• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 8
  • 2
  • 2
  • 2
  • Tagged with
  • 56
  • 56
  • 26
  • 16
  • 12
  • 11
  • 11
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Simulações computacionais na proteína TM1030 da bactéria hipertermófila Thermotoga maritima / Computational simulations at TM1030 protein of hyperthermofile Thermotoga maritima bacterium

Salcedo, David Leandro Palomino 19 January 2016 (has links)
A Thermotoga marítima (Tm) é uma bactéria que vive em temperaturas na faixa dos 65 até 90°C, com temperatura ótima do redor dos 80°C. A proteína TM1030 de Tm, é um regulador transcricional da família TetR (Tetracycline repressor protein) reguladores da expressão génica das proteínas TetA e TetB (Tetracycline resistance protein). Neste trabalho se rodarem 200ns de trajetória de dinâmica molecular a três temperaturas (293, 323 e 353K) da proteína TM1030 (PDB-1Z77) usando o pacote GROMACS com o potencial Amber99 e solvente explicito numa caixa cúbica com 90Å de comprimento, observando que RMSD da estrutura média da trajetória é menor em relação à estrutura cristalográfica, além disso que num primer momento esse RMSD tem uma mudança grande e que se estabiliza com uma maior velocidade nas maiores temperaturas. Também foi feito um analise de modos normais na mesma estrutura usando o mesmo potencial, mas com solvente implícito, usando o modelo GBSA, minimizando a estrutura até ter um coeficiente de força média de 6,4x10-8J·mol-1·cm-1 que assegura um bom mínimo local. Das trajetórias simuladas a partir das 6 menores frequências se achou uma relação com os movimentos observados nas dinâmicas moleculares e os esperados na transição alostérica entre as duas estruturas cristalográficas. Finalmente se calculam os fatores de temperatura das três trajetórias de dinâmica molecular, observando que seus esses fatores de temperatura aumentam com o aumento da temperatura, contrario do esperado da cristalografia onde diminuam com o aumento da temperatura do sistema. / The Thermotoga maritima (Tm) is a bacterium who can lives at temperatures of 65 to 90°C, with optimum temperature around of 80°C. The TM1030 protein of Tm is a transcriptional regulator from TetR family (Tetracycline repressor protein) regulators of gene expression of the TetA and TetB protein (Tetracycline resistance protein). In this work 200ns of molecular dynamics trajectory was run at three temperatures (293, 323 and 353K) of TM1030 protein (PDB-1Z77) using GROMACS package with Amber99 potential and explicit solvent in a cubic box with length 90A, noting that RMSD of the average structure of the trajectory is smaller with respect to the crystallographic structure, in addition, in a first time this RMSD have a large change and stabilizes at a higher speed at higher temperatures. There was also an analysis of normal modes on the same structure using the same potential, but with implicit solvent, using the GBSA model, minimizing the structure to have a medium force coefficient of 6,4x10-8J·mol-1·cm-1which ensures a good local minimum. Of the trajectories simulated from 6 lower frequencies was found a relationship with the movements observed in molecular dynamics and expected the allosteric transition between the two crystal structures. Finally was calculate the temperature factor of the three trajectories of molecular dynamics, observing their temperature factors increase with increasing temperature, contrary to expectations of crystallography which decrease with the increase of the system temperature.
42

Theoretical Studies on Proteins to Reveal the Mechanism of Their Folding and Biological Functions

