41 |
Metodos de projeção para problemas de porte enormeCarlos, Luiz Amorim 11 December 1984 (has links)
Orientador : Jose Mario Martinez / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Científica / Made available in DSpace on 2018-07-14T15:57:16Z (GMT). No. of bitstreams: 1
Carlos_LuizAmorim_M.pdf: 788388 bytes, checksum: 40543469f2d33512950b42093d5fe4f8 (MD5)
Previous issue date: 1984 / Resumo: Não informado / Abstract: Not informed / Mestrado / Otimização e Pesquisa Operacional / Mestre em Matemática Aplicada
|
42 |
Modelos deterministicos com equações de diferenças de fenomenos biologicosBald, Atelmo Aloisio 11 February 1993 (has links)
Orientador : Rodney Carlos Bassanezi / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-07-18T03:52:56Z (GMT). No. of bitstreams: 1
Bald_AtelmoAloisio_M.pdf: 2680822 bytes, checksum: 11988a2810f2126686f8b1aa0c2c2fdf (MD5)
Previous issue date: 1993 / Resumo: Não informado. / Abstract: Not informed. / Mestrado / Mestre em Matemática Aplicada
|
43 |
Estimativa do custo da colheita mecanizada de cana-de-açúcar utilizando modelos de regressão / Estimated cost of mechanized harvesting of sugarcane using regression modelsMaekawa, Eduardo Shigueiti 22 August 2016 (has links)
A colheita mecanizada é uma das mais significativas e onerosas operações do processo de produção de cana-de-açúcar, tornando-se importante o entendimento das relações que envolvem o seu custo. Atualmente, as metodologias para estimar o custo da colheita partem do conceito de custo fixo e variável. No entanto, considerando a complexidade desse processo, faz-se necessário avaliar métodos capazes de relacionar os parâmetros operacionais com o custo final. Neste contexto, a modelagem estatística por meio da regressão permite tratar tais relações e prever tendências. O objetivo deste trabalho foi desenvolver um modelo empírico para o cálculo do custo da colheita mecanizada de cana-de-açúcar. Desenvolveu-se um modelo linear generalizado (MLG) e um modelo linear generalizado misto (MLGM) ambos com distribuição gama, utilizando indicadores operacionais e dados de custo de 20 usinas do setor sucroalcooleiro. Por meio do MLGM, obteve-se uma aderência satisfatória quando comparado aos modelos MLG, nulo (média) e linear (supondo normalidade). Os indicadores que explicaram o custo foram: produtividade (t maq-1), consumo (l t-1), horímetro (h) e número de operadores por colhedora (nop). / The mechanized harvesting of sugarcane is one of the most significant and costly operations of the production process, thus it is important to understand the relationships involving its cost. Currently, methods to estimate these costs rise from the concept of fixed and variable cost. However, considering the complexity of the harvesting process, it is necessary to evaluate techniques to relate the operating parameters with the final cost. In this context, statistical modeling by regression allows to treat such relationship and predict trends. The objective of this study was to develop an empirical model to calculate the cost of mechanical harvesting of sugarcane. A generalized linear model (GLM) and a generalized linear mixed model (GLMM) both with gamma distribution was developed using operational indicators and cost data from 20 plants in the sugarcane industry. Through the GLMM, satisfactory adhesion was obtained when compared to the GLM, null model (average) and linear (assuming normality). The indicators that explained the cost were: productivity (t mach-1), consumption (l t-1), hourmeter (h) and number of operators per harvester (nop).
