• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèle biomécanique du sein pour l’évaluation de la compression et de la perception d’inconfort en mammographie / A biomechanical breast model for the evaluation of the compression and the discomfort perception in mammography.

Mira, Anna 05 July 2018 (has links)
Contexte: La mammographie est une modalité d’imagerie médicale à faible dose permettant la détection du cancer mammaire à un stade précoce. Lors de l'examen, le sein est comprimé entre deux plaques afin d'uniformiser son épaisseur et d'étaler les tissus. Cette compression améliore la qualité clinique de l'examen mais elle est également source d'inconfort chez les patientes. Bien que la mammographie soit la méthode de dépistage la plus efficace du cancer du sein, l’inconfort ressenti peut dissuader les femmes de passer cet examen. Par conséquent, une technique alternative de compression du sein prenant en compte le confort de la patiente, en plus de l’amélioration de la qualité d'image, présente un grand intérêt.Méthodes: Dans ce travail, nous avons proposé un nouvel environnement de simulation permettant l'évaluation de différentes techniques de compression du sein. La qualité de la compression a été caractérisée en termes de confort de la patiente, de la qualité d'image et de la dose glandulaire moyenne délivrée. Afin d'évaluer la déformation du sein lors de la compression, un modèle biomécanique par éléments finis du sein a été développé. Ce dernier a été calibré et évalué en utilisant des volumes IRM d'une volontaire dans trois configurations différentes (sur le dos, le ventre et de côté). Par ailleurs, la qualité d'image a été évaluée en utilisant un environnement de simulation d'imagerie auparavant validé pour la simulation de l'acquisition d'images en mammographie.Résultats: La capacité de notre modèle biomécanique à reproduire les déformations réelles des tissus a été évaluée. Tout d'abord, la géométrie du sein dans les trois configurations a été estimée en utilisant des matériaux Néo-Hookeens pour la modélisation des tissus mous. Les propriétés mécaniques des différents constituants du sein ont été estimés afin que les géométries du sein dans les positions couchée sur le ventre et couchée soient le plus proches possibles des mesures. La distance de Hausdorff entre les données estimées et les données mesurées est égale à 2.17 mm en position couché sur le ventre et 1.72 mm en position couché sur le dos. Le modèle a ensuite été évalué dans une troisième configuration sur le côté, avec une distance de Hausdorff étant alors égale à 6.14 mm. Cependant, nous avons été montré que le modèle Néo-Hookeen ne peut pas décrire intégralement le comportement mécanique riche des tissus mous. Par conséquent, nous avons introduit d'autres modèles de matériaux basés sur la fonction d'énergie de Gent. Cette dernière hypothèse a permis de réduire l'erreur maximale dans la configuration couchée sur le ventre et dos incliné d’environ 10 mm.Le couplage entre la simulation de la mécanique du sein et la simulation d'aquisition d'image nous ont permis d'effectuer deux études préliminaires. Dans la première étude, les différences entre les pelotes de compression standard rigide et flex ont été évaluées. Selon les simulations effectuées, l'utilisation de la pelote flex pour la compression du sein a le potentiel d'améliorer le confort de la patiente sans affecter la qualité de l'image ou la dose glandulaire moyenne.Dans la seconde étude, l'impact du positionnement du sein sur la mécanique globale de la compression mammaire a été étudié. Nos simulations confirment que rapprocher la pelote de compression de la cage thoracique peut augmenter l'inconfort de la patiente. Selon les données estimées, pour une même épaisseur du sein sous compression, la force appliqée au sein peut être s'accroitre de 150%.Conclusion: L'estimation réaliste de la géométrie du sein pour différentes configurations sous l'effet de la gravité, ainsi que les résultats conformes aux descriptions cliniques sur la compression du sein, ont confirmé l'interêt d'un environnement de simulation dans le cadre de nos études. / Background: Mammography is a specific type of breast imaging that uses low-dose X-rays to detect breast cancer at early stage. During the exam, the women breast is compressed between two plates in order to even out the breast thickness and to spread out the soft tissues. This compression improves the exam quality but can also be a source of discomfort. Though mammography is the most effective breast cancer screening method, the discomfort perceived during the exam might deter women from getting the test. Therefore, an alternative breast compression technique considering the patient comfort in addition to an improved clinical image quality is of large interest.Methods: In this work, a simulation environment allowing the evaluation of different breast compression techniques was put forward. The compression quality was characterized in terms of patient comfort, image quality and average glandular dose. To estimate the breast deformation under compression, a subject-specific finite element biomechanical model was developed. The model was calibrated and evaluated using MR images in three different breast configurations (supine, prone and supine tilted). On the other hand, image quality was assessed by using an already validated simulation framework. This framework was largely used to mimic image acquisitions in mammography.Findings: The capability of our breast biomechanical model to reproduce the real breast deformations was evaluated. To this end, the geometry estimates of the three breast configurations were computed using Neo-Hookean material models. The subject specific mechanical properties of each breast's structures were assessed, such as the best estimates of the supine and prone configurations were obtained. The Hausdorff distances between the estimated and the measured geometries were equal to 2.17 mm and 1.72 mm respectively. Then, the model was evaluated using a supine tilted configuration; with a Hausdorff distance of 6.14 mm was obtained in that case. However, we have showed that the Neo-Hookean strain energy function cannot totally describe the rich mechanical behavior of breast soft tissues. Therefore, alternative material models based on the Gent strain energy function were proposed. The latter assumption reduced the maximal error in supine tilted breast configuration by about 10 mm.The coupling between the simulations of the breast mechanics and the X-ray simulations allowed us to run two preliminary studies. In the first study, the differences between standard rigid and flex compression paddles were assessed. According to the performed simulations, using the flex paddle for breast compression may improve the patient comfort without affecting the image quality and the delivered average glandular dose.In the second study, the impact of breast positioning on the general compression mechanics was described. Our simulations confirm that positioning the paddle closer to the chest wall is suspected to increase the patient discomfort. Indeed, based on the estimated data, for the same breast thickness under compression, the force applied to the breast may increase by 150%.Conclusion: The good results we get for the estimation of breast deformation under gravity, as well as the conforming results on breast compression quality with the already published clinical statements, have shown the feasibility of such studies by the means of a simulation framework.
2