Shao, Qiang 2009 December 1900 (has links)
The folding mechanism of several β-structures (e.g., β-hairpins and β-sheets) was studied using newly developed enhanced sampling methods along with MD simulations in all implicit solvent environments. The influence of different implicit solvent models on the folding simulation of β-structure was also tested. Through the analysis of the free energy landscape as the function of several suitable reaction coordinates, we observed that the folding of β-hairpins is actually a two-state transition. In addition, the folding free energy landscapes for those related hairpins indicate the apparent sequence dependence, which demonstrates different folding mechanisms of similar β-structures of varied sequence. We also found that the stability of backbone hydrogen bonds is determined by the turn sequence and the composition of hydrophobic core cluster in β-structures. Neither of these findings was reported before. The processive movement of kinesin was also studied at the mesoscopic level. We developed a simple physical model to understand the asymmetric hand-over-hand mechanism of the kinesin walking on the microtubule. The hand-over-hand motion of the conventional kinesin is reproduced in our model and good agreement is achieved between calculated and experimental results. The experimentally observed limping of the truncated kinesin is also perfectly described by our model. The global conformational change of kinesin heads (e.g., the power stroke of neck-linkers which works as lever-arms during the kinesin walking, the transition between open and closed states of the switch region of the nucleotide binding domain in each head induced by the nucleotide binding and release) was studied for both dimeric and monomeric kinesins using a coarse-grained model, anisotropic network model (ANM). At the same time Langevin mode analysis was used to study the solvent influence on the motions of the kinesin head mimicked by ANM. Additionally, the correlation between the neck-linker and the nucleotide binding site was also studied for dimeric and monomeric kinesins. The former shows the apparent correlation between two subdomains whereas the latter does not, which may explain the experimental observation that only the dimeric kinesin is capable of walking processively on the microtubule.
43

Dominanser : En utveckling av den realistiska livsformsteorin

Axelsson, Jonas January 2009 (has links)
The present dissertation develops a specific theory about everyday life called realist life mode theory. This theory is based on critical realism and consists of "work", "love" and "life mode" as central concepts. The background of the theory is the Danish life mode analysis developed by Thomas Højrup in the 1980:s. The aim of the study is to develop the central clusters of concepts in the realist life mode theory - i. e. "work", "love", "life mode" in a theoretical way. These concepts are seen as clusters since other related concepts are developed in connection to the concepts mentioned above. In connection to work I also discuss the concepts of "labour power", "labour receptor", and "work form"; in relation to love, "love power", "love receptor" and "love form" are discussed. And "life mode" is connected with the concept of "everyday life" in a more exact way than before. The argument of this study is that realist life mode theory is about two fundamental types of dominance - personal dominance and structural dominance. "Personal dominance" is used synonymously with "ownership". "Structural dominance" is dominance between non-personal, non-conscious entities. Life mode theory is a theory about ownership surrounded by structural dominances both beneath the owning person (sub-personally), and above (socially). Personal dominance - ownership - is produced via two human and societal processes - work and love. Work is defined as doing and occuring in the sphere of necessity. In work there especially are possibilities for ownership of the material surroundings. Love is defined as doing and occuring in the sphere of freedom. In love humans produce each other as self-owned persons through transaction of love power. Both work and love has great emancipatory potentials, and this theme is discussed in the present study. But, unfortunately, really existing work and love practices are to a great extent exploitative. Labour power is exploited in capitalism, and love power in patriarchy. When it comes to structural dominance, this study focuses on the following dominances: The dominance of labour receptor over labour power in men´s working life; the dominance of love power over love receptor in women´s love life. The dominance of work over love in men´s everyday life; the dominance of love over work in women´s everyday life. And on a more social level we find the following dominances: in the male life modes the work form dominates the love form. In female life modes the love form dominates the work form. And finally, in society as a whole male life modes have dominance over female life modes. When the dominance between social structures is analyzed, a distinction is made between "dominance form" and "the substance of dominance".
44

Generalised nonlinear stability of stratified shear flows : adjoint-based optimisation, Koopman modes, and reduced models

Eaves, Thomas Scott January 2016 (has links)
In this thesis I investigate a number of problems in the nonlinear stability of density stratified plane Couette flow. I begin by describing the history of transient growth phenomena, and in particular the recent application of adjoint based optimisation to find nonlinear optimal perturbations and associated minimal seeds for turbulence, the smallest amplitude perturbations that are able to trigger transition to turbulence. I extend the work of Rabin et al. (2012) in unstratified plane Couette flow to find minimal seeds in both vertically and horizontally sheared stratified plane Couette flow. I find that the coherent states visited by such minimal seed trajectories are significantly altered by the stratification, and so proceed to investigate these states both with generalised Koopman mode analysis and by stratifying the self-sustaining process described by Waleffe (1997). I conclude with an introductory problem I considered that investigates the linear Taylor instability of layered stratified plane Couette flow, and show that the nonlinear evolution of the primary Taylor instability is not coupled to the form of the linearly unstable mode, in contrast to the Kelvin-Helmholtz instability, for example. I also include an appendix in which I describe joint work conducted with Professor Neil Balmforth of UBC during the 2015 WHOI Geophysical Fluid Dynamics summer programme, investigating stochastic homoclinic bifurcations.
45

