• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Surface modification of Polymers by plasma polymerization techniques for tissue engineering

Francesch de Castro, Laia 06 June 2008 (has links)
El treball que es presenta en aquesta tesi pretén contribuir al camp de la ciència de superfícies biològiques, amb el desenvolupament de superfícies adaptades amb cadenes lateral reactives per tal de unir covalentment biomolècul·les d'interès a la superfície.La polimerització assistida per plasma del recobriments actius és un mètode atractiu per tal d'obtenir cadenes laterals reactives, mitjançant pel·lícules nanomètriques amb densitats de grups funcionals adaptats. Sota control de les condicions experimentals, l'estructura del dipòsit polimèric es pot control i les estructures químiques obtingudes poden variar des de xarxes polimèriques altament funcionalitzades amb baixa reticulació fins a xarxes altament reticulades amb baix contingut funcional. La recerca descrita en aquesta tesi tracta de la modificació de superfície de diversos substrats per polimerització de plasma. La part essencial del treball es dirigeix cap al funcionalització amb grups èster de pentafluorofenil a la superfície, durant la polimerització per grafting i polimerització de plasma pulsat de pentafluofenil metacrilat. Aquesta classe de grup làbil és de gran interès per a la seva fàcil reactivitat amb molècules amb mines terminals, com pèptids. Altres monòmers comercials també s'han emprat al començament de l'estudi, com a primera aproximació a les tècniques de plasma. La caracterització d'aquestes superfícies s'ha fet a través de tècniques analítiques com FTIR, XPS, AFM o ToF - SIMS entre d'altres.A més, s'ha dut a terme un estudi per fer a mida el polímer de PFM per a millorar la retenció de la seva estructura, i així com un estudi profund de la seva reactivitat davant de molècules amb amines terminals diferents d'interès, afegint SPR o l'aplicació de sensors microcantiliver a les tècniques de caracterització per aconseguir una millor comprensió de la química i cinètica de la reacció.Sobre el propòsit d'aconseguir superfícies funcionalitzades útils, s'ha realitzat un patterning de les superfícies amb l'ús de màscares per a capa selectiva de les mostres per controlar les àrees modificades. Això s'ha fet per a l'aplicació d'aquesta pel·lícula a dispositius reals, així com a prova de la seva biocompatibilitat per cultiu cel·lular i per assaigs in vivo. / El trabajo que se presenta en esta tesis pretende contribuir al campo de la ciencia de superficies biológicas, con el desarrollo de superficies adaptadas con cadenas lateral reactivas con el fin de unir covalentemente biomoléculas de interés a la superficie.La polimerización asistida por plasma de recubrimientos activos es un método atractivo con el fin de obtener cadenas laterales reactivas, mediante películas nanométricas con densidades de grupos funcionales adaptados. Bajo control de las condiciones experimentales, la estructura del depósito polimérico se puede control y las estructuras químicas obtenidas pueden variar desde redes poliméricas altamente funcionalitzadas con baja reticulación hasta redes altamente reticuladas con bajo contenido funcional.La investigación descrita en esta tesis trata de la modificación de superficie de diversos sustratos por polimerización de plasma. La parte esencial del trabajo se dirige hacia el funcionalización con grupos éster de pentafluorofenilo en la superficie, durante la polimerización por grafting y polimerización de plasma pulsado de pentafluofenilmetacrilato. Esta clase de grupo lábil es de gran interés para su fácil reactividad con moléculas con minas terminales, como péptidos. Otros monómeros comerciales también se han servido al principio del estudio, como primera aproximación a las técnicas de plasma. La caracterización de estas superficies se ha hecho a través de técnicas analíticas como FTIR, XPS, AFM o ToF - SIMS entre otros. Además, se ha llevado a cabo un estudio para hacer a medida el polímero de PFM para mejorar la retención de su estructura, y así como un estudio profundo de su reactividad delante de moléculas con aminas terminales diferentes de interés, añadiendo SPR o la aplicación de sensores microcantiliver a las técnicas de caracterización para conseguir una mejor comprensión de la química y cinética de la reacción.Sobre el propósito de conseguir superficies funcionalizadas útiles, se ha realizado un patterning de las superficies con el uso de máscaras para capa selectiva de las muestras para controlar las áreas modificadas. Eso se ha hecho para la aplicación