21 |
Faraday Rotation in Magnetic Ionic Liquids for Liquid Core Optical In-Line Isolator ApplicationsFleming, Devinna Danielle, Fleming, Devinna Danielle January 2016 (has links)
A suspended ionic solution of 1-butyl-3-methylimidazolium iron tetrachloride [BMIM][FeCl4] provides a novel medium for achieving Faraday rotation under small magnetic fields at pump wavelengths of 980nm. As verified with spectrophotometry, transmission at telecommunication wavelengths makes the solution applicable across multiple applications. A cryostation was used to measure the sample up to a 340K and under field at 600mT, the ionic sample shows the necessary temperature stability and enables compact formats suitable for potential industrial applications. With a rotation of linearly polarized light of 0.04° over a 450um path length, a full 45° rotation requires only a 50.6cm path length and with only a 0.000175°/K temperature dependence. The observation of polarization effects in real time using lock-in amplifiers, and a photo-elastic modulator demonstrates the scalability, responsiveness, and stability of the ionic liquids for photonic integration. The test set up provides a convenient way to expand the research on ionic liquid Faraday rotation materials and other Faraday liquids ideally leading to a compact in-line isolator solution.
|
22 |
Dynamic Control of Metamaterials at Terahertz FrequenciesShrekenhamer, David January 2013 (has links)
Thesis advisor: Willie J. Padilla / Progress in the field of metamaterials has started coming to a point where the field may finally begin to emerge as a viable solution to many electromagnetic challenges facing the community. No where is that more true then at terahertz frequencies where there lies an immense opportunity for growth. The development of mature technologies within this region of the electromagnetic spectrum would provide a valuable resource to become available for a multitude of applications. In order to achieve this, the necessary first steps of identifying viable materials and paths to integrate these with metamaterials will need to be completed. In this dissertation, we examine several different paths to achieve dynamic metamaterial electromagnetic response at terahertz frequencies, and demonstrate several paths to package these devices into imaging systems. In Chapter 1, we introduce the basic theory and design principles of metamaterials. We also describe the experimental techniques involved in the study of terahertz metamaterials. Chapter 2 presents a computational and experimental study investigating the integration of high electron mobility transistors with metamaterials allowing for high speed modulation of incident terahertz radiation. In Chapters 3 and 4, we investigate several different paths to create tunable terahertz metamaterial absorbers. Chapter 3 presents an investigation where we encapsulate a metametarial absorber unit cell with liquid crystals. We study both computationally and experimentally the tuning mechanism of the absorber as the liquid crystal refractive index is controlled as a function of the applied electric field strength and modulation frequency. In Chapter 4, we form a doped semiconducting metamaterial spatial light modulator with multi-color super-pixels composed of arrays of electronically controlled terahertz metamaterial absorbers. We computationally and experimentally study the independent tunability of each pixel in the spatial array and demonstrate high speed modulation. Chapter 5 introduces a multiplex imaging approach by using a terahertz spatial light modulator to enable terahertz imaging with a single pixel detector. We demonstrate the capability for high speed image acquisition, currently only limited by the commerical software used to reconfigure the spatial masks. We also configure the system to capture high fidelity images of varying complexity. In Chapter 6, we show how a metamaterial absorber can be implemented into a detector focal plane array for high sensitivity, low mutual coupling, and broad angle performance. Finally, we summarize in Chapter 7 the achievments of the research presented and highlight the direction of future work. / Thesis (PhD) — Boston College, 2013. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
|
23 |
Electrooptic light modulator with improved response linearity using optical feedbackBhatranand, Apichai 01 November 2005 (has links)