Simulações computacionais na proteína TM1030 da bactéria hipertermófila Thermotoga maritima / Computational simulations at TM1030 protein of hyperthermofile Thermotoga maritima bacterium

David Leandro Palomino Salcedo 19 January 2016 (has links)
A Thermotoga marítima (Tm) é uma bactéria que vive em temperaturas na faixa dos 65 até 90°C, com temperatura ótima do redor dos 80°C. A proteína TM1030 de Tm, é um regulador transcricional da família TetR (Tetracycline repressor protein) reguladores da expressão génica das proteínas TetA e TetB (Tetracycline resistance protein). Neste trabalho se rodarem 200ns de trajetória de dinâmica molecular a três temperaturas (293, 323 e 353K) da proteína TM1030 (PDB-1Z77) usando o pacote GROMACS com o potencial Amber99 e solvente explicito numa caixa cúbica com 90Å de comprimento, observando que RMSD da estrutura média da trajetória é menor em relação à estrutura cristalográfica, além disso que num primer momento esse RMSD tem uma mudança grande e que se estabiliza com uma maior velocidade nas maiores temperaturas. Também foi feito um analise de modos normais na mesma estrutura usando o mesmo potencial, mas com solvente implícito, usando o modelo GBSA, minimizando a estrutura até ter um coeficiente de força média de 6,4x10-8J·mol-1·cm-1 que assegura um bom mínimo local. Das trajetórias simuladas a partir das 6 menores frequências se achou uma relação com os movimentos observados nas dinâmicas moleculares e os esperados na transição alostérica entre as duas estruturas cristalográficas. Finalmente se calculam os fatores de temperatura das três trajetórias de dinâmica molecular, observando que seus esses fatores de temperatura aumentam com o aumento da temperatura, contrario do esperado da cristalografia onde diminuam com o aumento da temperatura do sistema. / The Thermotoga maritima (Tm) is a bacterium who can lives at temperatures of 65 to 90°C, with optimum temperature around of 80°C. The TM1030 protein of Tm is a transcriptional regulator from TetR family (Tetracycline repressor protein) regulators of gene expression of the TetA and TetB protein (Tetracycline resistance protein). In this work 200ns of molecular dynamics trajectory was run at three temperatures (293, 323 and 353K) of TM1030 protein (PDB-1Z77) using GROMACS package with Amber99 potential and explicit solvent in a cubic box with length 90A, noting that RMSD of the average structure of the trajectory is smaller with respect to the crystallographic structure, in addition, in a first time this RMSD have a large change and stabilizes at a higher speed at higher temperatures. There was also an analysis of normal modes on the same structure using the same potential, but with implicit solvent, using the GBSA model, minimizing the structure to have a medium force coefficient of 6,4x10-8J·mol-1·cm-1which ensures a good local minimum. Of the trajectories simulated from 6 lower frequencies was found a relationship with the movements observed in molecular dynamics and expected the allosteric transition between the two crystal structures. Finally was calculate the temperature factor of the three trajectories of molecular dynamics, observing their temperature factors increase with increasing temperature, contrary to expectations of crystallography which decrease with the increase of the system temperature.
46

