• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 20
  • 13
  • 8
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 158
  • 58
  • 58
  • 34
  • 26
  • 22
  • 22
  • 17
  • 16
  • 16
  • 16
  • 15
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Investigations of the Functions of gamma-Tubulin in Cell Cycle Regulation in <i>Aspergillus nidulans</i>

Nayak, Tania 11 September 2008 (has links)
No description available.
112

Ran GTPase in Nuclear Envelope Formation and Cancer Metastasis

Matchett, K.B., McFarlane, S., Hamilton, S.E., Eltuhamy, Y.S.A., Davidson, M.A., Murray, J.T., Faheem, A.M., El-Tanani, Mohamed 2014 January 1924 (has links)
No / Ran is a small ras-related GTPase that controls the nucleocytoplasmic exchange of macromolecules across the nuclear envelope. It binds to chromatin early during nuclear formation and has important roles during the eukaryotic cell cycle, where it regulates mitotic spindle assembly, nuclear envelope formation and cell cycle checkpoint control. Like other GTPases, Ran relies on the cycling between GTP-bound and GDP-bound conformations to interact with effector proteins and regulate these processes. In nucleocytoplasmic transport, Ran shuttles across the nuclear envelope through nuclear pores. It is concentrated in the nucleus by an active import mechanism where it generates a high concentration of RanGTP by nucleotide exchange. It controls the assembly and disassembly of a range of complexes that are formed between Ran-binding proteins and cellular cargo to maintain rapid nuclear transport. Ran also has been identified as an essential protein in nuclear envelope formation in eukaryotes. This mechanism is dependent on importin-β, which regulates the assembly of further complexes important in this process, such as Nup107–Nup160. A strong body of evidence is emerging implicating Ran as a key protein in the metastatic progression of cancer. Ran is overexpressed in a range of tumors, such as breast and renal, and these perturbed levels are associated with local invasion, metastasis and reduced patient survival. Furthermore, tumors with oncogenic KRAS or PIK3CA mutations are addicted to Ran expression, which yields exciting future therapeutic opportunities.
113

Stochastic modelling of the cell cycle

He, Enuo January 2012 (has links)
Precise regulation of cell cycle events by the Cdk-control network is essential for cell proliferation and the perpetuation of life. The unidirectionality of cell cycle progression is governed by several critical irreversible transitions: the G1-to-S transition, the G2-to-M transition, and the M-to-G1 transition. Recent experimental and theoretical evidence has pulled into question the consensus view that irreversible protein degradation causes the irreversibility of those transitions. A new view has started to emerge, which explains the irreversibility of cell cycle transitions as a consequence of systems-level feedback rather than of proteolysis. This thesis applies mathematical modelling approaches to test this proposal for the Mto- G1 transition, which consists of two consecutive irreversible substeps: the metaphase-to-anaphase transition, and mitotic exit. The main objectives of the present work were: (i) to develop deterministic models to identify the essential molecular feedback loops and to examine their roles in the irreversibility of the M-to-G1 transition; (ii) to present a straightforward and reliable workflow to translate deterministic models of reaction networks into stochastic models; (iii) to explore the effects of noise on the cell cycle transitions using stochastic models, and to compare the deterministic and the stochastic approaches. In the first part of this thesis, I constructed a simplified deterministic model of the metaphase-to-anaphase transition, which is mainly regulated by the spindle assembly checkpoint (the SAC). Based on the essential feedback loops causing the bistability of the transition, this deterministic model provides explanations for three open questions regarding the SAC: Why is the SAC not reactivated when the kinetochore tension decreases to zero at anaphase onset? How can a single unattached kinetochore keep the SAC active? How is the synchronized and abrupt destruction of cohesin triggered? This deterministic model was then translated into a stochastic model of the SAC by treating the kinetochore microtubule attachment at prometaphase as a noisy process. The stochastic model was analyzed and simulation results were compared to the experimental data, with the aim of explaining the mitotic timing regulation by the SAC. Our model works remarkably well in qualitatively explaining experimental key findings and also makes testable predictions for different cell lines with very different number of chromosomes. The noise generated from the chemical interactions was found to only perturb the transit timing of the mitotic events, but not their ultimate outcomes: all cells eventually undergo anaphase, however, the time required to satisfy the SAC differs between cells due to stochastic effects. In the second part of the thesis, stochastic models of mitotic exit were created for two model organisms, budding yeast and mammalian cells. I analyzed the role of noise in mitotic exit at both the single-cell and the population level. Stochastic time series simulations of the models are able to explain the phenomenon of reversible mitotic exit, which is observed under specific experimental conditions in both model organisms. In spite of the fact that the detailed molecular networks of mitotic exit are very different in budding yeast and mammalian cells, their dynamic properties are similar. Importantly, bistability of the transitions is successfully captured also in the stochastic models. This work strongly supports the hypothesis that uni-directional cell cycle progression is a consequence of systems-level feedback in the cell cycle control system. Systems-level feedback creates alternative steady states, which allows cells to accomplish irreversible transitions, such as the M-to-G1 transition studied here. We demonstrate that stochastic models can serve as powerful tools to capture and study the heterogeneity of dynamical features among individual cells. In this way, stochastic simulations not only complement the deterministic approach, but also help to obtain a better understanding of mechanistic aspects. We argue that the effects of noise and the potential needs for stochastic simulations should not be overlooked in studying dynamic features of biological systems.
114