The use of optical feedback for improving response linearity of electrooptic light modulators has been investigated. The modulator is configured as a straight channel waveguide flanked by electrodes in a lithium niobate (LiNbO3) substrate. Light is coupled into the waveguide in both TE and TM polarizations, and a voltage applied across electrodes causes a relative phase shift between two polarization components. An output analyzer converts the phase modulation to intensity modulation. Optical feedback of light in both polarization modes results from reflection of light at the polished edges of the substrate. Channel waveguides supporting a single guided mode for TE and TM polarizations were fabricated in x-cut LiNbO3 substrates using titanium-indiffusion technique. The waveguides and modulators were characterized at a wavelength of 1.55 ??m using a distributed feedback laser. The modulators were driven with a sinusoidal voltage waveform. To minimize harmonics of the modulating frequency in the intensity output, the magnitude of the optical feedback and the substrate temperature were adjusted. The feedback level was altered by applying refractive index-matching liquid to one or both ends of the waveguide at the edges of the crystal. It was found that a high degree of response linearity in the presence of feedback was achievable at certain substrate temperatures. The spurious-free dynamic range (SFDR) relative to the noise floor was measured at different feedback levels and substrate temperatures in an effort to maximize the modulator response linearity. An SFDR of 68.04 dB, limited by third-order nonlinearity, was achieved by applying index-matching fluid to the input end of the substrate. This compares with an SFDR of 64.84 dB limited by second-order nonlinearity when index-matching fluid was applied at both ends of the substrate. By changing the temperature of the same substrate to adjust the phase shifts experienced by TE and TM polarizations, the SFDR with index-matching fluid at the input end increased to 71.83 dB, limited by third-order nonlinearity. In tests at constant modulation depth, an improvement of as much as 9.6 dB in SFDR vs. the theoretical value for an interferometric modulator without feedback was achieved.
|
24 |
A low-power quadrature digital modulator in 0.18um CMOSHu, Song 09 April 2007
Quadrature digital modulation techniques are widely used in modern communication systems because of their high performance and flexibility. However, these advantages come at the cost of high power consumption. As a result, power consumption has to be taken into account as a main design factor of the modulator.<p>In this thesis, a low-power quadrature digital modulator in 0.18um CMOS is presented with the target system clock speed of 150 MHz. The quadrature digital modulator consists of several key blocks: quadrature direct digital synthesizer (QDDS), pulse shaping filter, interpolation filter and inverse sinc filter. The design strategy is to investigate different implementations for each block and compare the
power consumption of these implementations. Based on the comparison results, the implementation that consumes the lowest power will be chosen for each block. First of all, a novel low-power QDDS is proposed in the thesis. Power consumption
estimation shows that it can save up to 60% of the power consumption at 150 MHz system clock frequency compared with one conventional design. Power consumption estimation results also show that using two pulse shaping blocks to process
I/Q data, cascaded integrator comb (CIC) interpolation structure, and inverse sinc
filter with modified canonic signed digit (MCSD) multiplication consume less power than alternative design choices. These low-power blocks are integrated together to achieve a low-power modulator. The power consumption estimation after layout shows that it only consumes about 95 mW at 150 MHz system clock rate, which is much lower than similar commercial products. <p>The designed modulator can provide a low-power solution for various quadrature modulators. It also has an output bandwidth from 0 to 75 MHz, configurable pulse shaping filters and interpolation filters, and an internal sin(x)/x correction filter.
|
25 |
Development of a Single-Stage Modulator for Comprehensive Two-Dimensional Gas Chromatography (GC × GC)McNeish, Christopher January 2011 (has links)
The ability to effectively analyze particulate matter (PM2.5) in air is becoming increasingly pertinent. Allen Goldstein of the University of California in Berkeley is studying the semi-volatile fraction of organic compounds in PM2.5 through the use of the thermal desorption aerosol gas chromatograph (TAG) system. However, as conventional GC does not provide adequate separation power, the development of comprehensive two-dimensional gas chromatography (GC × GC) was required. GC × GC works more effectively by utilizing a modulator that periodically traps and focuses analytes from a primary column onto a secondary column. This allows for the primary and secondary columns to separate the analytes based on two different properties.