Investigation of Power Grid Islanding Based on Nonlinear Koopman Modes

Raak, Fredrik January 2013 (has links)
To view the electricity supply in our society as just sockets mountedin our walls with a constant voltage output is far from the truth. Inreality, the power system supplying the electricity or the grid, is themost complex man-made dynamical system there is. It demands severecontrol and safety measures to ensure a reliable supply of electric power.Throughout the world, incidents of widespread power grid failures havebeen continuously reported. The state where electricity delivery to customersis terminated by a disturbance is called a blackout. From a stateof seemingly stable operating conditions, the grid can fast derail intoan uncontrollable state due to cascading failures. Transmission linesbecome automatically disconnected due to power flow redirections andparts of the grid become isolated and islands are formed. An islandedsub-grid incapable of maintaining safe operation conditions experiencesa blackout. A widespread blackout is a rare, but an extremely costlyand hazardous event for society.During recent years, many methods to prevent these kinds of eventshave been suggested. Controlled islanding has been a commonly suggestedstrategy to save the entire grid or parts of the grid from a blackout.Controlled islanding is a strategy of emergency control of a powergrid, in which the grid is intentionally split into a set of islanded subgridsfor avoiding an entire collapse. The key point in the strategy is todetermine appropriate separation boundaries, i.e. the set of transmissionlines separating the grid into two or more isolated parts.The power grid exhibits highly nonlinear response in the case oflarge failures. Therefore, this thesis proposes a new controlled islandingmethod for power grids based on the nonlinear Koopman Mode Analysis(KMA). The KMA is a new analyzing technique of nonlinear dynamicsbased on the so-called Koopman operator. Based on sampled data followinga disturbance, KMA is used to identify suitable partitions of thegrid.The KMA-based islanding method is numerically investigated withtwo well-known test systems proposed by the Institute of Electrical andElectronics Engineers (IEEE). By simulations of controlled islanding inthe test system, it is demonstrated that the grid’s response following afault can be improved with the proposed method.The proposed method is compared to a method of partitioning powergrids based on spectral graph theory which captures the structural propertiesof a network. It is shown that the intrinsic structural propertiesof a grid characterized by spectral graph theory are also captured by theKMA. This is shown both by numerical simulations and a theoreticalanalysis.
47