de esta película en dispositivos reales, así como a prueba de su biocompatibillidad por cultivo celular y para ensayos in vivo. / The work presented in this thesis has the main aim to contribute in the field of biological surface science, by developing tailored surfaces with reactive side chains in order to attach desired biomolecules to the surface by a covalent link. Plasma polymerization of surface active coatings is an attractive method to obtain reactive side chains, by making nanometer thick films of tailored functional group densities. By controlling the experimental conditions, the structure of the polymer deposit can be largely controlled and the chemical structures obtained can range from highly functional polymer networks of low cross link density to polymer networks of low functional group but high cross link densities. The research described in this thesis deals with the surface modification of various substrates by plasma polymerization. The major part of the work is directed towards the funtionalization with pentafluorophenyl ester groups on the surface, through the grafting polymerization and pulsed plasma polymerization of pentafluophenyl methacrylate. This kind of labile group is of high interest for its easy reactivity to amino terminated molecules, such as peptides. Other commercial monomers were also used at the beginning of the study, as a first approach to the plasma techniques. The characterization of these surfaces is done through several analytical techniques as FTIR, XPS, AFM or ToF-SIMS among others. Furthermore, a study for tailoring the PFM polymer for better structure retention and deep study of its reactivity in front of different amino terminated molecules of interest was performed, adding SPR or the implementation of microcantilever sensors to the characterization techniques to achieve a better understanding of the chemistry and kinetic of the reaction, in order to achieve the best peptide binding for reliable well characterized bioactive interface..On the aim of achieving useful functionalized surfaces, a patterning of the surfaces with the use of masks for selective coating of the samples has been performed to control the modified areas. This has been done for application of this film to real devices, as well as to test of its biocompatibility by cell culture and in vivo assays.
2

Estructura, composición y superficie como vectores directores en el diseño de biomateriales. Aplicación al desarrollo de scaffolds poliméricos y a superficies bioactivas

Horna Tomás, David 20 December 2011 (has links)
En aquest treball es descriu el disseny, síntesi i caracterització de diferents biomaterials i la seva possible aplicació en biomedicina. S'ha fet especial èmfasi a ressaltar la importància que tenen l'estructura, la composició i l'activitat superficial en les propietats finals del biomaterial. Així, s'ha desenvolupat un biomaterial biodegradable i elastomèric, altament porós, amb una gran interconnectivitat que permet la difusió de nutrients i de cèl•lules, un cop sigui implantat. La viabilitat d'aquest material s'ha demostrat tant en assaigs in vitro com in vivo. La síntesi del mateix s'ha realitzat mitjançant calefacció assistida per microones, cosa que ha permès una reacció més ràpida sense necessitat de catalitzadors i evitant les etapes posteriors de purificació. S'ha desenvolupat també un material biodegradable i injectable a temperatures de 45°C, que, en refredar fins als 37°C, s'endureix i pot emprar com a suport estructural al mateix temps que actua com a alliberador de fàrmacs. L'aplicació d'aquest material com ciment ossi millora els problemes de biocompatibilitat, tant de composició, com mecànica, dels actuals productes en el mercat, obrint una nova via d'aplicació d'aquest tipus de materials. D'altra banda, el compost desenvolupat s'ha assajat en aplicacions bioadhesives, on ha demostrat uns excel•lents resultats en la unió de teixit intestinal. Finalment, s'ha aconseguit desenvolupar una superfície amb capacitat de reprogramar cèl•lules amb el simple contacte entre la cèl•lula i la superfície. Amb aquesta tecnologia, anomenada cell reprograming surface (CRS), s'han obtingut cèl•lules pluripotents induïdes (iPS) d'una forma molt més eficient i ràpida que els mètodes habituals de treball. / En este trabajo se describe el diseño, síntesis y caracterización de diferentes biomateriales y su posible aplicación en biomedicina. Se ha hecho especial énfasis en resaltar la importancia que tienen la estructura, la composición y la actividad superficial en las propiedades finales del biomaterial. Así, se