• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 358
  • 109
  • 49
  • 24
  • 19
  • 19
  • 19
  • 19
  • 19
  • 19
  • 9
  • 9
  • 1
  • Tagged with
  • 567
  • 567
  • 93
  • 86
  • 80
  • 67
  • 65
  • 55
  • 53
  • 52
  • 48
  • 44
  • 43
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Characterization of novel marine oligotrophic bacteria isolated from the Pacific Ocean : description of Marinivirgula fluito gen. nov., sp. nov., Marinivirgula obesa gen. nov., sp. nov. and Litincola parvulus gen. nov., sp. nov.

Shin, Eun Jung 25 August 2003 (has links)
Graduation date: 2004
442

Proteomic analysis of liver membranes through an alternative shotgun methodology

Chick, Joel January 2009 (has links)
Thesis (PhD)--Macquarie University, Division of Environmental & Life Sciences, Dept. of Chemistry & Biomolecular Sciences, 2009. / Bibliography: p. 200-212. / Introduction -- Shotgun proteomic analysis of rat liver membrane proteins -- A combination of immobilised pH gradients improve membrane proteomics -- Affects of tumor-induced inflammation on membrane proteins abundance in the mouse liver -- Affects of tumor-induced inflammation on biochemical pathways in the mouse liver -- General discussion -- References. / The aim of this thesis was to develop a proteomics methodology that improves the identification of membrane proteomes from mammalian liver. Shotgun proteomics is a method that allows the analysis of proteins from cells, tissues and organs and provides comprehensive characterisation of proteomes of interest. The method developed in this thesis uses separation of peptides from trypsin digested membrane proteins by immobilised pH gradient isoelectric focusing (IPG-IEF) as the first dimension of two dimensional shotgun proteomics. In this thesis, peptide IPG-IEF was shown to be a highly reproducible, high resolution analytical separation that provided the identification of over 4,000 individual protein identifications from rat liver membrane samples. Furthermore, this shotgun proteomics strategy provided the identification of approximately 1,100 integral membrane proteins from the rat liver. The advantages of using peptide IPG-IEF as a shotgun proteomics separation dimension in conjunction with label-free quantification was applied to a biological question: namely, does the presence of a spatially unrelated benign tumor affect the abundance of mouse liver proteins. IPG-IEF shotgun proteomics provided comprehensive coverage of the mouse liver membrane proteome with 1,569 quantified proteins. In addition, the presence of an Englebreth-Holm-Swarm sarcoma induced changes in abundance of proteins in the mouse liver, including many integral membrane proteins. Changes in the abundance of liver proteins was observed in key liver metabolic processes such as fatty acid metabolism, fatty acid transport, xenobiotic metabolism and clearance. These results provide compelling evidence that the developed shotgun proteomics methodology allows for the comprehensive analysis of mammalian liver membrane proteins and detailed some of the underlying changes in liver metabolism induced by the presence of a tumor. This model may reflect changes that could occur in the livers of cancer patients and has implications for drug treatments. / Mode of access: World Wide Web. / 609 p. ill. (some col.)
443

Aerobic Uptake of Cholesterol by Ergosterol Auxotrophic Strains in Candida glabrata & Random and Site-Directed Mutagenesis of ERG25 in Saccharomyces cerevisiae