Growth and Scaling during Development and Regeneration

Werner, Steffen 19 August 2016 (has links) (PDF)
Life presents fascinating examples of self-organization and emergent phenomena. In multi-cellular organisms, a multitude of cells interact to form and maintain highly complex body plans. This requires reliable communication between cells on various length scales. First, there has to be the right number of cells to preserve the integrity of the body and its size. Second, there have to be the right types of cells at the right positions to result in a functional body layout. In this thesis, we investigate theoretical feedback mechanisms for both self-organized body plan patterning and size control. The thesis is inspired by the astonishing scaling and regeneration abilities of flatworms. These worms can perfectly regrow their entire body plan even from tiny amputation fragments like the tip of the tail. Moreover, they can grow and actively de-grow by more than a factor of 40 in length depending on feeding conditions, scaling up and down all body parts while maintaining their functionality. These capabilities prompt for remarkable physical mechanisms of pattern formation. First, we explore pattern scaling in mechanisms previously proposed to describe biological pattern formation. We systematically extract requirements for scaling and highlight the limitations of these previous models in their ability to account for growth and regeneration in flatworms. In particular, we discuss a prominent model for the spontaneous formation of biological patterns introduced by Alan Turing. We characterize the hierarchy of steady states of such a Turing mechanism and demonstrate that Turing patterns do not naturally scale. Second, we present a novel class of patterning mechanisms yielding entirely self-organized and self-scaling patterns. Our framework combines a Turing system with our derived principles of pattern scaling and thus captures essential features of body plan regeneration and scaling in flatworms. We deduce general signatures of pattern scaling using dynamical systems theory. These signatures are discussed in the context of experimental data. Next, we analyze shape and motility of flatworms. By monitoring worm motility, we can identify movement phenotypes upon gene knockout, reporting on patterning defects in the locomotory system. Furthermore, we adapt shape mode analysis to study 2D body deformations of wildtype worms, which enables us to characterize two main motility modes: a smooth gliding mode due to the beating of their cilia and an inchworming behavior based on muscle contractions. Additionally, we apply this technique to investigate shape variations between different flatworm species. With this approach, we aim at relating form and function in flatworms. Finally, we investigate the metabolic control of cell turnover and growth. We establish a protocol for accurate measurements of growth dynamics in flatworms. We discern three mechanisms of metabolic energy storage; theoretical descriptions thereof can explain the observed organism growth by rules on the cellular scale. From this, we derive specific predictions to be tested in future experiments. In a close collaboration with experimental biologists, we combine minimal theoretical descriptions with state-of-the-art experiments and data analysis. This allows us to identify generic principles of scalable body plan patterning and growth control in flatworms. / Die belebte Natur bietet uns zahlreiche faszinierende Beispiele für die Phänomene von Selbstorganisation und Emergenz. In Vielzellern interagieren Millionen von Zellen miteinander und sind dadurch in der Lage komplexe Körperformen auszubilden und zu unterhalten. Dies verlangt nach einer zuverlässigen Kommunikation zwischen den Zellen auf verschiedenen Längenskalen. Einerseits ist stets eine bestimmte Zellanzahl erforderlich, sodass der Körper intakt bleibt und seine Größe erhält. Anderseits muss für einen funktionstüchtigen Körper aber auch der richtige Zelltyp an der richtigen Stelle zu finden sein. In der vorliegenden Dissertation untersuchen wir beide Aspekte, die Kontrolle von Wachstum sowie die selbstorganisierte Ausbildung des Körperbaus. Die Dissertation ist inspiriert von den erstaunlichen Skalierungs- und Regenerationsfähigkeiten von Plattwürmern. Diese Würmer können ihren Körper selbst aus winzigen abgetrennten Fragmenten -wie etwa der Schwanzspitze- komplett regenerieren. Darüberhinaus können sie auch, je nach Fütterungsbedingung, um mehr als das 40fache in der Länge wachsen oder schrumpfen und passen dabei alle Körperteile entsprechend an, wobei deren Funktionalität erhalten bleibt. Diese Fähigkeiten verlangen nach bemerkenswerten physikalischen Musterbildungsmechanismen. Zunächst untersuchen wir das Skalierungsverhalten von früheren Ansätzen zur Beschreibung biologischer Musterbildung. Wir leiten daraus Voraussetzung für das Skalieren ab und zeigen auf, dass die bekannten Modelle nur begrenzt auf Wachstum und Regeneration von Plattwürmern angewendet werden können. Insbesondere diskutieren wir ein wichtiges Modell für die spontane Entstehung von biologischen Strukturen, das von Alan Turing vorgeschlagen wurde. Wir charakterisieren die Hierarchie von stationären Zuständen solcher Turing Mechanismen und veranschaulichen, dass diese Turingmuster nicht ohne weiteres skalieren. Daraufhin präsentieren wir eine neuartige Klasse von Musterbildungsmechanismen, die vollständig selbstorgansierte und selbstskalierende Muster erzeugen. Unser Ansatz vereint ein Turing System mit den zuvor hergeleiteten Prinzipien für das Skalieren von Mustern und beschreibt dadurch wesentliche Aspekte der Regeneration und Skalierung von Plattwürmern. Mit Hilfe der Theorie dynamischer Systeme leiten wir allgemeine Merkmale von skalierenden Mustern ab, die wir im Hinblick auf experimentelle Daten diskutieren. Als nächstes analysieren wir Form und Fortbewegung der Würmer. Die Auswertung des Bewegungsverhaltens, nachdem einzelne Gene ausgeschaltet wurden, ermöglicht Rückschlüsse auf die Bedeutung dieser Gene für den Bewegungsapparat. Darüber hinaus wenden wir eine Hauptkomponentenanalyse auf die Verformungen des zweidimensionalen Wurmkörpers während der natürlichen Fortbewegung an. Damit sind wir in der Lage, zwei wichtige Fortbewegungsstrategien der Würmer zu charakterisieren: eine durch den Zilienschlag angetriebene gleichmässige Gleitbewegung und eine raupenartige Bewegung, die auf Muskelkontraktionen beruht. Zusätzlich wenden wir diese Analysetechnik auch an, um Unterschiede in der Gestalt von verschiedenen Plattwurmarten zu untersuchen. Grundsätzlich zielen alle diese Ansätze darauf ab, das Aussehen der Plattwürmer mit den damit verbundenen Funktionen verschiedener Körperteile in Beziehung zu setzen. Schlussendlich erforschen wir den Einfluss des Stoffwechsels auf den Zellaustausch und das Wachstum. Dazu etablieren wir Messungen der Wachstumsdynamik in Plattwürmern. Wir unterscheiden drei Mechanismen für das Speichern von Stoffwechselenergie, deren theoretische Beschreibung es uns ermöglicht, das beobachtete makroskopische Wachstum des Organismus mit dem Verhalten der einzelnen Zellen zu erklären. Basierend darauf leiten wir Vorhersagen ab, die nun experimentell getestet werden. In enger Zusammenarbeit mit Kollegen aus der experimentellen Biologie führen wir minimale theoretische Beschreibungen mit modernsten Experimenten und Analysetechniken zusammen. Dadurch sind wir in der Lage, Grundlagen sowohl der skalierbaren Ausbildung des Körperbaus als auch der Wachstumskontrolle bei Plattwürmern herauszuarbeiten.
48

Étude à l'échelle moléculaire des protéines-G couplées à leurs récepteurs. / Molecular scale study of G-proteins coupled to the their receptors.