|
44 |
Descobrindo modelos de previsão para a inflação brasileira: uma análise a partir do algoritmo AutometricsSilva, Anderson Moriya 29 January 2016 (has links)
Submitted by anderson silva (amoriya@hotmail.com) on 2016-02-19T19:41:50Z
No. of bitstreams: 1
Anderson_Moriya_Silva_final_revisao_4.pdf: 1752260 bytes, checksum: 966f44742fa7cdef87d699b314fca4f0 (MD5) / Approved for entry into archive by Renata de Souza Nascimento (renata.souza@fgv.br) on 2016-02-23T16:25:35Z (GMT) No. of bitstreams: 1
Anderson_Moriya_Silva_final_revisao_4.pdf: 1752260 bytes, checksum: 966f44742fa7cdef87d699b314fca4f0 (MD5) / Made available in DSpace on 2016-02-23T20:09:48Z (GMT). No. of bitstreams: 1
Anderson_Moriya_Silva_final_revisao_4.pdf: 1752260 bytes, checksum: 966f44742fa7cdef87d699b314fca4f0 (MD5)
Previous issue date: 2016-01-29 / O presente trabalho tem como objetivo avaliar a capacidade preditiva de modelos econométricos de séries de tempo baseados em indicadores macroeconômicos na previsão da inflação brasileira (IPCA). Os modelos serão ajustados utilizando dados dentro da amostra e suas projeções ex-post serão acumuladas de um a doze meses à frente. As previsões serão comparadas a de modelos univariados como autoregressivo de primeira ordem - AR(1) - que nesse estudo será o benchmark escolhido. O período da amostra vai de janeiro de 2000 até agosto de 2015 para ajuste dos modelos e posterior avaliação. Ao todo foram avaliadas 1170 diferentes variáveis econômicas a cada período a ser projetado, procurando o melhor conjunto preditores para cada ponto no tempo. Utilizou-se o algoritmo Autometrics para a seleção de modelos. A comparação dos modelos foi feita através do Model Confidence Set desenvolvido por Hansen, Lunde e Nason (2010). Os resultados obtidos nesse ensaio apontam evidências de ganhos de desempenho dos modelos multivariados para períodos posteriores a 1 passo à frente. / The present work has aim to evaluate the superior predictions capabilities of econometrics time series models based on macroeconomics indicators for Brazilian inflation (IPCA). The models were adjusted in sample and the ex-post prediction are accumulating in one to twelve steps ahead. The forecasts will be compared with univariate models like first order autoregressive - AR (1) that is the chosen benchmark. The period of the sample goes through January 2000 to August 2015 for model adjustment and evaluation. It was evaluate over 1170 different economic variable for each forecast period, searching for the best predictor set for each point in time. It was used Autometrics to model selection. The models were compared the Model Confident Set, developed by Hansen, Lunde and Nason (2010). The results founded in this essay evidences gain of accuracy for one-step ahead.
|
45 |
Uma família de modelos de regressão com a distribuição original da variável respostaPaula, Marcelo de 05 April 2013 (has links)
Made available in DSpace on 2016-06-02T20:04:52Z (GMT). No. of bitstreams: 1
5021.pdf: 1591649 bytes, checksum: 6798e65e3b572fcfe760f083f660ff50 (MD5)
Previous issue date: 2013-04-05 / Financiadora de Estudos e Projetos / We know that statistic modeling by regression had a stronger impulse since generalized linear models (GLMs) development in 70 decade beginning of the XX century, proposed by Nelder e Wedderburn (1972). GLMs theory can be interpret like a traditional linear regression model generalization, where outcomes don't need necessary to assume a normal distribution, that is, any distribution belong to exponential distributions family. In binary logistic regression case, however, in many practice situations the outcomes response is originally from a discrete or continuous distribution, that is, the outcomes response has an original distribution that is not Bernoulli distribution and, although, because some purpose this variable was later dicothomized by an arbitrary cut of point C. In this work we propose a regression models family with original outcomes information, whose probability distribution or density function probability belong to exponential family. We present the models construction and development to each class, incorporating the original distribution outcomes response information. The proposed models are an extension of Suissa (1991) and Suissa and Blais (1995) works which present methods of estimating the risk of an event de_ned in a sample subspace of a continuous outcome variable. Simulation studies are presented in order to illustrate the performance of the developed methodology. For original normal outcomes we considered logistic, exponential, geometric, Poisson and lognormal models. For original exponential outcomes we considered logistic, normal, geometric, Poisson and lognormal models. In contribution to Suissa and Blais (1995) works we attribute two discrete outcomes for binary model, geometric and Poisson, and we also considered a normal distributions with multiplicative heteroscedastic structures continuous outcomes. In supplement we also propose the binary model with inated power series distributions outcomes considering a sample subspace of a zero inated geometric outcomes. We do several artificial data studies comparing the model of original distribution information regression model with usual regression model. Simulation studies are