• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 605
  • 279
  • 144
  • 58
  • 31
  • 16
  • 10
  • 8
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 1397
  • 523
  • 236
  • 211
  • 164
  • 147
  • 122
  • 102
  • 101
  • 95
  • 94
  • 90
  • 89
  • 86
  • 84
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
451

Sperm Mitochondrial DNA Biomarkers as a Measure of Male Fecundity and Overall Sperm Quality

Rosati, Allyson 15 July 2020 (has links)
Introduction. Sperm parameter analysis is the standard method of male fecundity testing; however, minimal evidence supports associations between individual sperm parameters and reproductive outcomes. Our previous work shows strong associations between sperm mitochondrial DNA copy number (mtDNAcn) and time-to-pregnancy (TTP) in general populations, and between mtDNAcn and fertilization outcomes in clinical populations. Thus it is possible for sperm mtDNA biomarkers to act as summary measures of semen quality. In this study, we developed a sperm quality index (SQI) from semen parameters and compared its ability to measure fecundity to sperm mtDNAcn. Methods. We received 384 semen samples from the Longitudinal Investigation of Fertility in the Environment Study. Sperm mtDNAcn and mtDNA deletions (mtDNAdel) were quantified using a triplex probe-based qPCR method. The SQI was developed by ranking and summing select sperm parameters within the study population, including sperm concentration, sperm count, normal morphology, high DNA stainability, and DNA fragmentation to create a cumulative index. Discrete-time proportional hazards models were used to determine fecundability odds ratios (FOR), indicating associations between mtDNAcn, SQI, and TTP. Receiver operating characteristic (ROC) analyses determined the validity of the SQI and mtDNAcn as predictors of pregnancy within 12 months. Results. The SQI was highly associated with mtDNAcn, both continuously (Spearman Rho: -0.487; p-value: <0.001) and in deciles (ANOVA p-value: <0.001). The SQI (FOR: 1.25; 95% confidence interval (CI): 1.09, 1.43) and mtDNAcn (FOR: 0.754; 95% CI: 0.657, 0.866) performed similarly in discrete-time survival models and indicated a significant decrease and increase in TTP, respectively. MtDNAcn more effectively predicted pregnancy within 12 months (AUC: 0.703; 95% CI: 0.617, 0.789) than the SQI (AUC: 0.642; 95% CI: 0.531, 0.753). With multiple predictors, mtDNAcn outperformed summary models, with addition of the SQI and percent normal morphology minimally increasing model efficacy (AUC: 0.718, 95% CI: 0.617, 0.819). Conclusion. The association between the SQI and mtDNAcn suggest that mtDNAcn may serve as a summary biomarker for overall sperm quality. Neither individual nor summed sperm parameters are useful indicators of couple fecundity and reproductive outcomes compared to mtDNAcn. These results suggest that mtDNAcn has potential for use as a biomarker of fecundity.
452

Bakteriální proteiny v biogenezi mitochondrií jednobuněčných eukaryot. / Bacterial proteins in the biogenesis of mitochondria of unicellular eukaryotes.

Petrů, Markéta January 2019 (has links)
in English Formation of mitochondria by the conversion of a bacterial endosymbiont is the fundamental moment in the evolution of eukaryotes. An integral part of the organelle genesis was the displacement of the endosymbiont genes to host nucleus and simultaneous creation of new pathways for delivery of proteins synthesized now in the host cytoplasm. Resulting protein translocases are complexes combining original bacterial components and eukaryote-specific proteins. In addition to these novel protein import machines, some components of the original bacterial secretory pathways have remained in the organelle. While the function of a widely distributed mitochondrial homolog of YidC, Oxa1, is well understood, the role of infrequent components of Sec or Tat translocases has not yet been elucidated. So far, more attention has been paid to their abundant plastid homologs, which assemble photosynthetic complexes in the thylakoid membrane. In the thesis, the structure and function of prokaryotic YidC, Sec and Tat machineries and their eukaryotic homologs are described. By comparing both organelles of the endosymbiotic origin, the hypothesis is drawn on why these translocases have been more "evolutionary successful" in plastids than in mitochondria.
453

Insights into the biogenesis of the human mitochondrial ribosomal large subunit – Characterisation of mL44 and mL45

Hanitsch, Elisa 02 November 2021 (has links)
No description available.
454

Mitochondria-Dependent Cellular Toxicity of α-synuclein Modeled in Yeast

Santhanakrishnan, Rajalakshmi January 2019 (has links)
No description available.
455

Acute Inhibition of Aberrant Mitochondrial Fission After Traumatic Brain Injury Confers Lasting Neuroprotection Into Late Adulthood