Louet, Maxime 21 November 2012 (has links)
Les protéines-G hétérotrimériques, constituées des sous-unités α, β et γ, sont les premières actrices de la transduction du signal en interagissant directement avec les Récepteurs Couplés aux protéines-G (RCPG). Les protéines-G ont la capacité de lier soit une molécule de GDP lorsqu'elles sont inactives, soit une molécule de GTP quand elles sont activées par un RCPG. Cet échange de nucléotide va conduire à la dissociation de l'hétérotrimère avec d'une part la sous-unité α seule, et d'autre part le complexe βγ. Chacune de ces entités va ensuite propager le signal dans le compartiment intracellulaire. Les travaux effectués au cours de cette thèse ont pour but de mieux comprendre la dynamique des protéines-G hétérotrimériques et de leurs récepteurs par des techniques de mécanique moléculaire incluant la Dynamique Moléculaire (DM) et l'Analyse de Modes Normaux (AMN). Dans un premier temps une AMN nous a permis de décrire les possibles mouvements de larges amplitudes des protéine-G. Nous avons à l'occasion de cette étude mis au point une méthode de sélection de Modes Normaux (MN) pertinents que nous avons appelés modes représentatifs. Nous avons également développé une méthode d'extraction de ligand (ici le GDP) le long de ces MN. Ceci nous a permis de montrer qu'un mouvement concerté de toute la sous-unité α pouvait permettre l'ouverture de la poche et la sortie du GDP. Dans un deuxième temps, nous avons affiné nos résultats en reconstruisant des profils d'énergie libre le long de plusieurs chemins de sortie possibles pour le GDP. Ainsi nous avons pu proposer un mécanisme fin de sortie du ligand et plusieurs résidus clés impliqués dans cette sortie. Nous avons également étudié le processus de dissociation de l'hétérotrimère par la technique de la Dynamique Moléculaire Dirigée. Il a été possible, à l'issue de cette étude, de proposer un mécanisme à l'échelle moléculaire de la séparation des sous-unités α et βγ. Pour finir, nous avons également étudié le macro-complexe RCPG : protéine-G. Deux études traitent des mécanismes d'activation et de couplage des protéines-G à son récepteur. Nous avons notamment montré que l'hétérotrimère de protéine-G contraint très fortement les mouvements du récepteur. Un mouvement très largement retrouvé dans le complexe ainsi que dans plusieurs autres RCPGs dont les structures sont connues a été proposé comme étant le mouvement d'activation des RCPG une fois complexés à leurs protéines partenaires. / Heterotrimeric G-proteins, constituted of α, β and γ subunits are the first actresses of the intra-cellular signal transduction and interact directly with G-protein Coupled Receptors (GPCR). The heterotrimer is able to bind either a GDP molecule (inactive state) or a GTP molecule (active state). The nucleotide exchange is triggered by the interaction with an activated GPCR and leads to the dissociation of the whole heterotrimer into two independant entities : α and tightly bound βγ subunits. Both subunits further propagate the signal into the intracellular compartment. Goals of the present work were to better understand the mechanics of G-proteins and GPCR by combining several molecular mechanics techniques such as Molecular Dynamics (MD) and Normal Mode Analysis (NMA).Firstly, we described large amplitude motions of the whole G-protein heterotrimer. In this study we developped a method to select relevant Normal Modes (NM), we called representative NM. We also developped a method which consists to extract a ligand (in our case the GDP) out of its binding pocket along computed NM. With these two new methods, we showed that a concerted motion of the α subunit would promote the opening of the pocket and the release of the GDP.Secondly, to refine our results, we performed free energy profiles reconstructions along several putative exit pathways of the GDP. Thus, we proposed for the first time a fine-tuned mechanism of GDP exit at the molecular scale and putative key-residues. We proposed also a molecular scale mechanism for the dissociation of the heterotrimeric G-protein through the use of the Targeted Molecular Dynamics (TMD). Finally we were interested in the study of the GPCR:G-protein complex. We performed two studies related to the activation and to the coupling of the macro-complex. We showed that G-protein constrain drastically the GPCR motions. One over-represented motion in the complex that was also retrieved in other crystallized structures of several different GPCRs thus suggested that this motion could be the putative activation motion of a GPCR when complexed to its favorite protein partners.
49

