131 |
[en] BUS NETWORK ANALYSIS AND MONITORING / [pt] ANÁLISE E MONITORAMENTO DE REDES DE ÔNIBUSKATHRIN RODRIGUEZ LLANES 17 August 2017 (has links)
[pt] Ônibus, equipados com dispositivos GPS ativos que transmitem continuamente a sua posição, podem ser entendidos como sensores móveis de trânsito. De fato, as trajetórias dos ônibus fornecem uma fonte de dados útil para analisar o trânsito na rede de ônibus de uma cidade, dado que as autoridades de trânsito da cidade disponibilizem as trajetórias de forma aberta, oportuna e contínua. Neste contexto, esta tese propõe uma abordagem que usa os dados de GPS dos ônibus para analisar e monitorar a rede de ônibus de uma cidade. Ela combina algoritmos de grafos, técnicas de mineração de dados geoespaciais e métodos estatísticos. A principal contribuição desta tese é uma definição detalhada de operações e algoritmos para analisar e monitorar o tráfego na rede de ônibus, especificamente: (1) modelagem, análise e segmentaçãoda rede de ônibus; (2) mineração do conjunto de dados de trajetória de ônibus para descobrir padrões de tráfego; (3) detecção de anomalias de trânsito, classificação de acordo com sua gravidade, e avaliação do seu impacto; (4) manutenção e comparação de diferentes versões da rede de ônibus e dos seus padrões de tráfego para ajudar os planejadores urbanos a avaliar as mudanças. Uma segunda contribuição é a descrição de experimentos realizados para a rede de ônibus da Cidade do Rio de Janeiro, utilizando trajetórias de ônibus correspondentes ao período de junho de 2014 até fevereiro de 2017, disponibilizadas pela Prefeitura do Rio de Janeiro. Os resultados obtidos corroboram a utilidade da abordagem proposta para analisar e monitorar a rede de ônibus de uma cidade, o que pode ajudar os gestores do trânsito e as autoridades municipais a melhorar os planos de controle de trânsito e de mobilidade urbana. / [en] Buses, equipped with active GPS devices that continuously transmit their position, can be understood as mobile traffic sensors. Indeed, bus trajectories provide a useful data source for analyzing traffic in the bus network of a city, if the city traffic authority makes the bus trajectories available openly, timely and in a continuous way. In this context, this thesis proposes a bus GPS data-driven approach for analyzing and monitoring the bus network of a city. It combines graph algorithms, geospatial data mining techniques and statistical methods. The major contribution of this thesis is a detailed discussion of key operations and algorithms for modeling, analyzing and monitoring bus network traffic, specifically: (1) modelling, analyzing, and segmentation of the bus network; (2) mining the bus trajectory dataset to uncover traffic patterns; (3) detecting traffic anomalies, classifying them according to their severity, and estimating their impact; (4) maintaining and comparing different versions of the bus network and traffic patterns to help urban planners assess changes. Another contribution is the description of experiments conducted for the bus network of the City of Rio de Janeiro, using bus trajectories obtained from June 2014 to February 2017, which have been made available by the City Hall of Rio de Janeiro. The results obtained corroborate the usefulness of the proposed approach for analyzing and monitoring the bus network of a city, which may help traffic managers and city authorities improve traffic control and urban mobility plans.