This report focuses on the continuing study and enhancement of a modulator designed by Ognjen Panić during his Masters project. Improving and testing the robustness of this dual stage modulator was originally the focus of this project. However, this study led to the development of a single stage modulator. In addition to that, the effect of modulator characteristics such as length of the restriction, total length of the modulator and wall thickness on the modulator performance were studied. A robustness test of the single stage modulator was also completed. Experiments conducted tested the characteristics of the new modulator to ensure it performed effectively and would satisfy the requirements of the TAG system. A study comparing the sensitivity of conventional gas chromatography and GC × GC was also preformed. The sensitivity of GC × GC was on average an order of magnitude better than that of 1D GC.
|
26 |
A low-power quadrature digital modulator in 0.18um CMOSHu, Song 09 April 2007 (has links)
Quadrature digital modulation techniques are widely used in modern communication systems because of their high performance and flexibility. However, these advantages come at the cost of high power consumption. As a result, power consumption has to be taken into account as a main design factor of the modulator.<p>In this thesis, a low-power quadrature digital modulator in 0.18um CMOS is presented with the target system clock speed of 150 MHz. The quadrature digital modulator consists of several key blocks: quadrature direct digital synthesizer (QDDS), pulse shaping filter, interpolation filter and inverse sinc filter. The design strategy is to investigate different implementations for each block and compare the
power consumption of these implementations. Based on the comparison results, the implementation that consumes the lowest power will be chosen for each block. First of all, a novel low-power QDDS is proposed in the thesis. Power consumption
estimation shows that it can save up to 60% of the power consumption at 150 MHz system clock frequency compared with one conventional design. Power consumption estimation results also show that using two pulse shaping blocks to process
I/Q data, cascaded integrator comb (CIC) interpolation structure, and inverse sinc
filter with modified canonic signed digit (MCSD) multiplication consume less power than alternative design choices. These low-power blocks are integrated together to achieve a low-power modulator. The power consumption estimation after layout shows that it only consumes about 95 mW at 150 MHz system clock rate, which is much lower than similar commercial products. <p>The designed modulator can provide a low-power solution for various quadrature modulators. It also has an output bandwidth from 0 to 75 MHz, configurable pulse shaping filters and interpolation filters, and an internal sin(x)/x correction filter.
|
27 |
High-Speed Semiconductor Quantum Dot Electroabsorption ModulatorLin, Chun-Han 04 August 2010 (has links)
Quantum dot (QD) has been known as three-dimensional quantum confined structure. Thus, a delta-function type of density with three-dimensional coulomb interaction can have strong dependence on field-driven optical absorption, i.e. Quantum Confine Stark Effect (QCSE), leading to lots of advantages for applications of electroabsorption modulator (EAM). In this work, based on a GaAs substrate, a self-assembly InAs quantum dot (QD) based p-i-n heterostructure is applied for fabricating electroabsorption modulator.
The quantum dot electroabsorption modulation is fabricated by wet-etching technique, where the active region is formed by undercut wet-etching technique using selective etching solution (citric acid). In the device characterization, electro luminescence (EL) is first used to examine the optical transition of QD, showing 1280-1320 nm for ground state and 1220-1240 nm for the excite state. Using the photocurrent spectrum measurement, the red shift of 20 nm in photocurrent peaks from 0 V to 7 V is observed. Also, the peaks exhibit a quadratic relation against with bias, confirming QCSE effect of Q.D.. In the optical transmission measurement, 1300 nm light excites on a 300 £gm long device, obtaining 5 dB extinction by voltage swing of 7 V. By comparing with quantum well (QW) structure, the modulation efficient is in the same order of magnitude. However, the active region of QD volume is at least two orders less than QW, indicating strong QCSE can be obtained from QD and QD can have potential for high-efficient modulation. High-speed EO response with -3 dB bandwidth of 3.34 GHz is also obtained, where the main speed limitation is on the electrical isolation on the n-type GaAs substrate. Through optimizing Q.D. structure and also parasitic capacitance, Q.D. EAM can have a great potential for the application of high-speed optical modulation in optoelectronic fields.
|
28 |
Fabrication of InGaAsP/InGaAsP Electro-absorption Modulator by Wet EtchingLee, Dan-Long 06 July 2004 (has links)
Abstract
The high-speed performance of the lump-type electroabsorption modulator (EAM) is mainly limited by RC-effect. By taking advantage of the distributive effects, the traveling-wave structure can overcome the RC-lump effect. However, in order to enhance the limitation imposed by the conventional slow-waveguide type of traveling-wave structure, the speed of the device is still mainly restricted by the distributed capacitance of the waveguide. In this work, a novel type of traveling-wave-electroabsorption-modulator based on the undercut-etching the active region is successfully fabricated and measured.