Identification de protéines impliquées dans la localisation des ARNm au niveau de l'appareil mitotique

Oré Rodriguez, Sulin 04 1900 (has links)
La localisation des ARNm au niveau des microtubules et des centrosomes laisse voir le centrosome et le fuseau mitotique comme des complexes ribonucléoprotéiques. Cependant, le mécanisme de localisation des ARNm à ces différentes structures ainsi que leurs fonctions dans la régulation de la mitose restent encore incompris. L’objectif était ici de caractériser des protéines de liaison à l’ARN (RNA Binding Proteins, RBPs) fonctionnellement impliquées dans la localisation des ARNm mitotiques chez la Drosophile et d’évaluer la conservation de la fonction de ces RBPs dans les cellules humaines. La déplétion de RBPs par RNAi générée dans des Drosophiles mutantes résulte en des phénotypes distincts de localisation anormale de l’ARNm centrosomique cen et en des défauts mitotiques différents selon le RBP ciblé, suggérant des fonctions différentes de ces RBPs. De plus, dans les jeunes embryons, les RBPs Bru-2 et Mask semblent être fonctionnellement importants pour la mitose via la régulation de l’ARNm cen, donnant un aperçu de la possible fonction mitotique de RBPs dans la régulation d’un ARN centrosomique. De plus, il a été observé dans un criblage d’immunofluorescence dans des cellules HeLa en métaphase que HNRNPUL1 colocalise au fuseau et aux centrosomes. HNRNPUL1 pourrait être impliqué dans la régulation de l’ARNm CDR2 (orthologue de cen) puisque la déplétion de l’orthologue de HNRNPUL1 dans la Drosophile, CG30122, résulte en une localisation anormale de l’ARNm centrosomique cen. / The localization of mRNA to microtubules and centrosomes has led to the suggestion that the centrosome and mitotic spindle are in fact ribonucleoprotein complexes. However, the mechanism of mRNA localization to those structures and its functional contribution in mitosis regulation remain poorly characterized. The objectives here were to identify RNA Binding Proteins (RBPs) involved in mitotic mRNA localization in Drosophila and to assess the conservation of the function of these RBPs in human cells. RNAi-mediated RBP depletion in Drosophila mutants leads to distinct phenotypes of abnormal localization of the centrosomal cen mRNA, and to different mitotic defects depending on the targeted RBP, suggesting different functions for these RBPs. Moreover, in young embryos, Bru-2 and Mask RBPs seem to be functionally important for mitosis through cen mRNA regulation, giving insight into a possible RBP mitotic function in regulating a centrosomal mRNA. In addition, data from an immunofluorescence screen on HeLa cells at metaphase suggests that HNRNPUL1 colocalizes to the spindle and centrosomes. HNRNPUL1 may be involved in the regulation of CDR2 mRNA (cen ortholog) because depletion of the HNRNPUL1 ortholog in flies, CG30122, disrupted cen mRNA localization.
115