Modélisation biomécanique des système musculo-squelettique sous déterminés. Analyse statique des tensions des tendons mobilisant le doigt

Vigouroux, Laurent 04 November 2005 (has links) (PDF)
La modélisation du comportement mécanique de l'architecture musculo-squelettique sollicitée in situ constitue un enjeu tant en biomécanique, en réhabilitation, qu'en physiologie. Ceci nécessite d'évaluer des variables non directement mesurables comme les moments et les forces musculaires. Ces variables peuvent être estimées à partir de la conception de modèles biomécaniques qui nécessitent la formulation de certaines hypothèses et l'enregistrement de données expérimentales périphériques. Or, le système musculo-squelettique est redondant dans le sens où chaque degré de liberté est sous le contrôle de plusieurs actionneurs (muscles) aussi bien agonistes qu'antagonistes. L'utilisation conjointe de la modélisation biomécanique des systèmes musculaires et de l'optimisation numérique nous a permis de résoudre ce problème de redondance. Particulièrement dans ce travail, nous avons développé des techniques de modélisation et d'expérimentation permettant l'analyse des tensions des tendons mobilisant le doigt dans différentes situations de sollicitation. Ceci nous a permis de montrer que l'amplitude des moments passifs non musculaires ne devait pas être négligée dans les procédures de calcul. De plus, nous avons également utilisé de façon originale l'information EMG sous forme d'une contrainte d'inégalité dans les procédures d'optimisation. Ce travail a permis de mettre en évidence des résultats inédits concernant la distribution des tensions dans les tendons agonistes et antagonistes. Diverses adaptations du modèle sont discutées dans le document, la substitution de l'EMG invasif par de l'EMG de surface étant l'axe de recherche principal.
3