Whybrew, Jennafer Marie 27 September 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Candida albicans and Candida glabrata are opportunistic human pathogens that are the leading cause of fungal infections, which are increasingly becoming the leading cause of sepsis in immunosuppressed individuals. C. glabrata in particular has become a significant concern due to the increase in clinical isolates that demonstrate resistance to triazole antifungal drugs, the most prevalent treatment for such infections. Triazole drugs target the ERG11 gene product and prevent C-14 demethylation of the first sterol intermediate, lanosterol, preventing the production of the pathways end product ergosterol. Ergosterol is required by yeast for cell membrane fluidity and cell signaling. Furthermore, C. glabrata, and not C. albicans, has been reported to utilize cholesterol as a supplement for growth. Although drug resistance is known to be caused by an increase in expression of drug efflux pumps, we hypothesize a second mechanism: that the overuse of triazole drugs has lead to the increase of resistance by C. glabrata through a 2-step process: 1) the accumulation of ergosterol auxotrophic mutations and 2) mutants able to take up exogenous cholesterol anaerobically in the body acquire a second mutation allowing uptake of cholesterol aerobically. Two groups of sterol auxotrophic C. glabrata clinical isolates have been reported to take up sterol aerobically but do not produce a sterol precursor. Sterol auxotrophs have been created in C. glabrata by disrupting different essential genes (ERG1, ERG7, ERG11, ERG25, and ERG27) in the ergosterol pathway to assess which ergosterol mutants will take up sterols aerobically. Random and site-directed mutagenesis was also completed in ERG25 of Saccharmoyces cerevisiae. The ERG25 gene encodes a sterol C-4 methyloxidase essential for sterol biosynthesis in plants, animals, and yeast. This gene functions in turn with ERG26, a sterol C-3 dehydrogenase, and ERG27, a sterol C-3 keto reductase, to remove two methyl groups at the C-4 position on the sterol A ring. In S. cerevisiae, ERG25 has four putative histidine clusters, which bind non-heme iron and a C-terminal KKXX motif, which is a Golgi to ER retrieval motif. We have conducted site-directed and random mutagenesis in the S. cerevisiae wild-type strain SCY876. Site-Directed mutagenesis focused on the four histidine clusters, the KKXX C-terminal motif and other conserved amino acids among various plant, animal, and fungal species. Random mutagenesis was completed with a procedure known as gap repair and was used in an effort to find novel changes in enzyme function outside of the parameters utilized for site-directed mutagenesis. The four putative histidine clusters are expected to be essential for gene function by acting as non-heme iron binding ligands bringing in the oxygen required for the oxidation-reduction in the C-4 demethylation reaction.
444

Transcriptional Regulation of Retinal Progenitor Cells Derived from Human Induced Pluripotent Stem Cells.

Sridhar, Akshayalakshmi 22 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In order to develop effective cures for diseases and decipher disease pathology, the need exists to cultivate a better understanding of human development. Existing studies employ the use of animal models to study and model human development and disease phenotypes but the evolutionary differences between humans and other species slightly limit the applicability of such animal models to effectively recapitulate human development. With the development of human pluripotent stem cells (hPSCs), including Human induced Pluripotent stem cells (hiPSCs) and Human Embryonic Stem cells (hESCs), human development can now be mirrored and recapitulated in vitro. These stem cells are pluripotent, that is, they possess the potential to generate any cell type of the body including muscle cells, nerve cells or blood cells. One of the major focuses of this study is to use hiPSCs to better understand and model human retinogenesis. The retina develops within the first three months of human development, hence rendering it inaccessible to investigation via traditional methods. However, with the advent of hiPSCs, retinal cells can be generated in a culture dish and the mechanisms underlying the specification of a retinal fate can be determined. Additionally, in order to use hiPSCs for successful cell replacement therapy, non-xenogeneic conditions need to be employed to allow for fruitful transplantation tests. Hence, another emphasis of this study has been to direct hiPSCs to generate retinal cells under non-xenogeneic conditions to facilitate their use for future translation purposes.
445