Sridharan, Preety S. 26 May 2023 (has links)
No description available.
456

Review of mitochondrial DNA and mitochondrial-associated disorders

Olukorede, Opeoluwa 03 November 2023 (has links)
Mitochondrial diseases are caused by gene mutations in either mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) and they are among one of the most common forms of inherited disorders. It is estimated that 1 out of every 5000 individuals will develop a mitochondrial disease in their lifetime. Due to the crucial and widespread functionality of mitochondria in human cells, prolonged diseases of the mitochondria affect cells of the brain, heart, liver, muscles and kidneys and can lead to multi-organ failure in some patients. Inherited or acquired mitochondrial diseases can present at any stage of life, affecting both children and adults. Since its discovery, the mitochondrial genome has been analyzed and sequenced with increasing ease and this process has helped recognize various mitochondrial disorders as the root of genetic diseases. This paper will explore the unique properties of the mitochondrion and its genome, examine the relationship between mtDNA and some common myopathies such as Leigh syndrome (LS) or maternally inherited Leigh syndrome (MILS), mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) in order to explore commonalities and differences in their inheritance patterns and their effect on mitochondrial function. Although studies have shown that these conditions generally affect the process of oxidative phosphorylation in mitochondria, because of the wide variety of presentations of this disease, further research is needed to understand the different etiologies, as well as to explore novel therapies to treat them.
457

The Effects of Reduced Mrpl54 Expression on Mouse Lifespan, Metabolic Health Span, and Skeletal Muscle Aging

Reid, Kimberly 20 February 2024 (has links)
With age comes a decline in the dynamic regulation of a balanced and functional mitochondrial proteome (proteostasis) that leads to an increase in oxidative stress and macromolecule damage, with a decline in ATP production. Compromised protein networks and reduced available energy leaves an organism susceptible to accelerated aging and the onset of age-related disease. Since mitochondrial respiratory complexes are composed of protein subunits from both mitochondria and nuclear genomes, their assembly relies on the coordination of mitochondrial and cytoplasmic translation machinery. Disruption of mitochondrial translation generates an imbalance in the ratio of mitochondrial (mtDNA) to nuclear DNA (nDNA) encoded proteins, which is called a mitonuclear protein imbalance. In response to the protein imbalance, a retrograde stress signal is sent from the mitochondria to the nucleus, invoking the mitochondrial unfolded protein response (UPRᵐᵗ) to resolve the mitoproteostatic stress. In a young healthy cell, the UPRᵐᵗ upregulates protein folding chaperones and proteases to resolve the consequences of a mitonuclear protein imbalance. In the early stages of aging, the UPRᵐᵗ appears to be upregulated in response to age-related mitochondrial proteostatic stress. In aged senescent cells however, the UPRᵐᵗ response is blunted. There is cross-species evidence that induction of the UPRᵐᵗ through moderate-intensity exercise or through genetic disruption of the mitochondrial translation machinery will act as a hormetic - resulting in health benefits in the long term. Caenorhabditis elegans longevity models demonstrate that a reduction in mitochondrial ribosomal protein (Mrp) gene expression or disturbed mitochondrial translation will function as a hormetic. The disruption of the mitochondrial ribosome leads to a mitonuclear protein imbalance, invokes the nematode UPRᵐᵗ, which then robustly extends C. elegans lifespan and health span. To determine whether the hormetic effects of mild mitochondrial ribosome disruption can be recapitulated in a mammalian model, this thesis tests a C57/BL6/NTaconic mouse model altered in the germline to have reduced Mrpl54 expression through heterozygous mutation. Mice were metabolically tested at ages 6-, 18-, and 24-months and followed through their natural lifespan to determine whether reduction in the expression of a critical Mrp (Mrpl54) impacts lifespan or metabolic health span. While Mrpl54 mRNA expression was ~50% of wildtype in all Mrpl54⁺ᐟ⁻ tissues tested, there were no differences observed in metabolic health with age or lifespan in either male or female mice. Cultured Mrpl54⁺ᐟ⁻ primary myoblasts had lower absolute levels of nDNA- and mtDNA-encoded respiratory complex subunits relative to wildtype; however, the ratio between nDNA- and mtDNA-encoded protein subunits remained like wildtype. Further testing of the model revealed that Mrpl54⁺ᐟ⁻ males had weaker grip strength by age 12-months, which was also found in the data from multiple heterozygous Mrp (Mrp⁺ᐟ⁻) mouse models available at the International Mouse Phenotyping Consortium. 12-month-old Mrpl54⁺ᐟ⁻ males displayed reduced tetanic force and better fatigue recovery in ex vivo skeletal muscles, and the transmission electron micrographs of skeletal muscle sarcomeres revealed an early aging phenotype. Unlike the C. elegans reduced Mrp longevity model, reduced expression of a critical Mrp did not result in lifespan or metabolic health span benefits in a mouse model. In contrast, the Mrpl54⁺ᐟ⁻ male model showed evidence of premature skeletal muscle aging. While the results of this research do not support the role of Mrpl54 reduced expression in mammalian lifespan or health span extension, they do point to a premature aging phenotype for certain muscle parameters that may be relevant to people living with heterozygous mitochondrial protein mutations. Typically, these individuals are regarded as carriers and free of phenotype associated with their mitochondrial protein mutation. The results in this thesis suggest that those with a heterozygous mitochondrial protein gene mutation may manifest a phenotype as they grow older and are less resilient to external or internal challenges.
458

