well-established top-down processing methods pioneered in the electronics industry is paving the way for increasingly sophisticated devices in the future[1]. Nanomembranes, made from a variety of materials, can provide the necessary framework for a diverse range of device structures incorporating wrinkling, buckling, folding, and rolling of thin films[2, 3]. Over the past decade, an elegant symbiosis of bottom-up and top-down methods has been developed, allowing the fabrica- tion of hybrid layer systems via the controlled release and rearrangement of inherently strained layers [4]. Self-assembled rolled-up structures[4, 5] have become increasingly at- tractive in a number of fields including micro/nano uidics[6], optics[7](including metama- terial optical fibers[8]), Lab on a Chip applications[9], and micro- and nanoelectronics[10]. The use of such structures for microelectronic applications has been driven by the versatility in contacting geometries and the abundance of material combinations that these devices offer. By allowing devices to expand in the third dimension, certain obstacles that inhibit 2D structuring can be overcome in elegant ways. Similarly, recent progress in nanostructured superconducting electronic structures has been receiving increased attention[11]. The advancement of such devices has been mo- tivated by their use in quantum computation[12], high sensitivity radiation sensors[13], precision voltage standards[14] and superconducting spintronics[15] to name a few. Combining semiconductor with superconductor materials to create new hybrid geometries is advantageous because it adds the functionalities of the semiconductor, including high charge carrier mobilities, gating possibilities, and refined processing technologies.
The main focus of the work presented in this thesis is the development of new methods for controlling strain behavior and its applications toward novel semiconduc- tor/superconductor heterostructures based on nanomembranes. More specifically, the goal is to integrate inherently strained semiconductor layer structures with superconducting materials to create innovative electronic devices by the controlled releasing and rearrangement of thin films. By rolling up pre-patterned semiconductor/superconductor layers, device geometries have been realized that are not feasible using any other technique. In this way, superconducting hybrid junctions, or Josephson junctions, have been created and their basic properties investigated.
The Josephson effect, and junctions displaying this quantum coherent behavior, have found many essential uses in diverse areas of science and technology. Many research groups around the world are involved in finding new materials and fabrication methods to tune the properties and structure of such Josephson devices further[11]. The inclusion of semi- conductors, for example, allows for a greater control of the charge carrier density within the junction area, thus allowing for "transistor-like" behavior in these superconducting devices.
By rolling up the superconductor contacts using a strained semiconductor as scaffolding, the fabrication of hybrid nano-junctions is simplified drastically, removing the need for complicated processing steps such as electron-beam or nano-imprint lithography. Furthermore, the technique allows many nanometer-sized devices to be created in parallel on a single chip which has the advantage that it can be scaled up to full-wafer processing.
First, post-growth processing techniques of epitaxial layers are developed in order to extend the control of hybrid device fabrication. Here, three unique concepts for controlling the rolling behavior of strained semiconductor nanomembranes are presented. First an optical method for inhibiting the rolling of the strained layers is described. Next, a selective etching method for destroying the inherent strain within the semiconductor layer is introduced. Finally, a method by which the strain gradient across a trilayer stack is altered in situ during rolling is presented. Next, the fabrication of a hybrid nanomembrane-based superconducting device is presented. Various experimental details of the fabrication process are analyzed, and the electronic properties of the completed device are investigated. The devices created here highlight the fabrication process in which nanometer-sized structures are created using self-assembly techniques and standard microelectronics fabrication methods, presenting a new method to circumvent more complicated processing techniques.
References
[1] G. M. Whitesides and B. Grzybowski. Self-assembly at all scales. Science 295, 2418{2421 (2002).
[2] Y. G. Sun, W. M. Choi, H. Q. Jiang, Y. G. Y. Huang and J. A. Rogers. Controlled buckling of semiconductor
nanoribbons for stretchable electronics. Nature Nanotechnology 1, 201{207 (2006).
[3] O. G. Schmidt and K. Eberl. Nanotechnology - Thin solid films roll up into nanotubes. Nature 410, 168 (2001).
[4] O. G. Schmidt, C. Deneke, Y. Nakamura, R. Zapf-Gottwick, C. Mller and N. Y. Jin-Phillipp. Nanotechnology
{ Bottom-up meets top-down. Advanced Solid State Physics 42, 231 (2002).
[5] V. Ya. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato
and T. A. Gavrilova. Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays. Physica
E 6, 828 (2000).