presented in order to illustrate the performance of the developed methodology. A real data set is analyzed by using the proposed models. Assuming a correct speci_ed distribution, the incorporation of this information about outcome response in the model produces more eficient likelihood estimates. / É sabido que a área de modelagem estatística por regressão sofreu um grande impulso desde o desenvolvimento dos modelos lineares generalizados (MLGs) no início da década de 70 do Século XX, propostos por Nelder e Wedderburn (1972). A teoria dos MLGs pode ser interpretada como uma generalização do modelo de regressão linear tradicional, em que a variável resposta não precisa necessariamente assumir a distribuição normal, e sim, qualquer distribuição pertencente à família exponencial de distribuições. Em algumas situações, porém, a distribuição da variável resposta Se originalmente fruto de uma outra distribuição discreta ou contínua, ou seja, a variável resposta tem uma distribuição original que não Se a usualmente considerada. Um exemplo desta situação Se a dicotomização de uma variável discreta ou contínua por meio de um ponto de corte arbitrário. Além disso, a variável resposta pode estar relacionada, de alguma forma, com uma outra variável de interesse. Nesse trabalho propomos uma família de modelos de regressão com a informação da variável resposta original, cuja distribuição de probabilidades ou função densidade de probabilidade pertence à família exponencial. O modelo de regressão logística com resposta normal e log-normal desenvolvido por Suissa e Blais (1995) Se apresentado como caso particular dos modelos de regressão com resposta de origem. Para a resposta de origem normal consideramos os modelos logístico, exponencial, geométrico, Poisson e log-normal. Para a resposta de origem exponencial consideramos os modelos logístico, normal, geométrico, Poisson e log-normal. Em contribuição ao trabalho de Suissa e Blais atribuímos duas respostas discretas ao modelo logístico, geométrico e de Poisson, e também consideramos uma resposta contínua normal com estrutura heteroscedástica. Adicionalmente, propomos também o modelo logístico com resposta pertencente à classe de distribuições séries de potências inflacionadas considerando o caso particular da resposta geométrica zero inflacionada. Realizamos vários estudos com dados artificiais comparando o modelo de regressão proposto com a informação da distribuição de origem e o modelo de regressão usual. Dois conjuntos de dados reais também são considerados. Assumindo uma distribuição corretamente especificada, o modelo produz estimativas de máxima verossimilhança mais eficientes e estimativas intervalares mais precisas para os coeficientes de regressão.
|
46 |
Estimativa do custo da colheita mecanizada de cana-de-açúcar utilizando modelos de regressão / Estimated cost of mechanized harvesting of sugarcane using regression modelsEduardo Shigueiti Maekawa 22 August 2016 (has links)
A colheita mecanizada é uma das mais significativas e onerosas operações do processo de produção de cana-de-açúcar, tornando-se importante o entendimento das relações que envolvem o seu custo. Atualmente, as metodologias para estimar o custo da colheita partem do conceito de custo fixo e variável. No entanto, considerando a complexidade desse processo, faz-se necessário avaliar métodos capazes de relacionar os parâmetros operacionais com o custo final. Neste contexto, a modelagem estatística por meio da regressão permite tratar tais relações e prever tendências. O objetivo deste trabalho foi desenvolver um modelo empírico para o cálculo do custo da colheita mecanizada de cana-de-açúcar. Desenvolveu-se um modelo linear generalizado (MLG) e um modelo linear generalizado misto (MLGM) ambos com distribuição gama, utilizando indicadores operacionais e dados de custo de 20 usinas do setor sucroalcooleiro. Por meio do MLGM, obteve-se uma aderência satisfatória quando comparado aos modelos MLG, nulo (média) e linear (supondo normalidade). Os indicadores que explicaram o custo foram: produtividade (t maq-1), consumo (l t-1), horímetro (h) e número de operadores por colhedora (nop). / The mechanized harvesting of sugarcane is one of the most significant and costly operations of the production process, thus it is important to understand the relationships involving its cost. Currently, methods to estimate these costs rise from the concept of fixed and variable cost. However, considering the complexity of the harvesting process, it is necessary to evaluate techniques to relate the operating parameters with the final cost. In this context, statistical modeling by regression allows to treat such relationship and predict trends. The objective of this study was to develop an empirical model to calculate the cost of mechanical harvesting of sugarcane. A generalized linear model (GLM) and a generalized linear mixed model (GLMM) both with gamma distribution was developed using operational indicators and cost data from 20 plants in the sugarcane industry. Through the GLMM, satisfactory adhesion was obtained when compared to the GLM, null model (average) and linear (assuming normality). The indicators that explained the cost were: productivity (t mach-1), consumption (l t-1), hourmeter (h) and number of operators per harvester (nop).