Integrated Analysis of Bacteroidales and Mitochondrial DNA for Fecal Source Tracking in Environmental Waters

Kapoor, Vikram 18 September 2014 (has links)
No description available.
459

Role of Grp 75 Chaperone Folding Machinery in the Maintenance of Mitochondrial Protien Quality Control

Goswami, Arvind Vittal January 2013 (has links) (PDF)
My research focuses on understanding the importance of human mitochondrial Hsp70 (Grp75) chaperone machinery for the maintenance of protein quality control inside the mitochondrial matrix. The investigations carried out during this study have been addressed towards gaining better insights into the working of Grp75 chaperone folding machinery in association with its diverse set of co-chaperones residing in human mitochondria. Additionally, the research also focuses on explaining the various modes of Grp75 participation leading to multiple disease conditions. The thesis has been divided into the following sections as follows: Chapter I: An introduction to the mitochondrial import machinery and role of mitochondrial Hsp70 chaperone folding machinery for the maintenance of protein quality control: Mitochondrion is an essential organelle present in the eukaryotic cell and requires more than 1500 proteins for its proper functioning. Although, mitochondria harbour their own genome, it encodes for only 13 proteins in humans. The rest of the entire proteome is encoded by the nuclear genome and requires proper targeting of proteins to different compartments of mitochondria. Remarkably, mitochondrial matrix alone requires more than 60% of the proteome for its suitable functioning. Briefly, the mitochondrial matrix destined polypeptide passes through the outer membrane translocon; the ‘TOM’ complex and then enters the TIM23 translocon present in the inner membrane of mitochondria. The complete translocation of the polypeptide into the mitochondrial matrix side requires the assistance of mtHsp70 based motor system present on the matrix side which pulls the polypeptide into the matrix in an ATP-dependent manner and with the assistance of various co-chaperones. Subsequently, the unfolded polypeptide is to be folded back to its native state, which is ensured again by the mtHsp70 based chaperone folding machinery. Importantly, while 20% of mtHsp70 is involved in protein import, 80% of mtHsp70 is dedicated for protein folding. In addition to mtHsp70, the chaperone folding machinery consists of various soluble co-chaperones such as the J-proteins which stimulate the ATP hydrolysis rate of Hsp70. Furthermore, another co-chaperone termed as a nucleotide exchange factor ensures binding of fresh ATP molecule onto Hsp70 ensuring multiple rounds of folding cycles. To understand the relevance of mitochondrial Hsp70 chaperone folding machine in the maintenance of protein quality control, Chapter I of the thesis has been divided into multiple sections as follows: Briefly, the initial portion of Chapter I provide a glimpse of the translocon components present in mitochondria for targeting of proteins to outer membrane, inner membrane and inter-membrane space. Owing to the vast proteome size of the mitochondrial matrix, the following section describes the detailed mechanism and translocation process of the mitochondrial matrix targeted proteins. Additionally, subsequent sections of Chapter I provide a comprehensive description of each of the mtHsp70 chaperone folding components, which maintain the protein quality control in the matrix. The players that constitute the chaperone folding machines are mitochondrial Hsp70, J-proteins, nucleotide exchange factors and the newly discovered human escort protein. Essentially, the section provides information about the cellular distribution, structure and function of each of these players constituting the mtHsp70 chaperone folding machine. Loss of regulation between these players leads to defects in protein folding. Imbalance in protein homeostasis is one of the primary causes for mitochondrial dysfunction leading to various diseases. Importantly, recent literature has highlighted the involvement of mtHsp70 chaperone folding players in Parkinson’s disease (PD), Myelodysplastic syndrome (MDS) and cancer. In accordance, the last section of the Chapter I has been dedicated to describe the basic cell biology and proposed mechanisms for the above diseased states. Interestingly, in comparison to yeast and bacteria, the composition of mtHsp70 chaperone folding machinery in humans is unique and distinctly different. Owing to a lack of information about the functioning of human mitochondrial Hsp70 chaperone folding machinery and with an emphasis on understanding its role in various disease manifestations, the objectives that were laid for my PhD thesis are as follows: 1) Functional in vitro reconstitution of the human Grp75 chaperone folding machinery by purifying all the Grp75 chaperone folding machinery players namely; Grp75 (human mtHsp70), hTid-1L and hTid-1S (J-proteins), GrpEL1 (nucleotide exchange factor) and Human escort protein (Hep). 2) Dissection of the intrinsic biochemical defects associated with the variants of Grp75 reported in Parkinson’s disease (PD). 