Dynamique structurale et allostérie des récepteurs NMDA / Structural dynamics and allostery of NMDA receptors

Esmenjaud, Jean-Baptiste 16 July 2018 (has links)
Les récepteurs ionotropiques du glutamate sont responsables de la vaste majorité de la neurotransmission excitatrice rapide dans le système nerveux central. Parmi eux, les récepteurs NMDA (rNMDA) sont les médiateurs de la plasticité synaptique, fondement cellulaire des processus d’apprentissage et de mémoire. Leurs dysfonctionnements sont impliqués dans de nombreuses pathologies neurologiques et psychiatriques comme les maladies d’Alzheimer et de Parkinson, l’épilepsie et la schizophrénie. Les rNMDA forment des complexes hétérotétramériques massifs (>500 kDa) dotés de propriétés allostériques uniques grâce à un ensemble de 8 domaines extracellulaires bilobés organisé en deux strates superposées : la couche de domaines N-terminaux (NTD) et la couche de domaines de liaison de l’agoniste (ABD). Malgré un nombre croissant de structures complètes de rNMDA, le mécanisme de transduction permettant aux interactions entre ces domaines de contrôler l’activité du récepteur restait inconnu. En combinant analyse expérimentale et computationnelle, nous montrons qu’un mouvement de roulis à l’interface entre les deux dimères de la couche d’ABD est un déterminant clé du processus d’activation et de modulation des rNMDA. Cette rotation des deux dimères d’ABD constitue un commutateur conformationnel qui règle l’ouverture du canal en fonction de la conformation des NTD situés à l’opposé. Ce travail révèle comment des changements conformationnels concertés entre couches de domaines gouvernent l’activité des rNMDA. Il illumine notre compréhension d’un récepteur synaptique majeur du système nerveux central et ouvre la voie à la conception de nouveaux agents pharmacologiques ciblant le mécanisme allostérique élucidé. / Ionotropic glutamate receptors are responsible for the vast majority of fast excitatory neurotransmission in the central nervous system. Among them, NMDA receptors (NMDARs) are key mediators of synaptic plasticity, which is considered as the cellular basis of learning and memory. NMDAR dysfunction is implicated in numerous neurological and psychiatric brain disorders such as Alzheimer and Parkinson’s disease, epilepsy and schizophrenia. NMDAR form massive hetero tetrameric complexes (>500 kDa) endowed with unique allosteric capacity provided by a cluster of eight extracellular clamshell-like domains arranged as two superimposed layers: the Nterminal domain (NTD) layer and the agonist binding domain (ABD) layer. Despite an increasing number of full-length NMDAR structures, the transduction mechanism by which these domains interact in an intact receptor to control its activity remained poorly understood. Combining experimental and in silico analysis, we identify a rolling motion at an interface between the two constitute dimers in the ABD layer as a key determinant in NMDAR activation and modulation pathways. This rotation of the two ABD dimers acts as a conformational switch that tunes channel opening depending on the conformation of the membrane-distal NTD layer. This work unveils how NMDAR domains move and operate in a concerted manner to transduce conformational changes between layers and command receptor activity. It illuminates our understanding of a major synaptic receptor of the central nervous system and paves the way for the development of new pharmacological tools targeting the elucidated allosteric mechanism.
50

Modélisation de la croissance des plantes supérieures pour les systèmes de support-vie : modèle métabolique de la feuille de laitue considérant la conversion d'énergie et le métabolisme central du carbone / Modeling the growth of higher plants for life support systems : lettuce leaf metabolic model considering energy conversion and central carbon metabolism

