• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High Sensitivity Nuclear Magnetic Resonance at Extreme Pressures

Meier, Thomas 06 June 2016 (has links) (PDF)
Moderne Hochdruckforschung entwickelt sich rasant zu einer der vielfältigsten und überraschensten Disziplinen der Festkörperphysik. Unter Benutzung von Diamantstempelzellen können Drücke erreicht werden, die den Bedingungen im Inneren unserer Erde ähneln. Eine Anwendung von Kernmagnetischen Resonanzexperimenten (NMR) in Diamantstempelzellen galt jedoch für lange Zeit als unmöglich. In der vorliegenden Arbeit wird ein neuartiger Ansatz weiterentwickelt, der Radiofrequenz-(RF)-Mikrospulen benutzt, die direkt zwischen den Diamantstempeln platziert werden, und somit zu einer signifikanten Sensitivitätssteigerung führen. Es ist gelungen, Hochdruckzellen zu entwickeln, die für die speziellen Anforderungen der NMR zugeschnitten sind. Des Weiteren konnte eine nicht metallische, nicht magnetische Dichtung entwickelt werden, die zudem zu einer signfifikanten Stabilisierung des Probenvolumens führt. Eine breit angelegte Analyse der Leistungsfähigkeit dieser neuartigen NMR-Hochdruckprobenköpfe zeigt deren Leistungsfähigkeit mit sehr hohen Empfifindlichkeiten sowie einer exzellenten RF Anregung und Zeitauflösung. Drei Anwendungsbeispiele, die das Potenzial dieses Ansatzes in dieser Arbeit unterstreichen, werden vorgestellt. Bei Drücken von bis zu 4 GPa werden die elektronischen und dynamischen Eigenschaften von elementarem Gallium untersucht. Unter höheren Drücken ist es gelungen, einen druckinduzierten Isolator-Metall-Übergang in dem ternären Chalkogenid AgInTe2 zu beobachten. Schlussendlich ist es gelungen, die strukturellen und elektronischen Eigenschaften von Rubin bei Drücken von bis zu 30.5 GPa zu untersuchen, was einer Verdreifachung des bisher zugänglichen experimentellen Druckbereiches entspricht und die NMR für moderne Hochdruckanwendungen möglich macht.
2

Development of self-assembled, rolled-up microcoils for nuclear magnetic resonance spectroscopy