Mechanism of cell death in Burkitt lymphomas

Chumduri, Cindrilla 07 April 2010 (has links)
Apoptoseresistenz ist einer der Gründe für ein Versagen von Chemotherapie bei vielen Krebserkrankungen, darunter das Burkitt Lymphom. Um die molekularen Mechanismen der Apoptoseresistenz aufzuklären, wurde die Apoptoseinduktion in 15 Burkitt-Lymphom-Zelllinien nach Behandlung mit den Spindelgiften Taxol (Paclitaxel), Nocodazol und Vincristin untersucht. Interessanterweise entwickelten Zellen, die sich als resistent gegenüber Taxol- und Nocodazol-induzierter Apoptose erwiesen, nach Behandlung eine Polyploidie (>4N DNA), was eine inverse Relation von Apoptose und Polyploidie aufzeigt. In den sensitiven Zelllinien war die Taxol- und Nocodazol-induzierte Apoptose von Caspase-Aktivierung, Bid-Spaltung und Herunterregulation von Mcl-1 begleitet. Im Gegensatz zu den sensitiven Zelllinien wiesen die meisten apoptoseresistenten Zellen einen Verlust von Bax und Bak auf und waren durch einen anhaltenden mitotischen Arrest mit Auftreten eines >4N DNA-Gehalts nach Behandlung charakterisiert. Um weitere Einblicke in den Mechanismus der Spindelgift-induzierten Apoptose zu erhalten, wurde die Rolle der mitotische Kinase PLK1 (polo-like kinase) näher untersucht. Eine dominant-negative PLK1-Mutante induziert Apoptose. Allerdings zeigte eine zusätzliche Behandlung mit Spindelgiften keinen synergistischen Effekt, was darauf schließen lässt, dass sowohl Inhibierung von PLK1 als auch Mikrotubuli-destabilisierende Agenzien den gleichen Stress-Signalweg aktivieren. Andererseits unterstützte Überexpression von Wildtyp-PLK1 in Taxol behandelten Zellen die Zellzyklus-Progression. Dies deutet auf eine Verbindung zwischen Zelltodresistenz und genetischer Instabilität (Aneuplodie) hin. Inhibition von Apoptose in sensitiven Zelllinien durch Caspase-Inhibierung förderte Polypoidie, welche die inverse Relation bestätigte. Medikamente, welche die Caspase-Aktivierung unabhängig von Bax und Bak induzieren, könnten eine weitere Möglichkeit zur Behandlung von resistenten Burkitt-Lymphomen darstellen. / Apoptosis resistance is the major cause of chemotherapy failure in most kinds of cancers, including Burkitt lymphomas (BL). To elucidate molecular mechanisms regulating the development of apoptosis resistance, a panel of 15 BL cell lines was investigated for apoptosis induction upon treatment with microtubule inhibitors taxol, nocodazole and vincristine. Significant differences were observed in the extent of apoptosis induction among BL cell lines examined. Interestingly, cell lines exhibiting resistance to taxol- or nocodazole-induced apoptosis, showed development of polyploidy (>4N) and vice versa, displaying an inverse relationship between apoptosis and polyploidy induction. Further, in sensitive cell lines taxol-induced apoptosis was accompanied by caspase activation, Bid cleavage and Mcl-1 down-regulation. In contrast, most apoptosis resistant cell lines exhibited a loss of Bax and Bak expression and showed prolonged mitotic arrest with >4N DNA content upon treatment. To gain mechanistic insights into microtubule inhibitor-induced cell death, the role of the mitotic kinase PLK1 was addressed. Dominant negative PLK1 mutant induced apoptosis, however, failed to show synergism in induction of apoptosis in combination with microtubule inhibitors. This indicates that PLK1 inhibition and spindle toxins might trigger a similar mitotic stress pathway. Conversely, overexpression of wildtype PLK1 promoted cell cycle progression in cells treated with taxol. Remarkably, inhibition of apoptosis in sensitive cell lines by caspase inhibition promoted polyploidy confirming the inverse relationship between apoptosis and polyploidization. Considering targets to induce Bax/Bak independent caspase activation would be of great importance to avoid undesirable events leading to chromosomal imbalances in treating resistant cancers.
116

Analyse temps-fréquence en mécanique cellulaire et adaptabilité du fuseau mitotique / Time-frequency analysis in cell mechanics and adaptability of mitotic spindle