Caractérisation mécanique du bois vert au cours de sa maturation et modélisation de la réaction gravitropique de jeunes peupliers

Pot, Guillaume 11 October 2012 (has links) (PDF)
Les arbres sont capables de modifier l'orientation de leurs branches et de leur tronc par la production asymétrique de bois précontraint. Il existe des modèles biomécaniques développés pour simuler ces mouvements, mais ils ne simulent pas correctement le redressement (ou mouvement gravitropique) de jeunes arbres à l'échelle de temps intra-annuelle. La méconnaissance de la cinétique de maturation et des propriétés mécaniques du bois vert est responsable de ces résultats. Les travaux présentés dans ce mémoire ont pour objectifs de caractériser le comportement mécanique du bois vert au cours de sa maturation, et de développer un modèle biomécanique qui puisse simuler quantitativement le gravitropisme de jeunes peupliers. Des comportements mécaniques non-linéaires sont révélés par des essais de traction cycliques sur de fines lamelles de bois vert. Ils sont quantifiés par une grandeur mécanique liant rigidité et déformation. Des essais de flexion réalisés sur des planchettes renseignent quant à eux sur l'évolution intra-cerne du module élastique. Ces campagnes d'essais montrent une augmentation puis une diminution du module au cours de la maturation des cellules. Des essais de fluage indiquent que le comportement viscoélastique du bois vert se modélise par un modèle de Burgers. Les propriétés viscoélastiques du bois vert sont ainsi déterminées. Les propriétés mécaniques obtenues sont utilisées dans un modèle biomécanique développé pour modéliser l'évolution spatio-temporelle des propriétés. Le gravitropisme de jeunes peupliers est alors modélisé grâce à la prise en compte du comportement viscoélastique du bois vert, de la maturation continue des cellules, et de la variation des déformations de maturation au cours de la saison de végétation.
4

Analyse et modélisation de la préhension pouce-index lors de mouvements du bras chez l'humain

Pilon, Jean-François January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
5

Caractérisation mécanique du bois vert au cours de sa maturation et modélisation de la réaction gravitropique de jeunes peupliers / Mechanical characterization of green wood during maturation process and modeling of gravitropic reaction of young poplars

Pot, Guillaume 11 October 2012 (has links)
Les arbres sont capables de modifier l’orientation de leurs branches et de leur tronc par la production asymétrique de bois précontraint. Il existe des modèles biomécaniques développés pour simuler ces mouvements, mais ils ne simulent pas correctement le redressement (ou mouvement gravitropique) de jeunes arbres à l’échelle de temps intra-annuelle. La méconnaissance de la cinétique de maturation et des propriétés mécaniques du bois vert est responsable de ces résultats. Les travaux présentés dans ce mémoire ont pour objectifs de caractériser le comportement mécanique du bois vert au cours de sa maturation, et de développer un modèle biomécanique qui puisse simuler quantitativement le gravitropisme de jeunes peupliers. Des comportements mécaniques non-linéaires sont révélés par des essais de traction cycliques sur de fines lamelles de bois vert. Ils sont quantifiés par une grandeur mécanique liant rigidité et déformation. Des essais de flexion réalisés sur des planchettes renseignent quant à eux sur l’évolution intra-cerne du module élastique. Ces campagnes d’essais montrent une augmentation puis une diminution du module au cours de la maturation des cellules. Des essais de fluage indiquent que le comportement viscoélastique du bois vert se modélise par un modèle de Burgers. Les propriétés viscoélastiques du bois vert sont ainsi déterminées. Les propriétés mécaniques obtenues sont utilisées dans un modèle biomécanique développé pour modéliser l’évolution spatio-temporelle des propriétés. Le gravitropisme de jeunes peupliers est alors modélisé grâce à la prise en compte du comportement viscoélastique du bois vert, de la maturation continue des cellules, et de la variation des déformations de maturation au cours de la saison de végétation. / Trees are able to modify the orientation of their trunk and branches by asymmetrical production of prestressed wood. Biomechanical models designed to simulate these movements exist, but they cannot fit the righting-up movement (also called gravitropism) of young poplar trees at the intra-annual scale. The lack of knowledge of green wood maturation and mechanical properties is suspected to be responsible for this discrepancy. The aims of this study are to characterize mechanical properties of green wood during the maturation process, and to develop a biomechanical model that simulates quantitatively the gravitropism of young poplars. Nonlinear mechanical behavior is observed in cyclic tensile tests performed on thin lamellas of green wood. A relationship between stiffness and strain enables the characterization of this behavior. The intra-ring evolution of modulus of elasticity is measured using 3-points bending tests on small boards. Both of these experimental campaigns show that wood stiffness increases then decreases while cells are maturating. Creep tests show that green wood viscoelastic behaviour is described by a Burgers’ model. As a result, green wood viscoelastic properties are determined. These mechanical properties are used in a new biomechanical model designed for considering spatio-temporal evolutions of wood properties. Then the gravitropic movements of young poplars are simulated by considering viscoelastic behaviour of green wood, continuous maturation of cells, and variation of maturation strains along the growing season.
6