Lepucki, Piotr 08 November 2021 (has links)
Miniaturization is a key technological approach in current times. The most prominent examples of miniaturization are personal computers and mobile phones, but we observe miniaturization in other aspects of life, with the most recent example being small portable corona test kits. In science a big part of miniaturization focuses on detectors: to make them portable, to make them integrable into bigger, multi-function systems or to enable detection of smaller and smaller samples. For many experimental techniques highly sensitive and compact devices are already available, one of the extreme examples being single photon detectors. Compared to that, miniaturization of nuclear magnetic resonance (NMR) has still a long way to go in terms of both size and sensitivity. Recently, the successful miniaturization of an NMR coil was presented: on top of a flat polymeric bilayer a metallic layout is patterned. In an aqueous solution, one polymer layer absorbs water and swells, which induces strain between the two polymeric layers. This strain is released by a self-rolling-up of the bilayer, and the metal layer transforms into a microcoil. Such microcoils were successfully used for impedimetric measurements, as antennas, and as mentioned for NMR, but their performance in the latter was far from optimal. This thesis focuses on the optimization of rolled-up microcoils (RUMs) for NMR spectroscopy, with the goal to produce high-resolution and, most importantly, high-sensitivity microcoils. The performance of the microcoil can be expressed in three parameters, namely the spectral linewidth, the (normalized) limit of detection and the damping of a nutation curve, which was not a key parameter for this thesis. Both the microcoil design and the roll-up process have an influence on the quality of a RUM. For an optimal roll-up process, the polymeric bilayer layout needed some adjustment. The rolling process itself was improved through an addition of supporting structures on top of the bilayer, which resulted in tightly rolled tubes with a well-defined diameter. The coil layout was selected from several simple layouts. This layout was then optimized with the help of experiments and simulations. For example, an improvement in resolution was achieved through a reduction of the susceptibility of the metal. Finally, the coil was embedded into a microfluidic chip. This chip allows an easy sample supply into the coil interior and protects the coil from damage. As a side effect, the chip has a positive influence on the resolution of the detector. The best RUMs have a volume of only 1.5 nl, show a linewidth of only 8 ppb and a normalized limit of detection of 0.6 nmol√Hz at 600 MHz. The achieved resolution and sensitivity allow to resolve a 1H ethanol spectrum fully in a single measurement of 6 s duration. Compared to a standard shimmed NMR detector, where the linewidth is 0.65 ppb and the nLOD 10 nmol√Hz, the RUMs linewidth still needs some improvement, but the limit of detection is already an order of magnitude smaller. Combined with the fact that the limit of detection improves with linewidth, this shows the far superior sensitivity of RUMs compared to standard setups. A comparison with literature is also very promising, where optimized RUMs compete with the best published microcoils. Additionally, RUMs can be produced en masse, with, at the moment, four coils fitting on a single 50 x 50 mm2 glass substrate, while the best other microcoils were all made for single, specific experiments one at a time. And finally, the here presented recipe for self-assembled, RUMs is easily adaptable to even smaller sample volumes and to other coil layouts. It can be used to produce matching gradient coil systems and is a guideline on how to combine NMR and other techniques while maintaining a high NMR performance.:Introduction Nuclear magnetic resonance 1 NMR principle 1.1 A single nucleus in a magnetic field 1.2 Multiple spins in external field 1.3 Spins in natura 1.4 Typical liquid state spectrum 1.5 Typical NMR setup 2 Properties of an NMR detector 2.1 Quality of rf-field 2.2 Resolution 2.3 Signal-to-noise ratio 2.4 How to optimize a microcoil 3 Existing microdetectors 3.1 Solenoids 3.2 Saddle coils 3.3 Flat coils 3.4 Striplines/Microslots 4 Comparing microdetectors 4.1 The limit of detection 4.2 Performance of published microcoils Self-assembly 5 What is self-assembly? 6 Self-assembly in microfabrication 6.1 Macroscopic self-assembly 6.2 Self-rolled tubes 7 Self-assembly of rolled-up microcoils 7.1 Working principle 7.2 Experimental methods for self-assembly 8 Encapsulating rolled-up tubes 8.1 Microfluidics 8.2 Microfluidic chip 8.3 Experimental methods for encapsulation Rolled-up microcoils 9 Fabrication 9.1 Bilayer 9.2 Coil geometry 9.3 Metal stack 9.4 Supporting elements 9.5 Rolling process 9.6 Final layout 9.7 Microfluidic integration 10 Reducing susceptibility-induced field distortions 10.1 Simulating field distortions 10.2 Influence of the coil shape 10.3 Susceptibility matching 11 NMR performance 11.1 Measurement setup 11.2 Quality of rf-field 11.3 Resolution and sensitivity 11.4 Comparison to published microcoils 12 Outlook 12.1 Further improvements to rf-field, FWHM and nLOD 12.2 New coil shapes 12.3 New applications Summary Appendix A Simulation and maths A.1 Filling factor and rf-homogeneity A.2 Nutation and rf-homogeneity A.3 FT of one-sided exponential A.4 DFT A.5 Programs B Protocols B.1 Polymeric platform B.2 Metal layers C Test protocols C.1 Wet etching D Calculations for nLODs
3

High Sensitivity Nuclear Magnetic Resonance at Extreme Pressures

Meier, Thomas 10 May 2016 (has links)
Moderne Hochdruckforschung entwickelt sich rasant zu einer der vielfältigsten und überraschensten Disziplinen der Festkörperphysik. Unter Benutzung von Diamantstempelzellen können Drücke erreicht werden, die den Bedingungen im Inneren unserer Erde ähneln. Eine Anwendung von Kernmagnetischen Resonanzexperimenten (NMR) in Diamantstempelzellen galt jedoch für lange Zeit als unmöglich. In der vorliegenden Arbeit wird ein neuartiger Ansatz weiterentwickelt, der Radiofrequenz-(RF)-Mikrospulen benutzt, die direkt zwischen den Diamantstempeln platziert werden, und somit zu einer signifikanten Sensitivitätssteigerung führen. Es ist gelungen, Hochdruckzellen zu entwickeln, die für die speziellen Anforderungen der NMR zugeschnitten sind. Des Weiteren konnte eine nicht metallische, nicht magnetische Dichtung entwickelt werden, die zudem zu einer signfifikanten Stabilisierung des Probenvolumens führt. Eine breit angelegte Analyse der Leistungsfähigkeit dieser neuartigen NMR-Hochdruckprobenköpfe zeigt deren Leistungsfähigkeit mit sehr hohen Empfifindlichkeiten sowie einer exzellenten RF Anregung und Zeitauflösung. Drei Anwendungsbeispiele, die das Potenzial dieses Ansatzes in dieser Arbeit unterstreichen, werden vorgestellt. Bei Drücken von bis zu 4 GPa werden die elektronischen und dynamischen Eigenschaften von elementarem Gallium untersucht. Unter höheren Drücken ist es gelungen, einen druckinduzierten Isolator-Metall-Übergang in dem ternären Chalkogenid AgInTe2 zu beobachten. Schlussendlich ist es gelungen, die strukturellen und elektronischen Eigenschaften von Rubin bei Drücken von bis zu 30.5 GPa zu untersuchen, was einer Verdreifachung des bisher zugänglichen experimentellen Druckbereiches entspricht und die NMR für moderne Hochdruckanwendungen möglich macht.
4