|
47 |
Projeção de inflação no Brasil utilizando dados agregados e desagregados: um teste de poder preditivo por horizonte de tempoCarlos, Thiago Carlomagno 14 August 2012 (has links)
Submitted by Thiago Carlomagno Carlos (thicarlomagno@gmail.com) on 2012-09-05T22:05:12Z
No. of bitstreams: 1
THIAGO_CARLOS_Dissertação_v_final.pdf: 511805 bytes, checksum: f2276883bb78515a6e00fd2b8f2f5b2f (MD5) / Approved for entry into archive by Suzinei Teles Garcia Garcia (suzinei.garcia@fgv.br) on 2012-09-06T12:44:28Z (GMT) No. of bitstreams: 1
THIAGO_CARLOS_Dissertação_v_final.pdf: 511805 bytes, checksum: f2276883bb78515a6e00fd2b8f2f5b2f (MD5) / Made available in DSpace on 2012-09-06T12:51:00Z (GMT). No. of bitstreams: 1
THIAGO_CARLOS_Dissertação_v_final.pdf: 511805 bytes, checksum: f2276883bb78515a6e00fd2b8f2f5b2f (MD5)
Previous issue date: 2012-08-14 / This work has aim to compare the forecast efficiency of different types of methodologies applied to Brazilian consumer inflation. We will compare forecasting models using disaggregated and aggregated data from IPCA over twelve months ahead. We used IPCA in a monthly basis, over the period between January 1996 to March 2012. Out-ofsample analysis will be made through the period of January 2008 to March 2012. The disaggregated models were estimated by SARIMA using X-12 ARIMA software provided by US Census Bureau, and will have different levels of disaggregation from IPCA as groups (9) and items (52), as well as disaggregation with more economic sense used by Brazilian Central Bank as: services, monitored prices, food and industrials; durables, non-durables, semi durables, services and monitored prices. Aggregated models will be estimated by time series techniques as SARIMA, space-estate structural models (Kalman Filter) and Markovswitching. The forecasting accuracy among models will be made by the selection model procedure known as Model Confidence Set, introduced by Hansen, Lunde and Nason (2010), and by Dielbod Mariano (1995), in which we founded evidences of gain in accuracy in models with more disaggregation than aggregates models. / O trabalho tem como objetivo comparar a eficácia das diferentes metodologias de projeção de inflação aplicadas ao Brasil. Serão comparados modelos de projeção que utilizam os dados agregados e desagregados do IPCA em um horizonte de até doze meses à frente. Foi utilizado o IPCA na base mensal, com início em janeiro de 1996 e fim em março de 2012. A análise fora da amostra foi feita para o período entre janeiro de 2008 e março de 2012. Os modelos desagregados serão estimados por SARIMA, pelo software X-12 ARIMA disponibilizado pelo US Census Bureau, e terão as aberturas do IPCA de grupos (9) e itens (52), assim como aberturas com sentido mais econômico utilizadas pelo Banco Central do Brasil como: serviços, administrados, alimentos e industrializados; duráveis, não duráveis, semiduráveis, serviços e administrados. Os modelos agregados serão estimados por técnicas como SARIMA, modelos estruturais em espaço-estado (Filtro de Kalman) e Markov-switching. Os modelos serão comparados pela técnica de seleção de modelo Model Confidence Set, introduzida por Hansen, Lunde e Nason (2010), e Dielbod e Mariano (1995), no qual encontramos evidências de ganhos de desempenho nas projeções dos modelos mais desagregados em relação aos modelos agregados.