ha desarrollado un biomaterial biodegradable y elastomérico, altamente poroso, con una gran interconectividad que permite la difusión de nutrientes y de células, una vez sea implantado. La viabilidad de este material se ha demostrado tanto en ensayos in vitro como in vivo. La síntesis del mismo se ha realizado mediante calefacción asistida por microondas, lo que ha permitido una reacción más rápida sin necesidad de catalizadores y evitando las etapas posteriores de purificación. Se ha desarrollado también un material biodegradable e inyectable a temperaturas de 45°C, que, al enfriarse hasta los 37°C, se endurece y puede emplearse como soporte estructural a la vez que actúa como liberador de fármacos. La aplicación de dicho material como cemento óseo mejora los problemas de biocompatibilidad, tanto de composición como mecánica, de los actuales productos en el mercado, abriendo una nueva vía de aplicación de este tipo de materiales. Por otro lado, el compuesto desarrollado se ha ensayado en aplicaciones bioadhesivas, donde ha demostrado unos excelentes resultados en la unión de tejido intestinal. Por último, se ha conseguido desarrollar una superficie con capacidad de reprogramar células con el simple contacto entre la célula y la superficie. Con esta tecnología, denominada cell reprograming surface (CRS), se han obtenido células pluripotentes inducidas (iPS) de una forma mucho más eficiente y rápida que los métodos habituales de trabajo. / This paper describes the design, synthesis and characterization of different biomaterials and their possible applications in biomedicine, highlighting the importance of the structure, composition and surface activity in the final properties of the biomaterial. Thus, a biodegradable and elastomeric biomaterial, highly porous, with a strong interconnectivity that allows diffusion of nutrients and cells, once it is implanted has been developed. The feasibility of this material has been demonstrated both in vitro and in vivo assays. The synthesis has been performed using microwave-assisted heating, which has allowed a faster reaction without catalysts and avoiding the later stages of purification. It has also been developed a biodegradable and injectable material, at temperatures of 45°C, which, when cooled to 37°C, it hardens and can be used as structural support while acting as drug delivery. The application of such material as bone cement avoid biocompatibility problems, both in composition and mechanicas, of the current products on the market, opening a new way of application of such material. On the other hand, the compound has been tested in bioadhesive applications, where it has shown excellent results in the union of intestinal tissue. Finally, a surface with ability to reprogram cells with simple contact between the cell and the surface has been developed. With this technology, called cell reprograming surface (CRS), induced pluripotent cells (iPS) have been obtained in a much more efficient and faster way than the usual methods.
3

Design and development of biomimetic surfaces and three-dimensional environments to study cell behavior

Marí Buyé, Núria 11 May 2012 (has links)
La biomimètica o biomimetisme són termes que simbolitzen el concepte “aprendre de la naturalesa”, és a dir, aprendre dels seus sistemes, processos i models, a fi d’utilitzar la natura com a font d’inspiració per solucionar problemes de l’home. El biomimetisme és actualment un concepte recurrent en l’àrea d’enginyeria de teixits i d’ell en sorgeixen idees per obtenir plataformes més elegants i sofisticades que puguin imitar millor les interacciones entre les cèl•lules i el seu ambient. Aquesta tesi pretén desenvolupar models, en dues i en tres dimensions, mitjançant la recreació d’un o més factors característics de l’ambient natural de la cèl•lula i que juguen un paper important en el comportament cel•lular. Se sap que tant les propietats químiques com les mecàniques de la matriu extracel•lular influeixen sobre les funcions cel•lulars. És per això que es va dissenyar un nou film polimèric que pogués combinar un hidrogel, amb propietats mecàniques variables, amb un monòmer reactiu capaç d’immobilitzar biomolècules. Degut a la complexitat del polímer dissenyat, va ser necessari recórrer a una tècnica de polimerització superficial molt versàtil com és la deposició química iniciada en fase vapor (més coneguda pel seu acrònim en anglès iCVD). Els polímers varen ser àmpliament caracteritzats i es va corroborar que podien ser modificats amb petites biomolècules com ara pèptids senyalitzadors. Les superfícies resultants són bioactives