Sasidharan L., Swathy 04 July 2012 (has links)
Pour des missions spatiales de longue durée, les plantes supérieures doivent faire partie des systèmes de support-vie. Le projet Micro-Ecological Life Support System Alternative (MELiSSA, alternative de système de support-vie micro-écologique) de l’Agence Spatiale Européenne est basé sur un système clos de support vie qui inclut, autour d’un compartiment consommateur, des compartiments microbiens et des plantes supérieures. Les plantes consomment les déchets pouvant être recyclés (les eaux usées et du CO2) et produisent de la nourriture fraîche, de l’eau potable et de l’oxygène pour l’équipage. Un des points clé pour ce type d’étude est le maintien d’un système qui assure le recyclage de tous les éléments C, H, O, N, S, P, … C’est pourquoi la base de l’étude repose sur une modélisation des stœchiométries de conversion qui doit traduire les échanges de matière et d’énergie en fonction des limitations physiques qui sont les paramètres de contrôle du système. L’étape préliminaire a été d’établir un modèle métabolique de feuille (un sous-modèle du modèle biochimique), comprenant le métabolisme central et utilisant les techniques métaboliques d’analyse des modes élémentaires (EFMA) et d’analyse des flux métaboliques (MFA) associé à une vision intégrée de l’énergétique du métabolisme central. En l’absence de données expérimentales suffisantes, le modèle métabolique de feuille a été construit à partir de la composition de la biomasse référencée par le Département Américain de l'Agriculture (USDA) et validé avec les données expérimentales de laitues (Lactuca sativa) cultivées dans l’installation de recherche des systèmes à environnement contrôlé (CESRF) de l’Université de Guelph (Canada). Pour la première approche, le modèle est satisfaisant et prometteur ; il peut prédire la production de biomasse une fois connecté aux facteurs physiques de la croissance de plante (lumière, disponibilité en CO2 et en eau, …) au cours du temps et à la composition de la biomasse. Cependant, nos résultats souffrent d’un manque de données pour vérifier les modèles métaboliques ; ainsi, différents types de mesures pour des prédictions plus précises sont proposés. Le futur modèle doit être en mesure de contrôler la croissance de la plante pour la survie des humains, connaissant les flux provenant des autres compartiments de la boucle MELiSSA. Par ailleurs, l’approche décrite ici peut être utilisée de manière plus générale pour tous types d’études et modélisations du métabolisme, en particulier pour étudier le fonctionnement simultané et/ou consécutif des métabolismes photosynthétique et respiratoire. / For long term space missions, higher plants are necessary to be included in life support systems. The Micro Ecological Life Support System Alternative (MELiSSA) project of European Space Agency (ESA) is based on a closed life support system where microbial and higher plant compartments support the consumer’s compartment. Plants consume the possible recycling wastes (waste water and CO2) and provide fresh food, potable water and oxygen to the crew. One of the key points for this kind of study is to maintain a system which recycles all the elements C, H, O, N, S, P, etc. That is why, the study is based on the modelling of conversion stoichiometries ; they are the results of the control parameters of the system (physical limitations of mass and energy exchanges). As a preliminary step, we have established leaf metabolic model (a sub model of the plant biochemical model) involving central carbon metabolism using metabolic techniques, elementary flux mode analysis (EFMA) and metabolic flux analysis (MFA). It is associated to an integrated approach of energetics and central metabolism. Due to data limitations, the leaf metabolic model was constructed taking the biomass composition of lettuce (Lactuca sativa) from United States Department of Agriculture (USDA) and validated with the experimental data where lettuce grown in controlled Environment Systems Research Facility (CESRF) of University of Guelph (Canada). For the first approach, the model is satisfying and promising ; it can predict the biomass production connecting the physical plant growth factors (light, CO2 and water availability, etc.) along with time course growth and biomass composition. However, our results show the lack of sufficient data ; hence, various kinds of measurements required for more accurate model predictions are proposed. The future model must be able to control and manage the plant growth for human survival knowing the fluxes from other compartments of MELiSSA loop. Further, the approach described here can be used more generically in all kinds of metabolic studies and modeling, especially for studying simultaneous and/or consecutive photosynthetic and respiratory metabolisms.

Page generated in 1.0901 seconds