Expression and Function of the PRL Family of Protein Tyrosine Phosphatase

Dumaual, Carmen Michelle 06 March 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The PRL family of enzymes constitutes a unique class of protein tyrosine phosphatase, consisting of three highly homologous members (PRL-1, PRL-2, and PRL-3). Family member PRL-3 is highly expressed in a number of tumor types and has recently gained much interest as a potential prognostic indicator of increased disease aggressiveness and poor clinical outcome for multiple human cancers. PRL-1 and PRL-2 are also known to promote a malignant phenotype in vitro, however, prior to the present study, little was known about their expression in human normal or tumor tissues. In addition, the biological function of all three PRL enzymes remains elusive and the underlying mechanisms by which they exert their effects are poorly understood. The current project was undertaken to expand our knowledge surrounding the normal cellular function of the PRL enzymes, the signaling pathways in which they operate, and the roles they play in the progression of human disease. We first characterized the tissue distribution and cell-type specific localization of PRL-1 and PRL-2 transcripts in a variety of normal and diseased human tissues using in situ hybridization. In normal, adult human tissues we found that PRL-1 and PRL-2 messages were almost ubiquitously expressed. Only highly specialized cell types, such as fibrocartilage cells, the taste buds of the tongue, and select neural cells displayed little to no expression of either transcript. In almost every other tissue and cell type examined, PRL-2 was expressed strongly while PRL-1 expression levels were variable. Each transcript was widely expressed in both proliferating and quiescent cells indicating that different tissues or cell types may display a unique physiological response to these genes. In support of this idea, we found alterations of PRL-1 and PRL-2 transcript levels in tumor samples to be highly tissue-type specific. PRL-1 expression was significantly increased in 100% of hepatocellular and gastric carcinomas, but significantly decreased in 100% of ovarian, 80% of breast, and 75% of lung tumors as compared to matched normal tissues from the same subjects. Likewise, PRL-2 expression was significantly higher in 100% of hepatocellular carcinomas, yet significantly lower in 54% of kidney carcinomas compared to matched normal specimens. PRL-1 expression was found to be associated with tumor grade in the prostate, ovary, and uterus, with patient gender in the bladder, and with patient age in the brain and skeletal muscle. These results suggest an important, but pleiotropic role for PRL-1 and PRL-2 in both normal tissue function and in the neoplastic process. These molecules may have a tumor promoting effect in some tissue types, but inhibit tumor formation or growth in others. To further elucidate the signaling pathways in which the PRLs operate, we focused on PRL-1 and used microarray and microRNA gene expression profiling to examine the global molecular changes that occur in response to stable PRL-1 overexpression in HEK293 cells. This analysis led to identification of several molecules not previously associated with PRL signaling, but whose expression was significantly altered by exogenous PRL-1 expression. In particular, Filamin A, RhoGDIalpha, and SPARC are attractive targets for novel mediators of PRL-1 function. We also found that PRL-1 has the capacity to indirectly influence the expression of target genes through regulation of microRNA levels and we provide evidence supporting previous observations suggesting that PRL-1 promotes cell proliferation, survival, migration, invasion, and metastasis by influencing multi-functional molecules, such as the Rho GTPases, that have essential roles in regulation of the cell cycle, cytoskeletal reorganization, and transcription factor function. The combined results of these studies have expanded our current understanding of the expression and function of the PRL family of enzymes as well as of the role these important signaling molecules play in the progression of human disease.
446

Regulation of outer surface lipoprotein A in the Lyme disease spirochete Borrelia burgdorferi

Oman, Tara Lynn 07 October 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Borrelia burgdorferi, a bacterium which causes Lyme disease, is maintained in nature through a cycle involving two distinct hosts: a tick vector and a mammalian host. To adapt to these two diverse environments, B. burgdorferi undergoes dramatic alterations in its surface lipoprotein. Two essential lipoproteins, outer surface protein A (OspA) and outer surface protein C (OspC), are reciprocally regulated throughout the B. burgdorferi lifecycle. Very little is known about the regulation of OspA. These studies elucidate the regulatory mechanisms controlling the expression of OspA. Various truncations of the ospA promoter were created and then studied in our novel in vitro model of ospA repression or grown within the host-adapted model. A T-Rich region of the ospA promoter was determined to be a cis-element essential for both the full expression and full repression of ospA.
447

The endopolygalacturonases from Botrytis cinerea and their interaction with an inhibitor from grapevine