Electron-nuclear spin control and carrier spin dynamics in II-VI semiconductor

Kim, Jungtaek 10 June 2016 (has links)
Diese Dissertation besteht aus zwei Teilen von Studien. Der erste Teil demonstriert die Steuerung der Elektron-Kern-Spin-Systems in II-VI Halbleiter Quantum Dots (QDs) durch elektrische Ströme über Mikrospulen. Mikrometer-große Leiterschleifen sind auf der Oberseite von Heterostrukturen mit geladenen CdSe/ZnS QDs hergestellt worden. Eine Strominjektion erzeugt magnetische Felder im Bereich von einige 10 mT, welche stark genug sind, um die Hyperfeinwechselwirkung in CdSe QDs modulieren zu können. Der Durchmesser des Spulen im Mikrometer-Bereich ermöglicht die Generation von schnellen Feld transienten im Bereich von wenigen ns. Mit diesen Vorteilen der Mikrospulen werden die Steuerungs des Spins der residenten Elektronen sowie das Auslesen des Kernspinzustandes durch elektrische Impulse nachgewiesen. Der zweite Teil befasst sich mit der Ladungsträger-Spindynamik in ZnO Quantum Well (QW) Strukturen und Epitaxieschichten, die mittels des optischen Übergang von negativ geladenen Exzitonen X− beziehungsweise des am neutralen Donator gebunden Exziton D0X untersucht werden. Der Loch-Spin kann direkt über die zirkular polarisierten Photolumineszenz der beiden Komplexe zurückverfolgt werde. Die Spin-Relaxationszeit von QW und Epiplyer verfolgt werden. Der Spin des Donatorelektronens wird über die Ausbleichung des Spin-selektive Anregungprozesses nachgewiesen. Es werden longitudinale Loch-Spinrelaxationszeiten von 80 bis 140 ps für D0X und X− gefunden. Deutlich längere longitudinalen Elektronen-Spin-Relaxationszeiten in Bereich von mehreren 100 ns werden gefunden, wenn die Hyperfeinwechselwirkung durch ein geeignetes externes Magnetfeld unterdrückt wird. Eine Feldstärke von 2 mT ist groß genug. Dies zeigt den extrem kleinen Wert des Overhauser-Feldes in ZnO auf, der durch die sehr begrenzte Anzahl von magnetischen Kernen in Wechselwirkung mit dem Elektronen innerhalb des Volumens des Donators verursacht wird. / This work is composed of two parts of studies. The first part represents an electron-nuclear spin control in II-VI semiconductor quantum dots (QDs) by electrical currents via micro coils. Micrometer single turn coils are fabricated on top of heterostructures with charged CdSe/ZnSe QDs. Current injection creates magnetic fields in the range of some 10 mT which is strong enough to modulate the hyperfine interaction in CdSe. The micrometer-range diameter of coil allows for generation of fast field transient in the range of few ns. Using these advantages of micro coils, local control of the resident electron spin as well as read out of the nuclear spin state are demonstrated by electrical pulses. The second part presents charged carrier spin dynamics in ZnO quantum wells and epilayers using the optical transition of the negatively charged exciton X− and the neutral donor bound exciton D0X, respectively. The hole spin can be directly traced by the circular polarized photoluminescence of both complexes. The spin relaxation of the resident electrons and donor electrons is accessed via the bleaching of the spin selective excitation process. Longitudinal hole spin relaxation times of 80 and 140 ps are found for D0X and X−, respectively. Much longer longitudinal electron spin relaxation times in the several 100 ns range are uncovered if the hyperfine interaction is suppressed by a proper external magnetic field. A field strength of 2 mT is large enough proving that the extremely small value of the Overhauser field in ZnO caused by the very restricted number of magnetic nuclei interacting with the electron inside the donor volume.

Page generated in 0.0498 seconds