|
48 |
Development and application of statistical genetic methods to genomic prediction in Coffea canephora / Desenvolvimento e aplicação de métodos genético-estatíticos para predição genômica em Coffea canephoraFerrão, Luís Felipe Ventorim 07 April 2017 (has links)
Genomic selection (GS) works by simultaneously selecting hundreds or thousands of markers covering the genome so that the majority of quantitative trait loci are in linkage disequilibrium (LD) with such markers. Thus, markers associated with QTLs, regardless of the significance of their effects, are used to explain the genetic variation of a trait. Simulation and empirical results have shown that genomic prediction presents sufficient accuracy to help success in breeding programs, in contrast to traditional phenotypic analysis. For this end, an important step addresses the use of statistical genetic models able to predict the phenotypic performance for important traits. Although some crops have benefited from this approach, studies in the genus Coffea are still in their infancy. Until now, there have been no studies of how predictive models work across populations and environments or, even, their performance for different complex traits. Therefore, the main objective of this research is investigating important aspects related to statistical modeling in order to enable a more comprehensive understanding of what makes a robust prediction model and, as consequence, apply it in practical breeding programs. Real data from two experimental populations of Coffea canephora, evaluated in two brazilian locations and SNPs identified by Genotyping-by-Sequencing (GBS) were considered to investigate the genotype-phenotype relationship. In terms of statistical modelling, two classes of models were considered: i) Mixed models, based on genomic relationship matrix to define the (co)variance between relatives (called GBLUP model); and ii) Multilocus association models, which thousands of markers are modeled simultaneously and the marker effects are summed, in order to compute the genetic merit of individuals. Both approaches were considered in separated chapters. Chapter entitled \"A mixed model to multiplicative harvest-location trial applied to genomic prediction in Coffea canephora\" addressed an expansion of the traditional GBLUP to accommodate interaction effects (Genotype × Local and Genotype × Harvest). For this end, we have tested appropriate (co)variance structures for modeling heterogeneity and correlation of genetic effects and residual effects. The proposed model, called MET.GBLUP, showed the best goodness of fit and higher predictive ability, when compared to other methods. Chapter in the sequence was entitled \"Comparison of statistical methods and reliability of genomic prediction in Coffea canephora population\" and addressed the use of different modelling assumptions considering multilocos association models. The usual assumption of marker effects drawn from a normal distribution was relaxed, in order to seek for a possible dependency between predictive performance and trait, conditional on the genetic architecture. Although the competitor models are conceptually different, a minimal difference in predictive accuracy was observed in the comparative analysis. In terms of computational demand, Bayesian models showed higher time of analysis. Results discussed in both chapters have supported the potential of genomic selection to reshape traditional breeding programs. In practice, compared to traditional phenotypic evaluation, it is expected to accelerate the breeding cycle in recurrent selection programs, maintain genetic diversity and increase the genetic gain per unit of time. / Seleção Genômica pode ser definida como a seleção simultânea de centenas ou milhares de marcadores moleculares, os quais cobrem o genoma de forma densa, de modo que locos de caracteres quantitativos (QTL) estejam em desequilíbrio de ligação com uma parte desses marcadores. Assim, marcadores associados a QTLs, independentemente da significância dos seus efeitos, são utilizados na predição do mérito genético de um indivíduo para um determinado caráter. Simulações e estudos empíricos mostram que essa abordagem apresenta acurácia suficiente para garantir o sucesso em programas de melhoramento genético, quando comparado com os métodos tradicionais de seleção fenotípica. Para tanto, uma das etapas requeridas é o uso de modelos genético-estatísticos que contemplem a predição fidedigna da performance fenotípica da população sob estudo. Apesar da relevância, o número de estudos no gênero Coffea ainda são reduzidos, não havendo relatos sobre o desempenho desses modelos em diferentes populações e ambientes, ou mesmo, a sua