|
132 |
Aplicando a relevância da opinião de usuários em sistema de recomendação para pesquisadores / Applying user’s opinion relevance in a Recommender System to ResearchersCazella, Silvio Cesar January 2006 (has links)
As pessoas têm acesso a uma vasta gama de informações devido a grande oferta e aos recursos da Internet, porém despendem muito tempo na busca do que realmente é interessante ou útil para elas. A dificuldade de encontrar a informação correta é aumentada quando a informação disputa a atenção de uma pessoa com uma série de outras informações não tão relevantes. Procurando minimizar esta dificuldade e auxiliar no acesso a informação interessante, são aplicados desde sistemas de recuperação de informação até sistemas de filtragem de informação. Os sistemas de recuperação são amplamente difundidos na Internet através dos motores de busca (por exemplo, google.com, av.com, citeseer.ist.psu.edu), porém um problema neste tipo de aplicação constitui-se na necessidade do usuário apresentar os termos (palavras-chave) que são relevantes para a consulta. filtragem de informação, tendo como representante os Sistemas de Recomendação, surge como uma nova abordagem que procura liberar o usuário da exigência de criar consultas com palavras-chave, ou seja, a filtragem baseada em conteúdo procura casar o perfil do usuário e o conteúdo dos itens a serem recomendados, e então, oferecer alguns destes itens aos usuários. Por fim, surgiram sistemas que não se baseavam na análise do conteúdo dos itens, mas sim na reputação de um item junto aos outros usuários, ou seja, o usuário recebe a recomendação de um item que pode ser do seu interesse frente à colaboração de outros usuários que avaliaram o item. A questão maior nesta abordagem está no quanto a opinião de um usuário que avaliou um item é relevante para servir como colaboração na elaboração da recomendação para outro usuário. Esta tese constitui-se em uma proposta para modelar e incluir a relevância da opinião do usuário no processo de recomendação colaborativa, ou seja, apresenta uma abordagem de Sistemas de Recomendação para recomendar itens baseando-se em informação adicional − definida como relevância da opinião do usuário − além das típicas informações utilizadas na grande maioria dos Sistemas de Recomendação. Esta inclusão da relevância da opinião constitui-se em uma alternativa para que o usuário alvo da recomendação consiga identificar qual a importância de um determinado item recomendado frente à relevância de opinião dos recomendadores. A idéia apresentada é a de que pessoas com maior relevância de opinião poderiam melhor avaliar e recomendar itens. / Nowadays, people have access to a huge amount of information due to the Internet's resources. However they spend too much time searching for interesting, adequate or useful information. The difficulty to find worthwhile information increases when interesting things dispute the user's attention. Information retrieval and information filtering systems are applicable in order to minimize search difficulties, aiming to aid the user in the search for worthwhile information. Information retrieval systems are widely spread in the Internet through search engines (e.g., google.com, av.com, citeseer.ist.psu.edu). However there is a problem in this kind of application, which consists in compelling the user to know the terms (keywords) that are relevant for the search. Recommender Systems are an information filtering solution. They present a different approach that frees the user from creating queries with keywords. It means that the system tries to match the user's profile (historical interests) with the content of items to be recommended, and then offers these items to the user (recommendee). In parallel, an alternative approach to item recommendation was proposed, this one based on the offering of items based on other users’ opinion, i.e. the user receives an item recommendation based on the evaluation of other users (collaborative filtering or social filtering). However, a different question is raised here − how much the opinion of a user who evaluated an item is relevant to be employed in the recommendation process applying a collaborative method? This thesis presents a new approach to model and include in the collaborative recommendation process additional information named Recommender's Rank, which represents the relevance of the user's opinion and complements the typical information used in the large majority of Recommender Systems. This approach is an alternative to aid the user to identify the importance of a recommended item based on other users' opinions, as people with higher relevance of opinion are more likely to better evaluate and recommend items.