Mercat, Benjamin 04 October 2016 (has links)
Le fuseau mitotique assure la ségrégation des chromatides sœurs et le maintien de la poïdie des cellules filles. Le fuseau est composé de microtubules dynamiques (qui polymérisent et dépolymérisent continuellement), de nombreux moteurs moléculaires, d'agents de réticulations et de régulateurs. Bien que la structure du fuseau au niveau moléculaire soit connue, son fonctionnement reste délicat à comprendre, et nécessite la prise en compte de la dynamique de ses composants et leurs interactions. Les approches utilisées pour répondre à ces problématiques sont jusqu'à maintenant plutôt des approches in silico et in vitro. Il manque aujourd'hui une caractérisation de la mécanique du fuseau dans son contexte physiologique. Nous proposons une méthode non invasive basée sur de l'analyse d'image, combiné à une modélisation heuristique pour mesurer les paramètres mécaniques durant toute la division. Nous suivons les pôles du fuseau marqués par protéine fluorescente avec un taux acquisition rapide et une bonne résolution spatiale ce qui nous permet d'accéder aux fluctuations de longueur du fuseau in vivo. Avec la transformée de Fourier aux temps courts, nous calculons leurs densités spectrales de puissances — leurs signatures mécaniques. Ces spectres sont alors ajustés avec un modèle Kelvin — Voigt avec inertie (un ressort, un amortisseur et un terme inertiel en parallèle). Nous avons validé la méthode par des expériences numériques où nous retrouvons les évolutions des paramètres sur des données simulées et la calibration a été réalisée par l'utilisation de la rupture du fuseau induite par micro chirurgie laser ou par la génétique. Nous avons caractérisé le fuseau de l'embryon unicellulaire du nématode C. elegans. La méthaphase apparaît dominée par l'amortisseur, ce qui est cohérent avec la lente élongation du fuseau que nous observons. Mais contraste l'idée répandue de l'existence d'un mécanisme de maintien de la longueur du fuseau durant la métaphase. Au passage en anaphase, les trois paramètres mécaniques chutent, avant de réaugmenter environ 50 secondes après la transition pour réatindre un régime dominé de nouveau par l'amortisseur, ce qui suggère que les microtubules interpolaires jouent un rôle mineur durant l'élongation du fuseau en début d'anaphase. Dans la perspective de comprendre le lien entre la mécanique du fuseau et les interactions des acteurs moléculaires, nous avons partiellement supprimé un gène par sous-structure du fuseau. Nous avons alors retrouvé des comportements connus avec une perspective augmentée offerte par notre méthode. Cette méthode, ne va pas seulement permettre la compréhension fondamentale de la mécanique du fuseau, en remplaçant la modélisation du fuseau basé uniquement sur la longueur, mais aussi d'aller vers la prise en compte de la robustesse de fonctionnement du fuseau mitotique face aux défauts tel que la polyou l'aneuploïdie. / The mitotic spindle ensures the correct segregation of the sister chromatids to maintain ploidy in daughter cells. The spindle comprises dynamical microtubules (alternating polymerizing and depolymerizing), a variety of molecular motors, crosslinker and the regulators. Although the molecular grounds of spindle structure is well known, the link to its functions remain elusive, calling for including the dynamics of its components and their interactions. These questions were mostly investigated by in silico or in vitro approaches. But a detailed characterizing of spindle mechanics, in physiological conditions, is missing. We propose an image processing based, non invasive, method combined to an heuristic model to measure mechanical parameters of the mitotic spindle along time. We tracked fluorescently labeled spindle pole at high temporal and spatial resolution and measured the variations of spindle length, in vivo. We computed their power density spectrum using short time Fourier transform (sliding window) — a blueprint of spindle mechanics. Such a spectrum is then fitted with a Kelvin —Voigt model with inertia (a spring, a damper, an inertial element in parallel). We validated this method by recovering the mechanical parameters over time from simulated data and calibrated it uses laser and genetically induced spinlde cut. We characterized the mitotic spindle of the one-cell embryo of nematode C. elegans. Metaphase appeared dominated by damping element, consistent with the slow spindle elongation observed. But in contrast with the common thought that a mechanism maintains the spindle length during metaphase. At anaphase onset, all three parameters collapsed, before increasing about 50s later to reach a regime where damping dominated again, suggesting the overlapping spinlde microtubules may play a minor role in early anaphase spinlde elongation. In perspective of understanding how spindle mechanics emerge of molecular players interactions, we depleted one gene per splindle sub-structure — overlapped microtubules, kinetochore microtubules, central spindle and astral microtubules. We succefully recovered some known behavior but with the augmented insight offered by our method. This method paves the way not only towards understanding the fundamentals of spindle mechanics, superseding the degenerated modeling based on the sole spindle length but also towards acounting for spindle functional robustness towards defect as polyor aneuploidy.
117