i permeten l’adhesió de cèl•lules endotelials. Unes altres superfícies biomimètiques, rellevants en l’àmbit de l’enginyeria de teixits d’os, es varen obtenir a partir d’una hidroxiapatita sintetitzada pel mètode de sol-gel submergint-la en diferents medis fisiològics. La dissolució i posterior reprecipitació dels ions proporcionen una capa d’apatita amb una composició similar a la que es troba in vivo. Els experiments evidencien la importància de partir d’un material relativament soluble. És per això que la hidroxiapatita pura no és capaç d’induir la precipitació d’aquesta apatita biomimètica in vitro. Diversos investigadors han relacionat la capacitat de formar apatita amb la bioactivitat del material, entenent bioactivitat com l’habilitat d’aquests materials de promoure la unió amb l’os. Per a l’enginyeria de teixits, però, és necessari un ambient tridimensional per tal de generar un teixit artificial. S’ha desenvolupat un nou model basat en l’ús d’un gel molt tou per tal d’obtenir un teixit dur com el de l’os. Malgrat que aquests dos conceptes poden semblar contradictoris, les cèl•lules adquireixen l’habilitat d’allargar-se ràpidament i crear una densa xarxa cel•lular dins d’aquest ambient poc restrictiu des d’un punt de vista mecànic. La consegüent contracció del sistema acaba formant un constructe més petit i resistent. Aquest és un sistema biomimètic ja que promou una gran interacció cel•lular i també la condensació de les cèl•lules, esdeveniments que tenen lloc també durant el desenvolupament de l’os i el cartílag. El model es va caracteritzar extensament amb cèl•lules ostoprogenitores MC3T3-E1 que es diferenciaren amb inducció química. A més a més, es va demostrar que l’ambient tridimensional podia promoure l’expressió espontània de marcadors osteogènics. Degut a les interessants propietats del sistema, el mateix model es va utilitzar per induir la diferenciació condrogènica de fibroblastos dermals humans. Aquests tipus cel•lular no ha estat gaire explorat en l’àmbit de l’enginyeria de teixits, malgrat que ofereix un gran potencial en teràpia regenerativa. Aquest treball proporciona proves de la capacitat condrogènica d’aquestes cèl•lules en el sistema tridimensional prèviament desenvolupat. / La biomimètica o biomimetismo son términos que simbolizan el concepto “aprender de la naturaleza”, es decir, aprender de sus sistemas, procesos y modelos, y utilizarlos como fuente de inspiración para solucionar problemas del hombre. El biomimetismo es actualmente un concepto recurrente en el área de ingeniería de tejidos y de este surgen ideas para obtener plataformas más elegantes y sofisticadas que puedan mimetizar mejor las interacciones entre las células y su ambiente. La presente tesis se centra en desarrollar modelos, tanto en dos como en tres dimensiones, mediante la recreación de uno o más factores que caracterizan el ambiente natural de la célula y que tienen su rol importante en el comportamiento celular. Se conoce que tanto las propiedades químicas como mecánicas de la matriz extracelular influyen en las funciones celulares. Debido a esto, se diseñó un nuevo film polimérico que pudiera combinar un hidrogel, con propiedades mecánicas variables, con un monómero reactivo, capaz de inmovilizar biomoléculas. Debido a la complejidad del polímero diseñado, fue necesario recurrir a una técnica de polimerización superficial muy versátil como es la deposición química iniciada en fase vapor (más conocida por su acrónimo en inglés iCVD). Los polímeros fueron ampliamente caracterizados y se corroboró que podían ser modificados con pequeñas biomoléculas como péptidos señalizadores. Las superficies resultantes son bioactivas y permiten la adhesión de células endoteliales. Se obtuvieron otro tipo de superficies biomiméticas relevantes en el ámbito de la ingeniería de tejidos de hueso, a partir de una hidroxiapatita sintetizada por el método sol-gel sumergiéndolas en diferentes medios fisiológicos. La disolución y posterior reprecipitación de los iones proporcionan una capa de apatita con una composición similar a la que se encuentra in vivo. Los experimentos evidencian la importancia de partir de un material relativamente soluble. Precisamente debido a esto la hidroxiapatita pura no es capaz de inducir la precipitación de esta apatita biomimética in vitro. Varios investigadores han relacionado la capacidad de formar apatita con la bioactividad del material, entendiendo bioactividad como la habilidad de estos materiales de promover la unión con el hueso. De todos modos, en ingeniería de tejidos, es necesario un ambiente tridimensional para