Wentzel, Lizelle 04 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2005. / ENGLISH ABSTRACT: In the field of agriculture, plant pathogens are a major concern because of the severe damage these organisms cause to crops yearly. Fundamental studies regarding plant pathogens and their modes of action made it possible for researchers in the field of molecular biology to investigate pathogens further on a molecular level. Botrytis cinerea, has been used to great effect as a model system to investigate various aspects regarding pathogenesis, also on a molecular level. Molecular research done on B. cinerea over the last few years has shown that the endopolygalacturonases (EPGs) of this fungus are key role players in pathogenesis. This hydrolytic enzyme family of six members, encoded by the Bcpg1-6 genes, are important in breaking down the complex cell wall polymers of host plants, enabling the fungus to penetrate its host sufficiently. It has been shown that both BcPG1 and 2 are crucial for virulence of B. cinerea. A leucine-rich repeat inhibitor protein situated in the cell wall of various plant species, the polygalacturonase-inhibiting protein (PGIP), has been proven to interact with and inhibit EPGs, and thus the necrotic actions of B. cinerea. From literature it was clear that specific data regarding individual interactions of fungal EPGs with PGIPs are lacking currently. Furthermore, most experiments regarding the effects of EPG as well as interaction and inhibition studies of EPGs and PGIPs, rely on in vitro methods, without the possibility to contextualize the results on an in vivo or in planta level. The scope of this study was to specifically address the issues of individual EPG:PGIP interactions and the use of possible in vivo methodology by using EPGs from a highly virulent South African strain of B. cinerea and the grapevine VvPGIP1 that has been previously isolated in our laboratory. This PGIP, originally isolated from Vitis vinifera cv Pinotage, has been shown to inhibit a crude EPG extract from this strain with great efficiency. The approach taken relied on heterologous over-expression of the individual Bcpg genes and the isolation of pure and active enzymes to evaluate the inhibition of the EPGs with VvPGIP1. The genes were all successfully over-expressed in Saccharomyces cerevisiae with a strong and inducible promoter, but active enzyme preparations have been obtained only for the encoding Bcpg2 gene, as measured with an agarose diffusion assay. The in vitro PGIP inhibition assay is also based on the agarose diffusion assay and relies on activity of the EPGs to visualize the inhibiting effect of the PGIP being tested. The active EPG2, however, was not inhibited by VvPGIP1 when tested with this assay. The EPG encoding genes from B. cinerea were transiently over-expressed also in Nicotiana benthamiana by using the Agrobacterium-infiltration technique. Transgene expression was confirmed by Northern blot analysis and EPG-related symptoms were observed five to eight days post-infiltration. Differential symptoms appeared with the various EPGs, providing some evidence that the symptoms were not random events due to the infiltration or a hypersensitive response. Moreover, the symptoms observed for EPG2 was similar to those that were reported recently by another group on the same host. In spite of the expression data and the clear symptoms that developed, active preparations, as measured with the agarose diffusion plate asay, could only be obtained for EPG2 again. In our search for a possible in vivo method to detect and quantify EPG activity and inhibition by PGIPs, we tested and evaluated a technique based on chlorophyll fluorescence to detect the effect of EPGs on the rate of photosynthesis. Our results showed that the over-expression of these genes reduced the rate of electrons flowing through photosystem II, indicating metabolic stress occurring in the plant. We used the same technique to evaluate possible interaction between VvPGIP1 respectively with BcPG1 and 2 and found that the co-expressing of the Vvpgip1 gene caused protection of the infiltrated tissue, indicating inhibition of EPG1 and 2 by VvPGIP1. For EPG2, the observed interaction and possible inhibition by VvPGIP1 is the first report to our knowledge of an interaction between this specific EPG2 and a PGIP. Moreover, to further elucidate the in planta interaction between VvPGIP1 and the EPGs from the South African B. cinerea strain, we tested for possible interactions by making use of a plant two-hybrid fusion assay, but the results are inconclusive at this stage. Previous studies in our laboratory have shown that several natural mutations exist between PGIP encoding genes from different V. vinifera cultivars. Based