[6] D. J. Thurmer, C. Deneke, Y. F. Mei and O. G. Schmidt. Process integration of microtubes for
uidic applications.
Applied Physics Letters 89, 223507 (2006).
[7] R. Songmuang, A. Rastelli, S. Mendach and O. G. Schmidt. SiOx/Si radial superlattices and microtube optical
ring resonators. Applied Physics Letters 90, 091905 (2007).
[8] E. J. Smith, Z. W. Liu, Y. F. Mei and O. G. Schmidt. Combined surface plasmon and classical waveguiding through
metamaterial fiber design. Nano Letters 10, 1{5 (2010).
[9] G. S. Huang, Y. F. Mei, D. J. Thurmer, E. Coric and O. G. Schmidt. Rolled-up transparent microtubes as
two-dimensionally confined culture scaffolds of individual yeast cells. Lab on a Chip 9, 263{268 (2009).
[10] C. C. B. Bufon, J. D. C. Gonzalez, D. J. Thurmer, D. Grimm, M. Bauer and O. G. Schmidt. Self-assembled
ultra-compact energy storage elements based on hybrid nanomembranes. Nano Letters 10, 2506{2510 (2010).
[11] G. Katsaros, P. Spathis, M. Stoffel, F. Fournel, M. Mongillo, V. Bouchiat, F. Lefloch, A. Rastelli,
O. G. Schmidt and S. De Franceschi. Hybrid superconductor-semiconductor devices made from self-assembled
SiGe nanocrystals on silicon. Nature Nanotechnology 5, 458{464 (2010).
[12] Y. J. Doh, J. A. van Dam, A. L. Roest, E. P. A. M. Bakkers, L. P. Kouwenhoven and S. De Franceschi.
Tunable supercurrent through semiconductor nanowires. Science 309, 272{275 (2005).
[13] F. Giazotto, T. T. Heikkila, G. P. Pepe, P. Helisto, A. Luukanen and J. P. Pekola. Ultrasensitive proximity
Josephson sensor with kinetic inductance readout. Applied Physics Letters 92, 162507 (2008).
[14] S. P. Benz. Superconductor-normal-superconductor junctions for programmable voltage standards. Applied Physics
Letters 67, 2714{2716 (1995).
[15] Y. C. Tao and J. G. Hu. Superconducting spintronics: Spin-polarized transport in superconducting junctions with
ferromagnetic semiconducting contact. Journal of Applied Physics 107, 041101 (2010).
|
5 |
Strain engineered nanomembranes as anodes for lithium ion batteriesDeng, Junwen 30 January 2015 (has links) (PDF)
Lithium ion batteries (LIBs) have attracted considerable interest due to their wide range of applications, such as portable electronics, electric vehicles (EVs) and aerospace applications. Particularly, the emergence of a variety of nanostructured materials has driven the development of LIBs towards the next generation, which is featured with high specific energy and large power density.
Herein, rolled-up nanotechnology is introduced for the design of strain-released materials as anodes of LIBs. Upon this approach, self-rolled nanostructures can be elegantly combined with different functional materials and form a tubular shape by relaxing the intrinsic strain, thus allowing for enhanced tolerance towards stress cracking. In addition, the hollow tube center efficiently facilitates electrolyte mass flow and accommodates volume variation during cycling. In this context, such structures are promising candidates for electrode materials of LIBs to potentially address their intrinsic issues.
This work focuses on the development of superior structures of Si and SnO2 for LIBs based on the rolled-up nanotech. Specifically, Si is the most promising substitute for graphite anodes due to its abundance and high theoretical gravimetric capacity. Combined with the C material, a Si/C self-wound nanomembrane structure is firstly realized. Benefiting from a strain-released tubular shape, the bilayer self-rolled structures exhibit an enhanced electrochemical behavior over commercial Si microparticles. Remarkably, this behavior is further improved by introducing a double-sided carbon coating to form a C/Si/C self-rolled structure. With SnO2 as active material, an intriguing sandwich-stacked structure is studied. Furthermore, this novel structure, with a minimized strain energy due to strain release, exposes more active sites for the electrochemical reactions, and also provides additional channels for fast ion diffusion and electron transport. The electrochemical characterization and morphology evolution reveal the excellent cycling performance and stability of such structures.
