• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 1
  • Tagged with
  • 13
  • 13
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mechanical and viscoelastic properties of glass-forming polymers in the bulk and thin films : molecular dynamics study of model systems / Propriétés mécaniques et viscoélastiques des polymères vitrifiables en volume et en films minces : études par dynamique moléculaire de systèmes modèles

Kriuchevskyi, Ivan 19 June 2017 (has links)
En nous concentrant sur les valeurs du module de cisaillement l’équilibre Geq pour le modèle bien connu des polymères vitrifiables (echantillionné par le biais de la MD), nous avons adressé la question générale de en quoi les propriétées méchaniques des couches mince diffères de la phase volumique. Il a été démontrè que dans les deux cas Geq de manière non ambigus sèpare l’état fluide (Geq = 0) de l’état vitreux (Geq > 0). Nous avons aussi insisté sur le fait que Geq pour la couche mince dépend de lépaisseur du film h mais aussi de de la pression tangentielle qui est un résultante de la procédure de préparation de la couche mince / Focusing on the equilibrium shear modulus Geq of well-known glass-forming polymer model system (sampled by means of MD), we have addressed the general question of how the mechanical properties of the thin polymer films differs from the bulk. Using ”stress fluctuation” formalism we obtained Geq(T) for the bulk and films. It has been demonstrated that in both cases Geq unambiguously separates the fluid state (Geq = 0) from the glass (Geq > 0). We also stressed that Geq for the film does not only depend on film thickness h, but also on tangential pressure that is a consequence of the film preparation procedure.
12

Caractérisation des tissus biologiques mous par diffusion multiple de la lumière / Characterization of soft biological tissues by diffusing wave spectroscopy

Zerrari, Naoual 18 March 2014 (has links)
La diffusion multiple de la lumière(DWS) est une technique qui permet de sonder la dynamique interne de milieux opaques et concentrés à des fréquences élevées. Elle a été utilisée pour déterminer les propriétés viscoélastiques de ces milieux. Elle a l'avantage d'être non destructive, rapide et sensible. Ce travail a pour objectif l'étude des tissus biologiques mous par DWS. La première étape est la mise en place du dispositif expérimental. Afin d'évaluer les limites de la technique, des études successives ont été réalisées sur des matériaux de complexité croissante (une suspension, le lait et une mousse) tendant vers la complexité structurale des tissus biologiques. Pour la suspension et le lait, la théorie de DWS peut s'appliquer et permet de mesurer avec une bonne précision leur viscosité. Les limites de DWS pour évaluer la viscosité sont atteintes avec la mousse dont la structure complexe est proche de celle des tissus biologiques. Enfin, le cortex rénal, le parenchyme hépatique et le cerveau de porc ont été étudiés. La théorie appliquée pour les milieux précédents ne permet pas de remonter à leur viscosité. Mais la DWS a permis de suivre leur microstructure au cours de la déshydratation et de la dégénérescence. Pour tous ces milieux la répétabilité, la reproductibilité, la variabilité et l'effet des conditions expérimentales ont été évalués. La DWS pourrait être utilisée pour étudier l'effet de la température et de la congélation sur le spectre de DWS des tissus biologiques ou combinée à la rhéologie pour suivre l'évolution des spectres de DWS au cours d'un cisaillement / Diffusing Wave Spectroscopy (DWS) is a technique that allows to probe the internal dynamics of opaque media and concentrated at high frequencies. It has been used to determine the viscoelastic properties of these media. It has the advantage of being nondestructive, rapid and sensitive. This work aims to study soft biological materials by DWS. The first step is setting up of the experimental device. To evaluate the limits of the art, successive studies were conducted on materials of increasing complexity (a suspension, milk and a foam) tending to the structural complexity of biological tissues. Concerning the suspension and milk, two concentrated media, and mono-dispersed in which the particles are in Brownian motion, DWS allowed to measure with good precision their viscosity. The limits of DWS to evaluate the viscosity of the medium are achieved with the foam which the complex structure is similar to that of soft biological tissues. Finally, the renal cortex, the hepatic parenchyma and porcine brain were studied. The theory applied to previous media does not allow to calculate viscosity. But the DWS allowed us to follow their microstructure during dehydration and degeneration. For all these media, repeatability, reproducibility, variability and effect of experimental conditions were evaluated. The DWS could be used to study the effect of temperature and freezing on the DWS spectrum of biological tissues, or combined with rheology to monitor the evolution spectra DWS during shear
13