Modélisation biomécanique de l'interaction tendon-aponévrose-fibre pour estimer les forces musculaires : apport des mesures échographiques

Gérus, Pauline épouse Daussant 26 September 2011 (has links)
L'estimation des forces musculaires nécessite le développement d'un modèle biomécanique. Une des étapes essentielle de ce type d'approche est la modélisation de l'interaction au sein du complexe muscle-tendon entre trois composants, les fibres musculaires, l'aponévrose et le tendon par un modèle de type Hill. L'objectif de ce travail doctoral était d'identifier les paramètres dans le modèle de type Hill qui jouent un rôle important dans l'estimation des forces musculaires et de proposer une méthode pour les définir. L’échographie a été utilisée pour estimer la relation force-déformation in vivo du tendon et de l'aponévrose, et le comportement in vivo des fibres musculaires au cours de la contraction pour chaque sujet et comme un moyen de quantifier la précision des modèles en mesurant le comportement in vivo des fibres musculaires et les comparer aux sorties du modèle. L'utilisation d'une définition de l'Élément Élastique en série spécifique au sujet dans les modèles biomécaniques joue un rôle important pour des activités où les forces musculaires sont importantes. Lors de tâches isométriques maximales, la relation force-déformation du tendon spécifique au sujet combiné à des contraintes sur la géométrie initiale conduit à des estimations de forces musculaires plus faibles et un comportement différent des fibres. En ce qui concerne des activités comme le hopping et la course, l’utilisation d’une relation force-déformation du complexe tendon-aponévrose spécifique au sujet permet d’estimer des forces musculaires plus grandes et entraîne un découplage du comportement des fibres musculaires plus important par rapport au complexe muscle-tendon. Pour des activités de marche, la définition de l’élément en série dans le modèle de type-Hill n'influence pas les forces musculaires. L'échographie apparaît comme un outil intéressant pour personnaliser les modèles et pourrait être appliqué sur des patients ayant un trouble neuromusculosquelettique. / The estimation of forces produced by the muscle-tendon complex around a joint needs the development of a neuromusculoskeletal model. One of essential step of this approach is the modeling by a Hill-type muscle model of the interaction within the muscle-tendon complex between three components: the muscle fiber, the aponeurosis, and the tendon. The objective of this work was to identify the parameters used as input into Hill-type muscle model that play an important role in muscle force estimation and to propose a method to define them. The ultrasonography has been used to estimate in vivo tendon and aponeurosis force-strain relationships, and the in vivo behavior of muscle fiber during the contraction for each subject. In addition, a method was proposed to quantify the model accuracy by estimating the in vivo behavior of muscle fiber and compare it with model outputs. The use of subject-specific definition of Series Elastic Element into the EMG-driven model plays an important role for activity at high level of muscle forces. During maximal isometric contraction, the subject-specific tendon force-strain relationship combined with constraint on initial muscle geometry (i.e., fiber length and muscle thickness) leads to lower estimated muscle forces and to a different behavior for the muscle fiber. Concerning highly dynamic tasks such as running and \textit{hopping}, the use of subject specific force-strain relationship for the tendon-aponeurosis complex allows to estimate higher muscle forces and leads to a heavier decoupling behavior between muscle fiber and muscle-tendon complex.The estimation of forces produced by the muscle-tendon complex needs the development of a neuromusculoskeletal model. One of essential step of this approach is the modeling by a Hill-type muscle model of the interaction within the muscle-tendon complex between three components: the muscle fiber, the aponeurosis, and the tendon. The objective of this work was to identify the parameters used as input into Hill-type muscle model that play an important role in muscle force estimation and to propose a method to define them. The ultrasonography has been used to estimate in vivo tendon and aponeurosis force-strain relationships, and the in vivo behavior of muscle fiber during the contraction for each subject. In addition, a method was proposed to quantify the model accuracy by estimating the in vivo behavior of muscle fiber and compare it with model outputs. The use of subject-specific definition of Series Elastic Element into the EMG-driven model plays an important role for activity at high level of muscle forces. During maximal isometric contraction, the subject-specific tendon force-strain relationship combined with constraint on initial muscle geometry (fiber length and muscle thickness) leads to lower estimated muscle forces and to a different behavior for the muscle fiber. Concerning highly dynamic tasks such as running and hopping, the use of subject specific force-strain relationship for the tendon-aponeurosis complex allows to estimate higher muscle forces and leads to a heavier decoupling behavior between muscle fiber and muscle-tendon complex. Concerning dynamic tasks with low force level such as walking, the estimation of muscle force was not influenced by the Series Elastic Element definition. The ultrasonography appears as a useful tool to personalize neuromusculoskeletal models and could be used for patient with neuromusculoskeletal disorders showing an alteration of tendon mechanical properties allowing to quantify the effect of rehabilitation program.
7