|
6 |
Photon-plasmon coupling in optoplasmonic microtube cavitiesYin, Yin 27 March 2018 (has links)
Optoplasmonic microtube cavities, the combination of dielectric microcavities and noble metal layers, allow for the interactions between photonic modes and surface plasmons, leading to several novel phenomena and promising applications. In this thesis, the hybrid modes with different plasmon-types of evanescent field in the optoplasmonic microtube cavities are discussed. The basic physical mechanism for the generation of plasmon-type field is comprehensively investigated based on an effective potential approach. In particular, when the cavity wall becomes ultra-thin, the plasmon-type field can be greatly enhanced, and the hybrid modes are identified as strong photon-plasmon hybrid modes which are experimentally demonstrated in the metal-coated rolled-up microtube cavities. By designing a metal nanocap onto microtube cavities, angle-dependent tuning of hybrid photon-plasmon modes are realized, in which TE and TM polarized modes exhibit inverse tuning trends due to the polarization match/mismatch. And a novel sensing scheme is proposed relying on the intensity ratio change of TE and TM modes instead of conventionally used mode shift. In addition, localized surface plasmon resonances coupled to resonant light is explored by designing a vertical metal nanogap on microtube cavities. Selective coupling of high-order axial modes is demonstrated depending on spatial-location of the metal nanogap. A modified quasi-potential well model based on perturbation theory is developed to explain the selective coupling mechanism. These researches systematically explore the design of optoplasmonic microtube cavities and the mechanism of photon-plasmon coupling therein, which provide a novel platform for the study of both fundamental and applied physics such as the enhanced light-matter interactions and label-free sensing.
|
7 |
Rolled-up microtubes as components for Lab-on-a-Chip devicesHarazim, Stefan M. 29 November 2012 (has links) (PDF)
Rolled-up nanotechnology based on strain-engineering is a powerful tool to manufacture three-dimensional hollow structures made of virtually any kind of material on a large variety of substrates. The aim of this thesis is to address the key features of different on- and off-chip applications of rolled-up microtubes through modification of their basic framework. The modification of the framework pertains to the tubular structure, in particular the diameter of the microtube, and the material which it is made of, hence achieving different functionalities of the final rolled-up structure. The tuning of the microtube diameter which is adjusted to the individual size of an object allows on-chip studies of single cells in artificial narrow cavities, for example. Another modification of the framework is the addition of a catalytic layer which turns the microtube into a self-propelled catalytic micro-engine. Furthermore, the tuneability of the diameter can have applications ranging from nanotools for drilling into cells, to cargo transporters in microfluidic channels. Especially rolled-up microtubes based on low-cost and easy to deposit materials, such as silicon oxides, can enable the exploration of novel systems for several scientific topics. The main objective of this thesis is to combine microfluidic features of rolled-up structures with optical sensor capabilities of silicon oxide microtubes acting as optical ring resonators, and to integrate these into a Lab-on-a-Chip system. Therefore, a new concept of microfluidic integration is developed in order to establish an inexpensive, reliable and reproducible fabrication process which also sustains the optical capabilities of the microtubes. These integrated microtubes act as optofluidic refractrometric sensors which detect changes in the refractive index of analytes using photoluminescence spectroscopy. The thesis concludes with a demonstration of a functional portable sensor device with several integrated optofluidic sensors. / Die auf verspannten Dünnschichten basierende „rolled-up nanotechnologie“ ist eine leistungsfähige Methode um dreidimensionale hohle Strukturen (Mikroröhrchen) aus nahezu jeder Art von Material auf einer großen Vielfalt von Substraten herzustellen.
Ausgehend von der Möglichkeit der Skalierung des Röhrchendurchmessers und der Modifikation der Funktionalität des Röhrchens durch Einsatz verschiedener Materialien und Oberflächenfunktionalisierungen kann eine große Anzahl an verschiedenen Anwendungen ermöglicht werden. Eine Anwendung behandelt unter anderem on-chip Studien einzelner Zellen wobei die Mikroröhrchen, an die Größe der Zelle angepasste, Reaktionscontainer darstellen. Eine weitere Modifikation der Funktionalität der Mikroröhrchen kann durch das Aufbringen einer katalytischen Schicht realisiert werden, wodurch das Mikroröhrchen zu einem selbstangetriebenen katalytischen Mikro-Motor wird.