performance para diferentes caracteres agronômicos do cafeeiro. Dessa forma, este estudo tem como finalidade investigar aspectos relacionados a modelagem estatística, a fim de compreender quais são os fatores que tornam os modelos preditivos mais acurados e utiliza-los em programas aplicados de melhoramento genético. Dados reais de duas populações de seleção recorrente de Coffea canephora, avaliados em dois ambientes e genotipados pela tecnologia de genotipagem por sequenciamento (GBS, do inglês Genotyping-by-Sequencing) foram considerados para o estudo da relação entre genótipo-fenótipo. Em termos de modelagem estatística, duas classes de modelos foram considerados: i) Modelos mistos, baseados no cálculo da matriz de parentesco realizado como medida de (co)variância genética entre indivíduos (modelo GBLUP); e ii) Modelos de associação multilocos, no qual milhares de marcadores moleculares são modelados simultaneamente e os efeitos estimados dos marcadores são somados, a fim de computar o mérito genético dos indivíduos. Ambas estratégias foram descritas em capítulos separados no formato de artigo científico. O capítulo intitulado \"A mixed model to multiplicative harvest-location trial applied to genomic prediction in Coffea canephora\" abordou uma expansão do modelo GBLUP de modo a contemplar efeitos de interações entre Genótipo × Colheita e Genótipo × Local. Para tanto, apropriadas estruturas de variância e covariância para modelagem da heterogeneidade e correlação dos efeitos genéticos e residuais foram testadas. O modelo proposto, denominado de MET.GBLUP, apresentou melhor qualidade de ajuste e capacidade preditiva, quando comparado com outros métodos. O capítulo em sequência, intitulado de \"Comparison of statistical methods and reliability of genomic prediction in Coffea canephora population\" investigou a capacidade preditiva de diferentes modelos de associação multilocos. A suposição usual de efeitos dos marcadores amostrados de uma distribuição normal foi relaxada, a fim de testar métodos alternativos que pudessem melhor descrever o fenômeno biológico e, consequentemente, resultar em maior capacidade preditiva. Embora os modelos testados sejam conceitualmente distintos, diferenças mínimas nos valores de acurácia de predição foram observadas nos cenários testados. Em termos de demanda computacional, modelos Bayesianos apresentaram maior tempo de análise. Os resultados descritos em ambos os capítulos apoiam o potencial do uso da seleção genômica em programas de melhoramento assistido de café. Em termos práticos, comparado com métodos tradicionais de avaliação fenotípica, é esperado que a implementação desses conceitos em programas de seleção recorrente possam acelerar o ciclo de melhoramento, manter a diversidade genética e, sobretudo, aumentar o ganho genético por unidade de tempo.
|
49 |
Identificação e caracterização espectral da ferrugem (Austropuccinia psidii) do eucalipto por imagens de alta resolução obtidas de veículos aéreos não tripulados (vant) e em laboratório (espectroradiômetro) /Jim, André Stefanini. January 2018 (has links)
Orientador: José Raimundo de Souza Passos / Banca: Lidia Raquel de Carvalho / Banca: Tadeu Antônio Fernandes da Silva Júnior / Banca: Anderson Antonio da Conceição Sartori / Banca: Sergio Augusto Rodrigues / Resumo: Plantios de eucalipto podem sofrer reduções na produção de até 48% devido à ferrugem das mirtáceas causada por Autropuccinia psidii. A identificação e quantificação da doença, ou fitopatometria, e o diagnóstico precoce de doenças é fator chave no manejo florestal. Em campo, o levantamento é realizado por amostragens, que alcançam apenas 5% da área total plantada e são realizadas por equipes de avaliadores por meio do uso de escalas diagramáticas. O uso do SIG na silvicultura tem sido bem-sucedido na detecção de diversos fatores considerados favoráveis às doenças. O termo Silvicultura de Precisão consiste na adoção de ferramentas de sensoriamento remoto embarcadas em distintas plataformas juntamente com sistemas computacionais para o processamento das múltiplas informações. Dentro do campo de sensores, uma plataforma alternativa para o diagnóstico é o emprego de VANTs (Veículos Aéreos Não Tripulados) com câmeras digitais de alta resolução espacial (pixels/cm²), apresentando diversas vantagens em relação aos dados advindos de satélites. Enquanto as informações espectrais coletadas por VANTs são misturas espectrais de dosséis, o espectroradiômetro pode coletar informações de objetos, ao nível de folha, sendo assim uma importante ferramenta para comparação de resultados de análises. Diante da necessidade de se criar uma metodologia para identificação e diagnóstico de doenças em florestas, o objetivo deste trabalho foi o de associar as informações espectrais aos procedimentos esta... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Eucalyptus plantations may suffer reductions in yield of up to 48% due to myrtle rust caused by Autropuccinia psidii. The disease identification and quantification, or phytopatometry, and the early diagnosis are a key factor in forest management. In the field, the survey is carried out by samplings, which reach only 5% of the total planted area and are carried out by teams of raters through the use of diagrammatic scales. The GIS use in forestry has been used in detecting several factors considered favorable to diseases. The term Precision Forestry consists in the adoption of remote sensing tools embedded in different platforms with computational systems for the processing of the multiple information. In terms of sensors, an alternative platform for early diagnosis is the use of UAVs equipped with high spatial resolution digital cameras (pixels / cm²), presenting several advantages compared to the satellite's data. While the spectral information collected by VANTs are canopies spectral mixtures, the spectroradiometer can collect information from objects at the leaf level and thus is an important tool for comparing results analysis. The need to create a methodology for early identification and diagnosis of forest diseases, the aim of the present work was to associate spectral information with multivariate statistical procedures, logistic regression techniques, and bootstrap, in order to obtain consistent classification models, identification of severity levels of myrtle rust in young eucalyptus plantations. The results showed that the logistic regression associated with the linear discriminant function achieved the best hit rates for laboratory data (spectroradiometer), while the multivariate analysis (by main components) associated with the discriminant quadratic function obtained the best data set rates field (UAV). We could conclude that the tools used were adequate for the differentiation ... / Doutor
|
50 |
Redes Bayesianas aplicadas à análise do risco de crédito. / Bayesian networks applied to the anilysis of credit risk.Karcher, Cristiane 26 February 2009 (has links)
Modelos de Credit Scoring são utilizados para estimar a probabilidade de um cliente proponente ao crédito se tornar inadimplente, em determinado período, baseadas em suas informações pessoais e financeiras. Neste trabalho, a técnica proposta em Credit Scoring é Redes Bayesianas (RB) e seus resultados foram comparados aos da Regressão Logística. As RB avaliadas foram as Bayesian Network Classifiers, conhecidas como Classificadores Bayesianos, com seguintes tipos de estrutura: Naive Bayes, Tree Augmented Naive Bayes (TAN) e General Bayesian Network (GBN). As estruturas das RB foram obtidas por Aprendizado de Estrutura a partir de uma base de dados real. Os desempenhos dos modelos foram avaliados e comparados através das taxas de acerto obtidas da Matriz de Confusão, da estatística Kolmogorov-Smirnov e coeficiente Gini. As amostras de desenvolvimento e de validação foram obtidas por Cross-Validation com 10 partições. A análise dos modelos ajustados mostrou que as RB e a Regressão Logística apresentaram desempenho similar, em relação a estatística Kolmogorov- Smirnov e ao coeficiente Gini. O Classificador TAN foi escolhido como o melhor modelo, pois apresentou o melhor desempenho nas previsões dos clientes maus pagadores e permitiu uma análise dos efeitos de interação entre variáveis. / Credit Scoring Models are used to estimate the insolvency probability of a customer, in a period, based on their personal and financial information. In this text, the proposed model for Credit Scoring is Bayesian Networks (BN) and its results were compared to Logistic Regression. The BN evaluated were the Bayesian Networks Classifiers, with structures of type: Naive Bayes, Tree Augmented Naive Bayes (TAN) and General Bayesian Network (GBN). The RB structures were developed using a Structure Learning technique from a real database. The models performance were evaluated and compared through the hit rates observed in Confusion Matrix, Kolmogorov-Smirnov statistic and Gini coefficient. The development and validation samples were obtained using a Cross-Validation criteria with 10-fold. The analysis showed that the fitted BN models have the same performance as the Logistic Regression Models, evaluating the Kolmogorov-Smirnov statistic and Gini coefficient. The TAN Classifier was selected as the best BN model, because it performed better in prediction of bad customers and allowed an interaction effects analysis between variables.
|
Page generated in 0.0865 seconds