Post-replicative resolution of under-replication

Carrington, James T. January 2017 (has links)
The evolutionary pressure to prevent re-replication by inactivating licensing during S phase leaves higher-eukaryotes with large genomes, such as human cells, vulnerable to replication stresses. Origins licensed in G1 must be sufficient to complete replication as new origins cannot be licensed in response to irreversible replication fork stalling. Interdisciplinary approaches between cellular biology and biophysics predict that replication of the genome is routinely incomplete in G2, even in the absence of external stressors. The frequency of converging replication forks that never terminate due to irreversible stalling (double fork stall), which result in a segment of unreplicated DNA, was modelled using high quality origin-mapping data in HeLa and IMR-90 cells. From this, hypotheses were generated that related an increase in unreplicated segments of DNA to reduced functional origin number. Presented in this thesis is the confirmation of this relation by quantifying chromosome mis-segregation and DNA damage responses when origin number was reduced using RNAi against licensing factors. The number of ultrafine anaphase bridges and 53BP1 nuclear bodies are in remarkable concordance with the theoretical predictions for the number of double fork stalls, indicating that cells are able to tolerate under-replication through such post-replicative cellular responses. 53BP1 preferentially binds to chromatin associated with large replicons, and functions synergistically with dormant origins to protect the stability of the genome. Additional candidates, inspired by common fragile site research, have also been characterised as responders to spontaneous under-replication, and include FANCD2 and MiDAS, which function in early mitosis to facilitate completion of replication before cells enter anaphase. In conclusion, a series of mechanisms that sequentially function throughout the cell cycle protects the stability of the human genome against inevitable spontaneous under-replication brought about by its large size.
118

Single-molecule experiments with mitotic motor proteins / Einzelmolekül-Experimente mit mitotischen Motorproteinen

Thiede, Christina 28 September 2012 (has links)
No description available.
119

Kadmio ir cinko jonų bei purpurinės ežiuolės Echinacea purpurea (L) Moench poveikio pelėms įvertinimas / The Assessment of Influence of Zinc Ions and Echinacea Purpurea (L) Moench for Mice Intoxicated by Cadmium Ions

Smalinskienė, Alina 02 February 2006 (has links)
THE ASSESSMENT OF INFLUENCE OF ZINC IONS AND ECHINACEA PURPUREA (L.) MOENCH FOR MICE INTOXICATED BY CADMIUM IONS Abstract Background. Cadmium (Cd), a well-known environmental hazard, exerts a number of toxic effects in organism. It disturbs the activity of biochemical systems of cells. Accumulation of cadmium depends on the amount of essential trace elements, including zinc. Echinacea purpurea (L.) Moench (EP) can modify its influence. The aim of the study was to assess the influence of ions of cadmium, zinc, and EP on organism in experimental model of mice. The objectives of the scientific work were as follows: 1. To evaluate the accumulation of cadmium in the internal organs of experimental mice after acute and chronic intraperitoneal and per oral intoxication. 2. To assess morphological changes in liver tissue, mitotic and apoptotic activity of liver cells after the intoxication by cadmium ions of different duration and dose. 3. To assess the effect of zinc ions to the accumulation of cadmium in the internal organs and to the mitotic and apoptotic activity of liver cells in the organism of mice intoxicated by cadmium. 4. To evaluate the effect of EP to accumulation of cadmium in internal organs, mitotic and apoptotic activity of liver cells after the chronic intraperitoneal and per oral intoxication by cadmium ions. The scientific novelty of the study. This work makes our knowledge about mechanisms and outcomes of acute and chronic exposure to cadmium deeper. The... [to full text]
120