|
133 |
Aplicação do processo de descoberta de conhecimento em dados do poder judiciário do estado do Rio Grande do Sul / Applying the Knowledge Discovery in Database (KDD) Process to Data of the Judiciary Power of Rio Grande do SulSchneider, Luís Felipe January 2003 (has links)
Para explorar as relações existentes entre os dados abriu-se espaço para a procura de conhecimento e informações úteis não conhecidas, a partir de grandes conjuntos de dados armazenados. A este campo deu-se o nome de Descoberta de Conhecimento em Base de Dados (DCBD), o qual foi formalizado em 1989. O DCBD é composto por um processo de etapas ou fases, de natureza iterativa e interativa. Este trabalho baseou-se na metodologia CRISP-DM . Independente da metodologia empregada, este processo tem uma fase que pode ser considerada o núcleo da DCBD, a “mineração de dados” (ou modelagem conforme CRISP-DM), a qual está associado o conceito “classe de tipo de problema”, bem como as técnicas e algoritmos que podem ser empregados em uma aplicação de DCBD. Destacaremos as classes associação e agrupamento, as técnicas associadas a estas classes, e os algoritmos Apriori e K-médias. Toda esta contextualização estará compreendida na ferramenta de mineração de dados escolhida, Weka (Waikato Environment for Knowledge Analysis). O plano de pesquisa está centrado em aplicar o processo de DCBD no Poder Judiciário no que se refere a sua atividade fim, julgamentos de processos, procurando por descobertas a partir da influência da classificação processual em relação à incidência de processos, ao tempo de tramitação, aos tipos de sentenças proferidas e a presença da audiência. Também, será explorada a procura por perfis de réus, nos processos criminais, segundo características como sexo, estado civil, grau de instrução, profissão e raça. O trabalho apresenta nos capítulos 2 e 3 o embasamento teórico de DCBC, detalhando a metodologia CRISP-DM. No capítulo 4 explora-se toda a aplicação realizada nos dados do Poder Judiciário e por fim, no capítulo 5, são apresentadas as conclusões. / With the purpose of exploring existing connections among data, a space has been created for the search of Knowledge an useful unknown information based on large sets of stored data. This field was dubbed Knowledge Discovery in Databases (KDD) and it was formalized in 1989. The KDD consists of a process made up of iterative and interactive stages or phases. This work was based on the CRISP-DM methodology. Regardless of the methodology used, this process features a phase that may be considered as the nucleus of KDD, the “data mining” (or modeling according to CRISP-DM) which is associated with the task, as well as the techniques and algorithms that may be employed in an application of KDD. What will be highlighted in this study is affinity grouping and clustering, techniques associated with these tasks and Apriori and K-means algorithms. All this contextualization will be embodied in the selected data mining tool, Weka (Waikato Environment for Knowledge Analysis). The research plan focuses on the application of the KDD process in the Judiciary Power regarding its related activity, court proceedings, seeking findings based on the influence of the procedural classification concerning the incidence of proceedings, the proceduring time, the kind of sentences pronounced and hearing attendance. Also, the search for defendants’ profiles in criminal proceedings such as sex, marital status, education background, professional and race. In chapters 2 and 3, the study presents the theoretical grounds of KDD, explaining the CRISP-DM methodology. Chapter 4 explores all the application preformed in the data of the Judiciary Power, and lastly, in Chapter conclusions are drawn
|
134 |
Avaliação da sustentabilidade da mineração de cobre e manganês em Carajás (PA) utilizando o método gaia e os indicadores de ecoeficiênciaSantos Júnior, Agenor Viriato dos January 2005 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Engenharia de Produção. / Made available in DSpace on 2013-07-16T02:49:32Z (GMT). No. of bitstreams: 1