3) To understand the correlation between elevated levels of Grp75 and its contribution to malignancy. In conclusion, the current study has highlighted some of the key features of human Grp75 chaperone folding machinery and its regulation in the maintenance of human mitochondrial matrix protein quality control, failure of which leads to pathological conditions. Chapter II: Reconstitution of the human Grp75 chaperone folding machinery to understand the functional interplay between the multiple protein components: The mitochondrial Heat shock protein 70 (mtHsp70) machinery components are highly conserved among eukaryotes, including humans. However, the functional properties of human mtHsp70 machinery components have not been characterized among all eukaryotic families. To study the functional interactions, we have reconstituted the components of mtHsp70 chaperone machine (Hsp70/J-protein/GrpE/Hep) and systematically analyzed in vitro conditions for biochemical functions. We observed that the sequence-specific interaction of human mtHsp70 towards mitochondrial client proteins differs significantly from its yeast counterpart Ssc1. Interestingly, the helical lid of human mtHsp70 was found dispensable to the binding of P5-peptide as compared to the other Hsp70’s. We observed that the two human mitochondrial matrix J-protein splice-variants differentially regulate the mtHsp70 chaperone cycle. Strikingly, our results demonstrated that human Hep possesses a unique ability to stimulate the ATPase activity of mtHsp70 as well as to prevent the aggregation of unfolded client proteins similar to J-proteins. We observed that Hep binds with the C-terminus of mtHsp70 in a full-length context, and this interaction is distinctly different from unfolded client-specific or J-protein binding. In addition, we found that the interaction of Hep at the C-terminus of mtHsp70 is regulated by the helical lid region. However, the interaction of Hep at the ATPase domain of the human mtHsp70 is mutually exclusive with J-proteins, thereby promoting a similar conformational change that leads to ATPase stimulation. Moreover, we have also dissected out the inter-domain defective nature associated with the point mutant of Grp75 implicated in Myelodysplastic syndrome thus providing an explanation for the loss of function of Grp75 eventually leading to loss of protein quality control in the diseased state. Chapter III: Enhanced J-protein interaction and compromised protein stability of Grp75 variants leads to mitochondrial dysfunction in Parkinson’s disease: Parkinson’s disease (PD) is the second most prevalent progressive neurological disorder commonly associated with impaired mitochondrial function in dopaminergic neurons. Although familial PD is multi-factorial in nature, a recent proteomic screen involving PD-patients revealed two mitochondrial Hsp70 variants (P509S and R126W) that are implicated in PD-pathogenesis. However, molecular mechanisms underlying how mtHsp70 PD-variants are centrally involved in PD-progression is totally elusive. In this report, we provide mechanistic insights into the mitochondrial dysfunction associated with human mtHsp70 PD-variants. Biochemically, R126W variant showed severely compromised protein stability and was found highly susceptible to aggregation at physiological conditions. Strikingly, on the other hand, P509S variant exhibits significantly enhanced interaction with J-protein co-chaperones involved in folding and import machinery, thus altering the overall regulation of chaperone mediated folding cycle and protein homeostasis. To assess the impact of mtHsp70 PD-mutations at the cellular level, we have developed yeast as a model system by making analogous mutations in Ssc1 ortholog. Interestingly, PD-mutations in yeast (R103W and P486S) exhibit multiple in vivo phenotypes, which are associated with ‘mitochondrial dysfunction’ such as mitochondrial DNA (mtDNA) loss and increased susceptibility to oxidative stress recapitulating the cellular features of dopaminergic neurons similar to those reported in other PD-models. Together, our observations for both the variants strongly indicate a definite involvement of mtHsp70 as a susceptibility factor in Parkinson’s disease. Chapter IV: To understand the correlation between elevated levels of Grp75 and its contribution to malignancy: Multiple studies carried out by various groups have reported the presence of elevated levels of Grp75 in cancer cells. Furthermore, proteomic screens show a positive correlation with the higher levels of Grp75 and the aggressive or metastatic nature of cancer. Importantly, cancer cells also exhibit altered mitochondrial metabolism and are found to be under constant oxidative stress pressure. Moreover, Grp75 actively participates in maintenance of mitochondrial function and as well is reported to interact with many putative oncoproteins. However, there is little information available on the possible role of Grp75 in modulating the cellular niche which might favor towards increased malignant transformation of cells. To identify pathways for explaining the correlation between Grp75 and cancer, our initial attempts have focused on monitoring the multiple cellular changes influenced by elevated levels of Grp75 in a cell line based system. To our surprise, transient transfection of cells with Grp75 led to a tremendous increase in the reactive oxygen species levels. Furthermore, a strong positive correlation between the extent of increased levels of Grp75 and the amount of ROS generated in these cells was established. As expected, increased ROS levels observed in Grp75 overexpressing cells also resulted in reduced cell viability. Notably, mitochondrial superoxide generation was found to be the major source for the observed increment in ROS levels in Grp75 expressing cells. In addition, the localization profile of the exogenously expressed Grp75 protein highlighted the fact that the protein was found to be predominantly targeted to mitochondria. Strikingly, the elevated Grp75 levels led to an increase in mitochondrial mass and also displayed a higher proportion of circular and fragmented mitochondria in these cells. Together, the above preliminary observations hint towards a strong correlation between the levels of Grp75 and its influence on the redox biology of cells providing an additional and a possible explanation of the mode of participation of Grp75 in generation and progression of malignancy.
460