Hauptziel dieser Arbeit ist es Mikrometer große optisch aktive Glasröhrchen herzustellen, diese mikrofluidisch zu kontaktieren und als Sensoren in Lab-on-a-Chip Systeme zu integrieren. Die integrierten Glasröhrchen arbeiten als optofluidische Ringresonatoren, welche die Veränderungen des Brechungsindex von Fluiden im inneren des Röhrchens durch Änderungen im Evaneszenzfeld detektieren können. Die Funktionsfähigkeit eines Demonstrators wird mit verschiedenen Flüssigkeiten gezeigt, dabei kommt ein Fotolumineszenz Spektrometer zum Anregen des Evaneszenzfeldes und Auslesen des Signals zum Einsatz. Die entwickelte Integrationsmethode ist eine Basis für ein kostengünstiges, zuverlässiges und reproduzierbares Herstellungsverfahren von optofluidischen Mikrochips basierend auf optisch aktiven Mikroröhrchen.
|
8 |
Nanomembrane-based hybrid semiconductor-superconductor heterostructuresThurmer, Dominic J. 20 July 2011 (has links)
The combination of modern self-assembly techniques with well-established top-down processing methods pioneered in the electronics industry is paving the way for increasingly sophisticated devices in the future[1]. Nanomembranes, made from a variety of materials, can provide the necessary framework for a diverse range of device structures incorporating wrinkling, buckling, folding, and rolling of thin films[2, 3]. Over the past decade, an elegant symbiosis of bottom-up and top-down methods has been developed, allowing the fabrica- tion of hybrid layer systems via the controlled release and rearrangement of inherently strained layers [4]. Self-assembled rolled-up structures[4, 5] have become increasingly at- tractive in a number of fields including micro/nano uidics[6], optics[7](including metama- terial optical fibers[8]), Lab on a Chip applications[9], and micro- and nanoelectronics[10]. The use of such structures for microelectronic applications has been driven by the versatility in contacting geometries and the abundance of material combinations that these devices offer. By allowing devices to expand in the third dimension, certain obstacles that inhibit 2D structuring can be overcome in elegant ways. Similarly, recent progress in nanostructured superconducting electronic structures has been receiving increased attention[11]. The advancement of such devices has been mo- tivated by their use in quantum computation[12], high sensitivity radiation sensors[13], precision voltage standards[14] and superconducting spintronics[15] to name a few. Combining semiconductor with superconductor materials to create new hybrid geometries is advantageous because it adds the functionalities of the semiconductor, including high charge carrier mobilities, gating possibilities, and refined processing technologies.
The main focus of the work presented in this thesis is the development of new methods for controlling strain behavior and its applications toward novel semiconduc- tor/superconductor heterostructures based on nanomembranes. More specifically, the goal is to integrate inherently strained semiconductor layer structures with superconducting materials to create innovative electronic devices by the controlled releasing and rearrangement of thin films. By rolling up pre-patterned semiconductor/superconductor layers, device geometries have been realized that are not feasible using any other technique. In this way, superconducting hybrid junctions, or Josephson junctions, have been created and their basic properties investigated.
The Josephson effect, and junctions displaying this quantum coherent behavior, have found many essential uses in diverse areas of science and technology. Many research groups around the world are involved in finding new materials and fabrication methods to tune the properties and structure of such Josephson devices further[11]. The inclusion of semi- conductors, for example, allows for a greater control of the charge carrier density within the junction area, thus allowing for "transistor-like" behavior in these superconducting devices.
By rolling up the superconductor contacts using a strained semiconductor as scaffolding, the fabrication of hybrid nano-junctions is simplified drastically, removing the need for complicated processing steps such as electron-beam or nano-imprint lithography. Furthermore, the technique allows many nanometer-sized devices to be created in parallel on a single chip which has the advantage that it can be scaled up to full-wafer processing.
First, post-growth processing techniques of epitaxial layers are developed in order to extend the control of hybrid device fabrication. Here, three unique concepts for controlling the rolling behavior of strained semiconductor nanomembranes are presented. First an optical method for inhibiting the rolling of the strained layers is described. Next, a selective etching method for destroying the inherent strain within the semiconductor layer is introduced. Finally, a method by which the strain gradient across a trilayer stack is altered in situ during rolling is presented. Next, the fabrication of a hybrid nanomembrane-based superconducting device is presented. Various experimental details of the fabrication process are analyzed, and the electronic properties of the completed device are investigated. The devices created here highlight the fabrication process in which nanometer-sized structures are created using self-assembly techniques and standard microelectronics fabrication methods, presenting a new method to circumvent more complicated processing techniques.