Interfacial adhesion in continuous fiber reinforced thermoplastic composites : from micro-scale to macro-scale / Etude multi-échelle de matériaux composites à matrice acrylique

Beguinel, Johanna 10 June 2016 (has links)
L’intérêt croissant de l’industrie pour les matériaux composites thermoplastiques est motivé par leurs propriétés de thermoformabilité, de recyclabilité ainsi que leurs capacités de cadences de production élevées. Le développement de matériaux pré-imprégnés thermoplastiques, apparus dès les années 1980, s’est imposé comme un moyen efficace de contourner les fortes viscosités des polymères utilisés en réduisant la distance d’écoulement des polymères à l’état « fondu ». Cette étude s’est plus particulièrement intéressée au développement de composites à base de tissus de verre et de carbone pré-imprégnés par un latex acrylique, le TPREG I. En outre, les propriétés mécaniques élevées des matrices acryliques, alliées à un coût relativement faible, en font un matériau intéressant, de nature à permettre un saut technologique dans la conception et la fabrication de composites structuraux à matrice organique. Notre étude s’est concentrée sur la mesure de l’adhésion à l’interface fibre/matrice acrylique car cette région est au cœur du transfert de charge de la matrice vers les fibres et conditionne donc les propriétés mécaniques du composite. Nous avons choisi d’évaluer l’adhésion interfaciale en combinant des analyses de mouilllage avec des tests mécaniques aux échelles microscopique et macroscopique. Le test micromécanique de la microgoutte permet de mettre en évidence le rôle central de l’ensimage des fibres sur la contrainte de cisaillement interfaciale. L’adhésion thermodynamique, déterminé par des mesures d’énergie de surface, est en accord avec la contrainte de cisaillement et souligne l’influence de la polarité de l’ensimage. A l’échelle macroscopique, les essais de traction hors-axe sur composites unidirectionnels permettant de solliciter l’interface en cisaillement quasi-plan ont mis en exergue une corrélation entre les échelles micro et macro. L’étude a également permis de dégager une forte augmentation de l’adhésion grâce à une modification de la matrice acrylique, ainsi qu’une dégradation des propriétés interfaciales à l’échelle micro par vieillissement hydrolytique. Cette étude constitue une première base de données concernant les propriétés interfaciales de composites thermoplastiques acryliques et démontre l’importance d’une étude multi-échelles dans la conception de nouveaux composites. / The present study was initiated by the development of a new processing route, i.e. latex-dip impregnation, for thermoplastic (TP) acrylic semi-finished materials. The composites resulting from thermocompression of TPREG I plies were studied by focusing of interfacial adhesion. Indeed the fiber/matrix interface governs the stress transfer from matrix to fibers. Thus, a multi-scale analysis of acrylic matrix/fiber interfaces was conducted by considering microcomposites, as models for fiber-based composites, and unidirectional (UD)macro-composites. The study displayed various types of sized glass and carbon fibers. On one hand, the correlation between thermodynamic adhesion and practical adhesion, resulting from micromechanical testing, is discussed by highlighting the role of the physico-chemistry of the created interphase. Wetting and thermodynamical adhesion are driven by the polarity of the film former of the sizing. On the other hand, in-plane shear modulus values from off-axis tensile test results on UD composites are consistent with the quantitative analyses of the interfacial shear strength obtained from microcomposites. More specifically, both tests have enabled a differentiation of interface properties based on the fiber sizing nature for glass and carbon fiber-reinforced (micro-)composites. The study of overall mechanical and interface properties of glass and carbon fiber/acrylic composites revealed the need for tailoring interfacial adhesion. Modifications of the matrix led to successful increases of interfacial adhesion in glass fiber/acrylic composites. An additional hygrothermal ageing study evidenced a significant loss of interfacial shear strength at micro-scale which was not observed for UD composites. The results of this study are a first step towards a database of relevant interface properties of structural TP composites. Finally, the analyses of interfaces/phases at different scales demonstrate the importance of a multi-scale approach to tailor the final properties of composite parts.

Page generated in 0.1009 seconds