Impact of mitochondrial genetic variation and immunity costs on life-history traits in Drosophila melanogaster

Bashir-Tanoli, Sumayia January 2014 (has links)
Immune activation is generally acknowledged to be costly. These costs are frequently assumed to result from trade-offs arising due to the reallocation of resources from other life-history traits to be invested in immunity. Here, I investigated the energetic basis of the costs associated with immune activation in Drosophila melanogaster. I found that immune activation significantly reduced fly fecundity (45%) and also caused a decline in metabolic rate (6%) but had no effect on body weight. To understand the factors behind reduced fecundity and metabolic rate I measured feeding and found that food intake was reduced by almost 31% in immune-challenged D. melanogaster. These findings suggest that fecundity costs of immune activation result not from the commonly accepted resource reallocation hypothesis but probably because resource acquisition is impaired during immune responses. The individuals of any animal population generally vary greatly in their ability to resist infectious disease. This variation arises due to both environmental heterogeneity and genetic diversity. Genetic variation in disease susceptibility has generally been considered to lie in the nuclear genome. Here, for the first time, I explored the influence of mitochondrial genetic (mtDNA) variation on disease susceptibility. I crossed 22 mitochondrial haplotypes onto a single nuclear genome and also studied epistasis interactions between mitochondrial and nuclear genomes (mitonuclear epistasis) by crossing five haplotypes onto five different genetic backgrounds. I found that fly susceptibility to Serratia marcescens was influenced significantly by mtDNA allelic variation. Furthermore, the effect of mitonuclear epistasis on fly susceptibility to S. marcescens was twice as great as the individual effects of either mitochondrial or nuclear genome. However, susceptibility to Beauveria bassiana was not affected by mtDNA allelic variation. These findings suggest the mitochondrial genome may play an important role in host-parasite coevolution. The Mother’s Curse hypothesis suggests that sex-specific selection due to maternal mitochondrial inheritance means that mitochondria are poorly adapted to function in males, resulting in impaired male fitness. Mother’s Curse effects have previously only been studied for two phenotypic traits (sperm-infertility and ageing) and their generality for broader life-history has not been explored. I investigated the impact of mtDNA allelic variation on 10 phenotypic traits and tested whether the patterns of phenotypic variation in males and females conformed to the expectations of the Mother’s Curse hypothesis. I found that seven of the 10 traits were significantly influenced by mtDNA allelic variation. However, there was no evidence that the effects of this variation differed between males and females. I therefore concluded that Mother’s Curse is unlikely to be a general phenomenon, nor to provide a general explanation for sexual dimorphism in life-history traits. Overall, this thesis explored the impacts of immunity costs, mitochondrial genetic variation, mitonuclear epistasis and sex-specific mitochondrial selection on D. melanogaster life-history.

Page generated in 0.0729 seconds