228089.pdf: 866722 bytes, checksum: 54d2db9411fb6438c6a39fce96b6eac9 (MD5) / Em virtude da identificação da carência de ferramentas que pudessem medir de maneira aceitável a sustentabilidade na mineração, bem como auxiliar na manutenção e melhoria de boas práticas ambientais de busca da sustentabilidade neste tipo de organização produtiva, busca-se neste estudo uma metodologia para avaliar a sustentabilidade na área de mineração e garantir a sua melhoria contínua através do uso do conceito de ecoeficiência. Para tanto, utilizou-se como embasamento para viabilizar esta proposta, o Método GAIA - Um método de gerenciamento de aspectos e impactos ambientais proposto por Leripio (2001), que fundamenta-se em conceitos e instrumentos conhecidos e reconhecidos pela comunidade científica para a busca da sustentabilidade. Este trabalho faz adaptações no Método GAIA, com o intuito de aproveitá-lo também como uma ferramenta que possa gerar indicadores de ecoeficiência, e que possa também, a partir do monitoramento e controle destes indicadores, garantir a melhoria contínua da sustentabilidade da mineração, em especial a mineração de manganês e de cobre na região de Carajás no sul do Pará, Brasil. O instrumento foi aplicado em duas Minas, a Mina de Manganês do Azul e a Mina de Cobre do Sossego, ambas pertencentes à Companhia Vale do Rio Doce (CVRD). Nos resultados da aplicação pôde-se verificar o índice de sustentabilidade atual das organizações estudadas segundo o método aplicado, bem como a geração de 44 indicadores de ecoeficiência para a mina de manganês e 58 indicadores para a mina de cobre. Os indicadores gerados pela metodologia proposta estão em sintonia com os conceitos e critérios da ecoeficiência e sustentabilidade. Se monitorados e controlados conforme indicado neste trabalho poderão contribuir muito para a melhoria contínua da sustentabilidade destes empreendimentos.. O trabalho pode vir a ser aplicado em qualquer empresa do setor de extração mineral e que trabalhe com qualquer tipo de minério.
|
135 |
[en] MODELING OF THE SUBLEVEL CAVING METHOD USING THE DISCRETE ELEMENT METHOD / [pt] MODELAGEM DO MÉTODO DE EXPLORAÇÃO SUBLEVEL CAVING ATRAVÉS DO MÉTODO DOS ELEMENTOS DISCRETOSJORGE RAUL JARAMILLO BOBADILLA 21 November 2018 (has links)
[pt] O método de exploração Sublevel Caving é um dos métodos de extração massiva mais usados na indústria mundial de exploração subterrânea, sendo considerado pela indústria de mineração, num futuro próximo dentre os substitutos naturais das atuais minas a céu aberto. Uma operação Sublevel Caving requer que o maciço rochoso circundante ao minério rompa continuamente e se movimente para dentro do espaço criado pela extração do minério. Análises existentes na literatura consideram apenas configurações parciais do processo Sublevel Caving sem considerar o processo evolutivo da extração, e o dano induzido ao maciço rochoso decorrente deste processo. Esta dissertação desenvolve uma modelagem numérica utilizando o método dos elementos discretos para simular o mecanismo de ruptura e a subsidência causada pelo método de exploração Sublevel Caving, analisando o referido efeito e suas consequências na evolução do mecanismo de ruptura e subsidência no Sublevel Caving. O software comercial Particle Flow Code
(PFC2D) foi selecionado para esta modelagem devido à capacidade de simular, em um evento de excesso de tensão, o fraturamento do maciço rochoso e sua desintegração, desta forma, originam-se o fluxo do material e os deslocamentos em grande escala, os quais são considerados fenômenos físicos dominantes que regem a formação da subsidência e fraturamento num processo Sublevel Caving. Os resultados obtidos nesse estudo mostraram-se satisfatórios, reproduzindo adequadamente a superfície de subsidência induzida por Sublevel Caving, conseguindo-se uma simulação física realista da sua evolução desde o início do fraturamento até à subsidência final. / [en] The Sublevel Caving Method is one of the most massive extraction methods used in underground mining industry worldwide and is considered by the mining industry as one of the natural replacements of the current open cut mines in the near future. A Sublevel Caving operation requires that the rockmass surrounding the orebody continually fails and moves into the void created by ore extraction. This dissertation develops a modeling using the discrete element method to simulate the failure mechanism and subsidence caused by Sublevel Caving method. Analyses reported in the literature consider only partial configurations of process Sublevel Caving, without taking into consideration the excavation evolution process, and damage induced to the rock mass resulting from this process. This dissertation analyzes this effect and its consequences on the evolution of failure mechanism and subsidence in Sublevel Caving. Particle Flow Code (PFC2D) was selected for modeling because of its ability to simulate, if the event of excess stress, fracturing and disintegration of the rock mass and large-scale deformation and material flow, to be simulated, which are believed to be the dominant physical phenomena governing the formation of subsidence and fracturing of Sublevel Caving. The results obtained in this study were satisfactory, reproducing properly the surface subsidence induced by Sublevel Caving, allowing physically realistic simulation of its evolution since the beginning of the fracturing to final subsidence.