Aurora A kinase function during anaphase

Lioutas, Antonio, 1980- 09 November 2012 (has links)
Aurora A (AurA) is an important mitotic kinase mainly studied for its involvement in cell cycle progression, centrosome maturation, mitotic spindle pole organization and bipolar spindle formation. It localizes to duplicated centrosomes and spindle microtubules (MTs) during mitosis where it regulates various factors participating in metaphase spindle formation. AurA is degraded late in mitosis suggesting that it might also have a function in anaphase. In this study we focused in understanding AurA function during anaphase in two different experimental systems. First, we kept AurA active in cycled Xenopus egg extracts and found that MTs maintained their mitotic organization longer throughout mitotic exit. We also observed chromosome segregation defects and problematic nuclear envelope formation. These observations indicate that AurA activity needs to be down-regulated for the transition from metaphase back to interphase. To get insights into the role of AurA during metaphase-anaphase transition we initially asked whether its kinase activity is still necessary for the maintenance of the metaphase spindle. We saw that the inhibition of AurA kinase activity in metaphase resulted to a collapse of the established metaphase spindle in HeLa cells. Indicating that AurA activity is necessary for the metaphase spindle maintenance. Then, we looked whether AurA kinase activity is still necessary during anaphase. We inhibited AurA at the onset of anaphase in Hela cells and found that anaphase spindles were smaller. We also observed that the MT structure responsible for anaphase spindle elongation, the central spindle, was defectively assembled and organized. Moreover, in cells where AurA was inhibited segregation of chromosomes was defective. These results indicate that AurA kinase activity is necessary for anaphase spindle elongation, central spindle assembly and organization and chromosome segregation. To understand further how AurA regulates anaphase spindle formation we looked known AurA substrates. We depleted TACC3, a known AurA substrate involved in MT formation earlier in mitosis and observed that TACC3 depletion phenocopied AurA inhibition. This indicates that TACC3 has a function in MT organization and chromosome segregation during anaphase and this function could possibly be regulated by AurA. In this study we have demonstrated that AurA activity is essential for metaphase spindle maintenance. We also found that during anaphase when AurA is either maintained active or inhibited MT organization is greatly affected and chromosome segregation is defective. Suggesting that AurA activity needs to be tightly controlled during anaphase for a correct completion of mitosis. / Aurora A (AurA) es una quinasa mitótica importante que se ha estudiado principalmente en su papel durante la progresión del ciclo celular, la maduración del centrosoma, la organización y la formación del polo y del huso mitótico. Durante la mitosis, AurA se localiza en los centrosomas duplicados y en los microtúbulos (MTs) del huso y se ha observado que regula varios factores que participan en la formación del huso mitótico. AurA se degrada al final de la mitosis indicando que pueda tener una función durante la anafase. En este estudio nos hemos centrado en la comprensión de la función de AurA durante la anafase en dos sistemas experimentales diferentes. En primer lugar, utilizando extractos de huevos de Xenopus hemos mantenido AurA activa durante la transición de metafase a anafase y hemos visto que los MTs del huso mitótico mantienen su organización durante más tiempo. También hemos observado que cuando AurA se mantiene activa existen defectos en la segregación cromosómica y la formación de la membrana nuclear. Esto indica que la actividad de AurA tiene un papel regulador sobre los MTs y la chromatina durante la transición de la metafase a la interfase. Para entender cual es la función de AurA durante la transición de metafase a anafase primero hemos estudiado si la actividad de la quinasa es necesaria para el mantenimiento del huso mitótico. Hemos visto que la inhibición de la actividad quinasa AurA resultó en el colapso del huso durante la metafase en células HeLa. Esto indica que la actividad de AurA es necesaria para el mantenimiento del huso mitótico de metafase. A continuación hemos analizamos si la actividad quinasa de AurA sigue siendo necesaria para la anafase. Para ello hemos inhibido AurA en células Hela al inicio de la anafase. En estas condiciones los husos de la anafase son más pequeños y la estructura de los MTs responsable del alargamiento del huso mitótico durante la anafase, el huso central, se organiza defectuosamente. Además, se encontraron errores durante la segregación de los cromosomas. Estos resultados indican que la actividad quinasa de AurA es necesaria para el alargamiento del huso durante la anafase y la organización y segregación cromosómica. Para entender el mecanismo de la función de AurA durante la anafase hemos estudiado a sustratos de AurA. Al estudiar TACC3 , un sustrato conocido de AurA que participa en la formación de MTs en las fase iniciales de la mitosis hemos encontrado que su eliminación de células HeLa produce el mismo fenotipo que la inhibición de AurA. Esto indica que TACC3 tiene una función en la organización de MT y la segregación de cromosomas durante la anafase y que esta función podría estar regulada por la quinasa AurA. En este estudio hemos demostrado que la actividad quinasa de AurA es esencial para el mantenimiento del huso mitótico. También hemos encontrado que durante la anafase cuando la quinasa AurA se mantiene activa o se inhibe la organización de los MTs del huso mitótico se ve muy afectada y los cromosomas se segregan defectuosamente. Por tanto los resultados de este estudio indican que la actividad quinasa de AurA está estrechamente controlada durante la anafase para el correcto cumplimiento de la mitosis.

Page generated in 0.0508 seconds