Régulation mécanique de l'angiogenèse in vitro: analyse par un modèle aux dérivées partielles des interactions cellules-substrat

Namy, Patrick 22 October 2004 (has links) (PDF)
Le développement de capillaires sanguins à partir d'un réseau pré-existant, l'angiogenèse, joue un rôle fondamental dans de nombreux contextes physiopathologiques, tels la cicatrisation des tissus ou le développement d'une tumeur solide. Dans cette thèse, nous nous sommes intéressés à la régulation de ce phénomène par les facteurs mécaniques (rigidité, viscosité, traction cellulaire). Dans un dialogue permanent entre l'expérimentation et la modélisation, nous avons développé un modèle théorique biomécanique minimal des premières étapes de l'angiogenèse in vitro, où l'angiogenèse est supposée issue d'une instabilité mécanique entre les forces actives de traction cellulaire et la résistance passive viscoélastique de la matrice extracellulaire. Notre modèle consiste en un système d'équations aux dérivées partielles non-linéaires couplées, résolu par la méthode des éléments finis. Nous avons mené des analyses de stabilité linéaire et non-linéaire de l'état d'équilibre homogène pour déterminer les points de bifurcation du système correspondant à une instabilité de Turing. Nous avons ensuite effectué une étude approfondie de l'influence des différents paramètres sur la formation du réseau. Les résultats des simulations numériques sont comparés avec succès aux résultats expérimentaux, obtenus par notre équipe ou extraits de la littérature. Dans une seconde partie de nos travaux, nous avons étudié des voies de régulation possibles, par les effets mécaniques, de la dégradation de la matrice extracellulaire. Nous avons alors montré que la régulation mécanique de la dégradation pouvait être un processus clé de l'angiogenèse in vitro.

Page generated in 0.0812 seconds