|
136 |
Aplicação do processo de descoberta de conhecimento em dados do poder judiciário do estado do Rio Grande do Sul / Applying the Knowledge Discovery in Database (KDD) Process to Data of the Judiciary Power of Rio Grande do SulSchneider, Luís Felipe January 2003 (has links)
Para explorar as relações existentes entre os dados abriu-se espaço para a procura de conhecimento e informações úteis não conhecidas, a partir de grandes conjuntos de dados armazenados. A este campo deu-se o nome de Descoberta de Conhecimento em Base de Dados (DCBD), o qual foi formalizado em 1989. O DCBD é composto por um processo de etapas ou fases, de natureza iterativa e interativa. Este trabalho baseou-se na metodologia CRISP-DM . Independente da metodologia empregada, este processo tem uma fase que pode ser considerada o núcleo da DCBD, a “mineração de dados” (ou modelagem conforme CRISP-DM), a qual está associado o conceito “classe de tipo de problema”, bem como as técnicas e algoritmos que podem ser empregados em uma aplicação de DCBD. Destacaremos as classes associação e agrupamento, as técnicas associadas a estas classes, e os algoritmos Apriori e K-médias. Toda esta contextualização estará compreendida na ferramenta de mineração de dados escolhida, Weka (Waikato Environment for Knowledge Analysis). O plano de pesquisa está centrado em aplicar o processo de DCBD no Poder Judiciário no que se refere a sua atividade fim, julgamentos de processos, procurando por descobertas a partir da influência da classificação processual em relação à incidência de processos, ao tempo de tramitação, aos tipos de sentenças proferidas e a presença da audiência. Também, será explorada a procura por perfis de réus, nos processos criminais, segundo características como sexo, estado civil, grau de instrução, profissão e raça. O trabalho apresenta nos capítulos 2 e 3 o embasamento teórico de DCBC, detalhando a metodologia CRISP-DM. No capítulo 4 explora-se toda a aplicação realizada nos dados do Poder Judiciário e por fim, no capítulo 5, são apresentadas as conclusões. / With the purpose of exploring existing connections among data, a space has been created for the search of Knowledge an useful unknown information based on large sets of stored data. This field was dubbed Knowledge Discovery in Databases (KDD) and it was formalized in 1989. The KDD consists of a process made up of iterative and interactive stages or phases. This work was based on the CRISP-DM methodology. Regardless of the methodology used, this process features a phase that may be considered as the nucleus of KDD, the “data mining” (or modeling according to CRISP-DM) which is associated with the task, as well as the techniques and algorithms that may be employed in an application of KDD. What will be highlighted in this study is affinity grouping and clustering, techniques associated with these tasks and Apriori and K-means algorithms. All this contextualization will be embodied in the selected data mining tool, Weka (Waikato Environment for Knowledge Analysis). The research plan focuses on the application of the KDD process in the Judiciary Power regarding its related activity, court proceedings, seeking findings based on the influence of the procedural classification concerning the incidence of proceedings, the proceduring time, the kind of sentences pronounced and hearing attendance. Also, the search for defendants’ profiles in criminal proceedings such as sex, marital status, education background, professional and race. In chapters 2 and 3, the study presents the theoretical grounds of KDD, explaining the CRISP-DM methodology. Chapter 4 explores all the application preformed in the data of the Judiciary Power, and lastly, in Chapter conclusions are drawn
|
137 |
Aplicando a relevância da opinião de usuários em sistema de recomendação para pesquisadores / Applying user’s opinion relevance in a Recommender System to ResearchersCazella, Silvio Cesar January 2006 (has links)