The methods of the processing adopted here is to lower the capacitance by chemical-wet-etching and two-time subsequent undercut etching on active region to further decrease the parasitic capacitance between P-type and N-type cladding layer. Also, the optical scattering loss may be reduced due the smooth sidewall of the waveguide from the wet etching. The whole processing shown in this thesis includes the lift-off technique by lithography, the metalization for n-, p- contacts (by thermal evaporator) and CPW microwave transmission (by e-beam evaporator), and PMGI-planarization.
¡V15dB optical transmission, ¡V6dB electrical transmission loss and >20GHz 3dB bandwidth of electrical-to-optical response at 50£[termination is measured on this kind of devices. It exhibits a high potential on the application of high-speed optical-fiber link in the future.
|
29 |
All-digital Low-power PLL Circuit Design and Load Shift Keying Wireless Modulator Circuit Design for Implantable Biomedical SOCTseng, Sheng-lun 04 July 2006 (has links)
The first topic of this thesis is to propose a design of an all-digital low¡Vpower PLL (ADPLL). This design is implemented by only using standard cell library. The design cycle is effectively reduced. Furthermore, the portability and reusability of the proposed design is significantly raised. The large power consumption, glitch hazards, and timing violations of prior ADPLL designs are avoided by the proposed control method and modified DCO with multiplexers. The proposed design is implemented by only using the standard cell library of TSMC (Taiwan Semiconductor Manufacturing Company) 0.18 um 1P6M CMOS process. The feature of power saving is verified by measurement, which shows that the power consumption of the proposed ADPLL is merely 1.45 mW at 166 MHz output.
The second topic of this thesis is a load shift keying wireless modulator circuit for implantable biomedical SOC. We successfully realize data and power transmission between outer controller and an implantable chip via wireless RF transmission interface. The convenience and the safety of using the implantable biomedical chip are significantly improved. The proposed on-chip LSK modulator consumes less power and area than those of traditional designs. Hence, the design margin of the implantable biomedical chip will be relaxed. The proposed LSK modulator is implemented with TSMC 0.35um 2P4M mixed-signal process. The proposed wireless RF transmission interface is implemented on PCB with discrete components.
|
30 |
Mode Locked Fiber-Ring Laser using the Spot-Size Converter Integrated Electroabsorption ModulatorYou, Jia-Shun 12 July 2007 (has links)
A mode locked fiber-ring laser utilizing an optical spot-size converter (OSSC) integrated electroabsorption modulator (EAM) and Erbium-doped fiber amplifiers (EDFA) is demonstrated in this work. By taking advantage of OSSC, the EAMs not only have high-speed performance, but also have high tolerance alignment stability and high power handling capability due to the distributive effect. Thus, by the saturation absorbing and highly nonlinear transmission properties of such EAMs, it can be realized that short optical switching widow operations with high pulse energy excitation driven by EDFA can be used to hybrid mode locked ring laser application.
The repetition rate of 10GHz in the mode locked fiber-ring laser is set by a RF synthesizer to driven EAM, creating short time gating widows. EDFA with an optical filter of bandwidth 1.2nm is used for optical gain. By adjusting the operation point in EAM to a bias of 1.72V and a RF-power of Vpp=2.2V, a nearly transform-limited autocorrelated Gauss pulse of 11.72ps (FWHM, the extracted pulsewidth is 8.28 ps) with average power level of 1.2mW is obtained. The time-bandwidth product is 0.478. The optical pulsewidths are mainly limited by the optical filter. Without any feedback circuit, pulse jitter of 993fs measured from a high-speed sampling scope (Agilent 86100A, bandwidth =30GHz) is found from the mode locked pulses, indicating the hybrid mode locked operation can be achieved by the EAM saturation absorbing properties. By measuring the photocurrent of EAM, the highest photocurrent occurs in the conditions of the highest optical transmission and also the shortest optical pulses, suggesting the saturation absorbing of EAM is the main mechanism dominating mode-lock operation. The mode locked operation with repetition rates of 10GHz to 20GHz are also obtained, indicating high-speed operation can be boosted from OSSC integrated EAM to hybrid-type mode locked fiber-ring laser.
|
Page generated in 0.0639 seconds