References
[1] G. M. Whitesides and B. Grzybowski. Self-assembly at all scales. Science 295, 2418{2421 (2002).
[2] Y. G. Sun, W. M. Choi, H. Q. Jiang, Y. G. Y. Huang and J. A. Rogers. Controlled buckling of semiconductor
nanoribbons for stretchable electronics. Nature Nanotechnology 1, 201{207 (2006).
[3] O. G. Schmidt and K. Eberl. Nanotechnology - Thin solid films roll up into nanotubes. Nature 410, 168 (2001).
[4] O. G. Schmidt, C. Deneke, Y. Nakamura, R. Zapf-Gottwick, C. Mller and N. Y. Jin-Phillipp. Nanotechnology
{ Bottom-up meets top-down. Advanced Solid State Physics 42, 231 (2002).
[5] V. Ya. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato
and T. A. Gavrilova. Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays. Physica
E 6, 828 (2000).
[6] D. J. Thurmer, C. Deneke, Y. F. Mei and O. G. Schmidt. Process integration of microtubes for
uidic applications.
Applied Physics Letters 89, 223507 (2006).
[7] R. Songmuang, A. Rastelli, S. Mendach and O. G. Schmidt. SiOx/Si radial superlattices and microtube optical
ring resonators. Applied Physics Letters 90, 091905 (2007).
[8] E. J. Smith, Z. W. Liu, Y. F. Mei and O. G. Schmidt. Combined surface plasmon and classical waveguiding through
metamaterial fiber design. Nano Letters 10, 1{5 (2010).
[9] G. S. Huang, Y. F. Mei, D. J. Thurmer, E. Coric and O. G. Schmidt. Rolled-up transparent microtubes as
two-dimensionally confined culture scaffolds of individual yeast cells. Lab on a Chip 9, 263{268 (2009).
[10] C. C. B. Bufon, J. D. C. Gonzalez, D. J. Thurmer, D. Grimm, M. Bauer and O. G. Schmidt. Self-assembled
ultra-compact energy storage elements based on hybrid nanomembranes. Nano Letters 10, 2506{2510 (2010).
[11] G. Katsaros, P. Spathis, M. Stoffel, F. Fournel, M. Mongillo, V. Bouchiat, F. Lefloch, A. Rastelli,
O. G. Schmidt and S. De Franceschi. Hybrid superconductor-semiconductor devices made from self-assembled
SiGe nanocrystals on silicon. Nature Nanotechnology 5, 458{464 (2010).
[12] Y. J. Doh, J. A. van Dam, A. L. Roest, E. P. A. M. Bakkers, L. P. Kouwenhoven and S. De Franceschi.
Tunable supercurrent through semiconductor nanowires. Science 309, 272{275 (2005).
[13] F. Giazotto, T. T. Heikkila, G. P. Pepe, P. Helisto, A. Luukanen and J. P. Pekola. Ultrasensitive proximity
Josephson sensor with kinetic inductance readout. Applied Physics Letters 92, 162507 (2008).
[14] S. P. Benz. Superconductor-normal-superconductor junctions for programmable voltage standards. Applied Physics
Letters 67, 2714{2716 (1995).
[15] Y. C. Tao and J. G. Hu. Superconducting spintronics: Spin-polarized transport in superconducting junctions with
ferromagnetic semiconducting contact. Journal of Applied Physics 107, 041101 (2010).
|
9 |
Rolled-up microtubes as components for Lab-on-a-Chip devicesHarazim, Stefan M. 09 November 2012 (has links)
Rolled-up nanotechnology based on strain-engineering is a powerful tool to manufacture three-dimensional hollow structures made of virtually any kind of material on a large variety of substrates. The aim of this thesis is to address the key features of different on- and off-chip applications of rolled-up microtubes through modification of their basic framework. The modification of the framework pertains to the tubular structure, in particular the diameter of the microtube, and the material which it is made of, hence achieving different functionalities of the final rolled-up structure. The tuning of the microtube diameter which is adjusted to the individual size of an object allows on-chip studies of single cells in artificial narrow cavities, for example. Another modification of the framework is the addition of a catalytic layer which turns the microtube into a self-propelled catalytic micro-engine. Furthermore, the tuneability of the diameter can have applications ranging from nanotools for drilling into cells, to cargo transporters in microfluidic channels. Especially rolled-up microtubes based on low-cost and easy to deposit materials, such as silicon oxides, can enable the exploration of novel systems for several scientific topics. The main objective of this thesis is to combine microfluidic features of rolled-up structures with optical sensor capabilities of silicon oxide microtubes acting as optical ring resonators, and to integrate these into a Lab-on-a-Chip system. Therefore, a new concept of microfluidic integration is developed in order to establish an inexpensive, reliable and reproducible fabrication process which also sustains the optical capabilities of the microtubes. These integrated microtubes act as optofluidic refractrometric sensors which detect changes in the refractive index of analytes using photoluminescence spectroscopy. The thesis concludes with a demonstration of a functional portable sensor device with several integrated optofluidic sensors. / Die auf verspannten Dünnschichten basierende „rolled-up nanotechnologie“ ist eine leistungsfähige Methode um dreidimensionale hohle Strukturen (Mikroröhrchen) aus nahezu jeder Art von Material auf einer großen Vielfalt von Substraten herzustellen.