As pessoas têm acesso a uma vasta gama de informações devido a grande oferta e aos recursos da Internet, porém despendem muito tempo na busca do que realmente é interessante ou útil para elas. A dificuldade de encontrar a informação correta é aumentada quando a informação disputa a atenção de uma pessoa com uma série de outras informações não tão relevantes. Procurando minimizar esta dificuldade e auxiliar no acesso a informação interessante, são aplicados desde sistemas de recuperação de informação até sistemas de filtragem de informação. Os sistemas de recuperação são amplamente difundidos na Internet através dos motores de busca (por exemplo, google.com, av.com, citeseer.ist.psu.edu), porém um problema neste tipo de aplicação constitui-se na necessidade do usuário apresentar os termos (palavras-chave) que são relevantes para a consulta. filtragem de informação, tendo como representante os Sistemas de Recomendação, surge como uma nova abordagem que procura liberar o usuário da exigência de criar consultas com palavras-chave, ou seja, a filtragem baseada em conteúdo procura casar o perfil do usuário e o conteúdo dos itens a serem recomendados, e então, oferecer alguns destes itens aos usuários. Por fim, surgiram sistemas que não se baseavam na análise do conteúdo dos itens, mas sim na reputação de um item junto aos outros usuários, ou seja, o usuário recebe a recomendação de um item que pode ser do seu interesse frente à colaboração de outros usuários que avaliaram o item. A questão maior nesta abordagem está no quanto a opinião de um usuário que avaliou um item é relevante para servir como colaboração na elaboração da recomendação para outro usuário. Esta tese constitui-se em uma proposta para modelar e incluir a relevância da opinião do usuário no processo de recomendação colaborativa, ou seja, apresenta uma abordagem de Sistemas de Recomendação para recomendar itens baseando-se em informação adicional − definida como relevância da opinião do usuário − além das típicas informações utilizadas na grande maioria dos Sistemas de Recomendação. Esta inclusão da relevância da opinião constitui-se em uma alternativa para que o usuário alvo da recomendação consiga identificar qual a importância de um determinado item recomendado frente à relevância de opinião dos recomendadores. A idéia apresentada é a de que pessoas com maior relevância de opinião poderiam melhor avaliar e recomendar itens. / Nowadays, people have access to a huge amount of information due to the Internet's resources. However they spend too much time searching for interesting, adequate or useful information. The difficulty to find worthwhile information increases when interesting things dispute the user's attention. Information retrieval and information filtering systems are applicable in order to minimize search difficulties, aiming to aid the user in the search for worthwhile information. Information retrieval systems are widely spread in the Internet through search engines (e.g., google.com, av.com, citeseer.ist.psu.edu). However there is a problem in this kind of application, which consists in compelling the user to know the terms (keywords) that are relevant for the search. Recommender Systems are an information filtering solution. They present a different approach that frees the user from creating queries with keywords. It means that the system tries to match the user's profile (historical interests) with the content of items to be recommended, and then offers these items to the user (recommendee). In parallel, an alternative approach to item recommendation was proposed, this one based on the offering of items based on other users’ opinion, i.e. the user receives an item recommendation based on the evaluation of other users (collaborative filtering or social filtering). However, a different question is raised here − how much the opinion of a user who evaluated an item is relevant to be employed in the recommendation process applying a collaborative method? This thesis presents a new approach to model and include in the collaborative recommendation process additional information named Recommender's Rank, which represents the relevance of the user's opinion and complements the typical information used in the large majority of Recommender Systems. This approach is an alternative to aid the user to identify the importance of a recommended item based on other users' opinions, as people with higher relevance of opinion are more likely to better evaluate and recommend items.