generar un tejido artificial. Se ha desarrollado un nuevo modelo basado en el uso de un gel blando para obtener tejido duro como el del hueso. Aunque estos conceptos pueden parecer contradictorios, las células adquieren la habilidad de estirarse rápidamente y de formar una densa red celular dentro de este gel tan poco restrictivo desde un punto de vista mecánico. La consiguiente contracción del sistema acaba formando un constructo mucho más pequeño y resistente. Este es un sistema biomimético ya que promueve una gran interacción celular y también la condensación de las células, eventos que también ocurren durante el desarrollo de hueso y cartílago. El modelo se caracterizó extensamente con células osteoprogenitoras MC3T3-E1 que se diferenciaron bajo inducción química. Además, se demostró que el microambiente tridimensional podía promover la expresión espontánea de marcadores osteogénicos. Debido a las interesantes propiedades del sistema, el mismo modelo se usó para inducir la diferenciación condrogénica de fibroblastos dermales humanos. Este tipo celular no ha sido demasiado explorado en ingeniería de tejidos, a pesar de que puede tener un gran potencial en terapia regenerativa. Este trabajo proporciona pruebas de la capacidad condrogénica de estas células en el sistema tridimensional previamente desarrollado. / Biomimetics or biomimicry are terms that imply “learning from nature”, from its systems, processes and models, in order to use nature as inspiration to solve human problems. In tissue engineering, biomimetics is nowadays a recurrent term and a source of ideas to obtain more elegant and sophisticated platforms that could better mimic the interactions between cells and their environment. This thesis is focused on developing models both in two- and three-dimensions by recreation of one or more factors of the cell natural environment that are known to play an important role in cell behavior. Since both the chemical and mechanical properties of the extracellular matrix are known to effectively influence cell function, an innovative polymeric thin film was designed combining a hydrogel with tunable mechanical properties and a reactive molecule, capable to immobilize biomolecules. Due to the complexity of the polymers, a versatile technique such as initiated chemical vapor deposition (iCVD) was required for the synthesis. Extensive characterization revealed that nanostructured hydrogels were obtained and that small biomolecules, such as signaling peptides, could be attached on the surface. The final surfaces are bioactive and support endothelial cell attachment. Relevant biomimetic surfaces for bone tissue engineering could also be obtained from a sol-gel synthesized hydroxyapatite after immersion in different physiological media. The dissolution and posterior reprecipitation of the ions rendered a final apatite layer with a composition similar to that found in vivo. The experiments evidenced the importance of starting from a rather soluble material and, thus, pure hydroxyapatite was not able to promote apatite precipitation in vitro. This capacity has been related to the material bioactivity by many researchers in terms of its ability to bond to bone in tissue engineering applications. However, for tissue engineering a three-dimensional environment is required to build tissue-like constructs. A new model was developed based on the use of a very soft gel to obtain hard tissue. Although the concepts might seem to work in opposite directions, cells gain the ability to rapidly elongate and form a dense cellular network within this unrestrictive environment. Subsequent contraction of the whole system rendered a smaller and stronger final tissue-like construct. This system was considered biomimetic as it promotes high cell-cell interaction and cellular condensation, which are events that occur in bone and cartilage development. This system was extensively characterized with osteoprogenitor MC3T3-E1 cells that could undergo full osteogenic differentiation under chemical induction. More interestingly, the three-dimensional microenvironment was also able to promote by itself spontaneous expression of bone-related markers. Due to the interesting properties of this system, the same model was used to induce chondrogenic differentiation of human dermal fibroblasts. This cell type has been poorly explored for tissue engineering applications, but it might have great potential in future therapeutic platforms. This work provides proof of concept of chondrogenic potential of these cells in this three-dimensional system.

Page generated in 0.0921 seconds