Ausgehend von der Möglichkeit der Skalierung des Röhrchendurchmessers und der Modifikation der Funktionalität des Röhrchens durch Einsatz verschiedener Materialien und Oberflächenfunktionalisierungen kann eine große Anzahl an verschiedenen Anwendungen ermöglicht werden. Eine Anwendung behandelt unter anderem on-chip Studien einzelner Zellen wobei die Mikroröhrchen, an die Größe der Zelle angepasste, Reaktionscontainer darstellen. Eine weitere Modifikation der Funktionalität der Mikroröhrchen kann durch das Aufbringen einer katalytischen Schicht realisiert werden, wodurch das Mikroröhrchen zu einem selbstangetriebenen katalytischen Mikro-Motor wird.
Hauptziel dieser Arbeit ist es Mikrometer große optisch aktive Glasröhrchen herzustellen, diese mikrofluidisch zu kontaktieren und als Sensoren in Lab-on-a-Chip Systeme zu integrieren. Die integrierten Glasröhrchen arbeiten als optofluidische Ringresonatoren, welche die Veränderungen des Brechungsindex von Fluiden im inneren des Röhrchens durch Änderungen im Evaneszenzfeld detektieren können. Die Funktionsfähigkeit eines Demonstrators wird mit verschiedenen Flüssigkeiten gezeigt, dabei kommt ein Fotolumineszenz Spektrometer zum Anregen des Evaneszenzfeldes und Auslesen des Signals zum Einsatz. Die entwickelte Integrationsmethode ist eine Basis für ein kostengünstiges, zuverlässiges und reproduzierbares Herstellungsverfahren von optofluidischen Mikrochips basierend auf optisch aktiven Mikroröhrchen.
|
10 |
Sensing and Transport Properties of Hybrid Organic/Inorganic DevicesVervacke, Céline 11 September 2014 (has links)
Over the past two decades, organic semiconductors played a growing part as active layers in several electronic systems such as sensors, field‑effect transistors or light emitting diodes to cite a few. In fact, organic materials offer a high versatility and flexibility. However, pure organic systems often lack stability and robustness, which can be overcome by combining them with inorganic scaffolds.
In this work, a conducting polymer, polypyrrole (PPy) is employed to create new sensor elements based on the combination of both inorganic and organic layers. Electrical measurements, infrared spectroscopy and current sensing atomic force microscopy provides a better understanding of the polymer behavior upon immersion in aqueous solutions. The observed discharge in water leads to a straightforward application of the device as an in‑flow sensor for several acids like HCl, H2SO4 and H3PO4. The wide range of sensing concentrations as well as the low detection limit place the present detector among the best reported so far in the literature.
In a further step to turn towards lab‑in‑a‑tube devices, tubular‑shaped‑integrated microelectrodes are developed by using the rolled‑up technology. As a proof of concept, the successful integration of PPy as an active layer and its use as a gas sensor for volatile organic compounds (VOCs) is demonstrated.
Finally, by adapting the rolled‑up top electrodes, as developed by Bof Bufon et al. for self‑assembled monolayers (SAMs), thin PPy films (<50 nm) are vertically contacted and their electrical characteristics measured as a function of temperature and electric field. From the transport investigations, it is observed that an insulating‑to‑metallic transition occurs in the polymeric film by increasing the bias voltage. Other molecular layers like CuPc can be incorporated in these platforms, opening the way towards emerging organic devices.
|
Page generated in 0.0561 seconds