|
138 |
Aplicação do processo de descoberta de conhecimento em dados do poder judiciário do estado do Rio Grande do Sul / Applying the Knowledge Discovery in Database (KDD) Process to Data of the Judiciary Power of Rio Grande do SulSchneider, Luís Felipe January 2003 (has links)
Para explorar as relações existentes entre os dados abriu-se espaço para a procura de conhecimento e informações úteis não conhecidas, a partir de grandes conjuntos de dados armazenados. A este campo deu-se o nome de Descoberta de Conhecimento em Base de Dados (DCBD), o qual foi formalizado em 1989. O DCBD é composto por um processo de etapas ou fases, de natureza iterativa e interativa. Este trabalho baseou-se na metodologia CRISP-DM . Independente da metodologia empregada, este processo tem uma fase que pode ser considerada o núcleo da DCBD, a “mineração de dados” (ou modelagem conforme CRISP-DM), a qual está associado o conceito “classe de tipo de problema”, bem como as técnicas e algoritmos que podem ser empregados em uma aplicação de DCBD. Destacaremos as classes associação e agrupamento, as técnicas associadas a estas classes, e os algoritmos Apriori e K-médias. Toda esta contextualização estará compreendida na ferramenta de mineração de dados escolhida, Weka (Waikato Environment for Knowledge Analysis). O plano de pesquisa está centrado em aplicar o processo de DCBD no Poder Judiciário no que se refere a sua atividade fim, julgamentos de processos, procurando por descobertas a partir da influência da classificação processual em relação à incidência de processos, ao tempo de tramitação, aos tipos de sentenças proferidas e a presença da audiência. Também, será explorada a procura por perfis de réus, nos processos criminais, segundo características como sexo, estado civil, grau de instrução, profissão e raça. O trabalho apresenta nos capítulos 2 e 3 o embasamento teórico de DCBC, detalhando a metodologia CRISP-DM. No capítulo 4 explora-se toda a aplicação realizada nos dados do Poder Judiciário e por fim, no capítulo 5, são apresentadas as conclusões. / With the purpose of exploring existing connections among data, a space has been created for the search of Knowledge an useful unknown information based on large sets of stored data. This field was dubbed Knowledge Discovery in Databases (KDD) and it was formalized in 1989. The KDD consists of a process made up of iterative and interactive stages or phases. This work was based on the CRISP-DM methodology. Regardless of the methodology used, this process features a phase that may be considered as the nucleus of KDD, the “data mining” (or modeling according to CRISP-DM) which is associated with the task, as well as the techniques and algorithms that may be employed in an application of KDD. What will be highlighted in this study is affinity grouping and clustering, techniques associated with these tasks and Apriori and K-means algorithms. All this contextualization will be embodied in the selected data mining tool, Weka (Waikato Environment for Knowledge Analysis). The research plan focuses on the application of the KDD process in the Judiciary Power regarding its related activity, court proceedings, seeking findings based on the influence of the procedural classification concerning the incidence of proceedings, the proceduring time, the kind of sentences pronounced and hearing attendance. Also, the search for defendants’ profiles in criminal proceedings such as sex, marital status, education background, professional and race. In chapters 2 and 3, the study presents the theoretical grounds of KDD, explaining the CRISP-DM methodology. Chapter 4 explores all the application preformed in the data of the Judiciary Power, and lastly, in Chapter conclusions are drawn
|
139 |
[en] CLASSIFICATION OF OBJECTS IN REAL CONTEXT BY CONVOLUTIONAL NEURAL NETWORKS / [pt] CLASSIFICAÇÃO DE OBJETOS EM CONTEXTO REAL POR REDES NEURAIS CONVOLUTIVASLUIS MARCELO VITAL ABREU FONSECA 08 June 2017 (has links)
[pt] A classificação de imagens em contexto real é o ápice tecnológico do reconhecimento de objetos. Esse tipo de classificação é complexo, contendo diversos problemas de visão computacional em abundância. Este projeto
propõe solucionar esse tipo de classificação através do uso do conhecimento no aprendizado de máquina aplicado ao dataset do MS COCO. O algoritmo implementado neste projeto consiste de um modelo de Rede Neural Convolutiva que consegue aprender características dos objetos e realizar predições sobre suas classes. São elaborados alguns experimentos que comparam diferentes resultados de predições a partir de diferentes técnicas de aprendizado. É também realizada uma comparação dos resultados da implementação com o estado da arte na segmentação de objetos em contexto. / [en] The classification of objects in real contexts is the technological apex of object recognition. This type of classification is complex, containing diverse computer vision problems in abundance. This project proposes
to solve that type of classification through the use of machine learning knowledge applied to the MS COCO dataset. The implemented algorithm in this project consists of a Convolutional Neural Network model that
is able to learn characteristics of the objects and predict their classes. Some experiments are made that compare different results of predictions using different techniques of learning. There is also a comparison of the results from the implementation with state of art in contextual objects segmentation.
|
140 |
[en] A REAL OPTION MODEL FOR VALUING PROJECTS USING IMPLIED BINOMIAL TREES ADJUSTED BY PROJECT SKEWNESS AND KURTOSIS / [pt] UM MODELO DE OPÇÕES REAIS PARA AVALIAÇÃO DE PROJETOS AJUSTADOS POR ASSIMETRIA E CURTOSE DO PROJETO19 February 2019 (has links)
[pt] A avaliação dos projetos de investimentos é uma tarefa difícil para muitas empresas, especialmente para aqueles cujo fluxo de caixa depende dos preços das commodities, já que o nível de incerteza nos preços tem um alto impacto na determinação do momento adequado para o investimento. Os métodos de avaliação tradicionais, que não levam em consideração a flexibilidade gerencial nem a modelagem da incerteza do projeto, podem levar a decisões não ótimas. Esta pesquisa desenvolve um modelo que considera estas variáveis, usando árvores binomiais implícitas ajustados por outros indicadores de risco, como assimetria e curtose da rentabilidade do projeto. O nível de incerteza pode não só ser medido pela volatilidade do retorno do projeto, mas também pela probabilidade de se obter um resultado baixo ou negativo no projeto. A magnitude dessa probabilidade poderia ser a avaliada conhecendo-se o valor da assimetria e curtose do retorno do projeto. Para modelar o comportamento de um projeto, esta dissertação apresenta dois tipos de árvores binomiais implícitas, recombinantes e não recombinante. Cada árvore tem sua própria abordagem específica para determinar o valor do projeto, incluindo opções. Um caso aplicado é apresentado considerando uma empresa de mineração. Os resultados sugerem que o nível de assimetria contribui para uma melhor avaliação do risco do projeto, que combinado com a metodologia de opções reais captura melhor o valor das flexibilidades do projeto; o que é uma importante contribuição do modelo proposto nesta dissertação. / [en] Valuation of capital investment projects is a difficult task for many companies, especially for those whose cash flows depend on commodity prices. The level of uncertainty in commodity prices has a significant impact in determining the proper timing for an investment. Traditional valuation methods, which do not take into account managerial flexibility or project uncertainty modeling can lead to non-optimal decisions. This research develops a dynamic model that considers these variables, and uses implied binomial trees adjusted by other indicators of risk, such as project return s skewness and kurtosis. The level of uncertainty can not only be measured by the project return s volatility, but also by how probable is the occurrence of a low or negative result in the project. The magnitude of this probability could be assessed by knowing the project return s skewness and kurtosis. To model the project s behavior, this dissertation presents two kinds of implied binomial trees, recombining and non-recombining trees. Each tree has its own specific approach to determining the value of the project, including options or managerial flexibility. An applied case is presented considering a mining project. The results suggest that the level of skewness helps to have a better measure of project risk, which combined with the real option approach, allows capturing the value of project managerial flexibilities; which is an important contribution of the proposed model in this dissertation.
|
Page generated in 0.0516 seconds