on this finding and the fact that these natural mutations could result in changes with regard to EPG inhibition and ultimately disease susceptibility, we isolated an additional 37 PGIP encoding genes from various grapevine genotypes, some of which are known for their resistance to pathogens. Combined, these results make a valuable contribution to understand plant pathogen interactions, specifically in this case by modeling the interactions of pathogen and plant derived proteins. The possibility to use in vivo methods such as chlorophyll fluorescence to follow these interactions on an in planta level, provides exciting possibilities to strenghten and contextualize in vitro results. / AFRIKAANSE OPSOMMING: Plantpatogene organismes veroorsaak jaarliks erge skade aan landbougewasse en word dus as ’n ernstige probleem in die landbousektor beskou. Diepgaande studies wat handel oor plantpatogene en hul metodes van infeksie het dit vir molekulêre bioloë moontlik gemaak om patogene nou ook op molekulêre vlak verder te bestudeer. Botrytis cinerea is baie effektief as modelsisteem gebruik om verskeie aspekte van patogenese verder te bestudeer, ook op ‘n molekulêre vlak. Molekulêre navorsing op B. cinerea, het getoon dat die endopoligalakturonases (EPGs) van dié swam kernrolbelangrik in patogenese is. Hierdie sesledige hidrolitiese ensiemfamilie word gekodeer deur die Bcpg1-6 gene en is belangrik vir die afbraak van die komplekse selwandpolimere van plantgashere, om suksesvolle gasheerpenetrasie te veroorsaak. Daar is aangetoon dat beide BcPG1 en 2 essensieël vir virulensie van die patogeen is. ’n Leusienryke-herhalings inhibitorproteïen wat in die selwand van verskeie plantspesies voorkom, die poligalakturonase-inhiberende proteïen (PGIP), het interaksie met en inhibeer EPGs en gevolglik ook die nekrotiserende aksies van B. cinerea. Uit die literatuur is dit duidelik dat spesifieke inligting aangaande individuele interaksies van fungiese EPGs met PGIPs tans nog ontbreek. Verder word daar op in vitro metodologie staatgemaak wannneer die effekte van EPGs asook die interaksie en inhibisie met PGIPs bestudeer word, sonder om die konteks van die in vivo- of in planta-omgewing in ag te neem. Die fokus van hierdie studie was om aspekte van individuele EPG:PGIP interaksies, asook die moontlike gebruik van in vivo metodologie te bestudeer deur EPGs, afkomstig van ’n hoogs virulente Suid-Afrikaanse ras van B. cinerea en die wingerd VvPGIP1, wat vroeër in ons laboratorium geïsoleer is, te gebrruik. Hierdie PGIP wat uit Vitis vinifera cv Pinotage geïsoleer is, inhibeer ’n kru EPG-ekstrak van bogenoemde ras baie effektief. Die benadering wat gevolg is het op die ooruitdrukking van die individuele Bcpg-gene in heteroloë sisteme staatgemaak en die gevolglike isolering van suiwer en aktiewe ensieme om EPG-inhibisie deur VvPGIP1 te beoordeel. Al die gene is suksesvol in Saccharomyces cerevisiae ooruitgedruk onder ’n sterk induseerbare promotor, maar volgens ’n agarose-diffundeerbare toets kon aktiewe ensiempreparate slegs vir die enkoderende Bcpg2 verkry word. Die in vitro PGIP-inhibisie toets is ook op die gemelde toets gebasseer en vereis EPG-aktiwiteit om die inhiberende effek van die PGIP, te visualiseer. Die aktiewe EPG2 is egter nie deur VvPGIP1 geïnhibeer met die aanleg van hierdie toets nie. Die EPG-enkoderende gene van B. cinerea is ook tydelik in Nicotiana benthamiana ooruitgedruk deur gebruik te maak van ’n Agrobacterium-infiltrasietegniek. Transgeenuitdrukking kon met die Noordelike kladtegniek bevestig word en EPG-verwante simptome is vyf tot agt dae na infiltrasie waargeneem. Verskillende simptome vir die verskillende EPGs is waargeneem, wat aanduidend is dat die simptome nie lukrake gevolge van die infiltrasies, of ’n hipersensitiewe respons is nie. Verder kon die simptome wat EPG2 vertoon het, gekorreleer word met dié wat onlangs deur ’n ander groep op dieselfde gasheer waargeneem is. Ten spyte van die ekspressiedata en die waargenome simptome, kon aktiewe ensiempreparate op die agarose-diffundeerbare toets, weereens slegs vir EPG2 waargeneem word. ’n Metode wat gebasseer is op chlorofilfluoressensie is getoets en geëvalueer as ’n moontlike in vivo metode om EPG aktiwiteit en inhibisie deur PGIPs waar te neem en te kwantifiseer. Die resultate het bevestig dat die ooruitdrukking van hierdie gene die elektronvloeitempo deur fotosisteem II verminder het wat ’n aanduiding is dat metaboliese stres in die plant heers. Dieselfde tegniek is gebruik om die moontlike interaksies tussen BcPG1 en 2 en VvPGIP1 te bestudeer en het aangetoon dat die mede-uitdrukking van die Vvpgip1-geen aanleiding gee tot ’n beskermende effek van die geinfiltreerde weefsel, wat aanduidend is van inhibisie van EPG1 en 2 deur VvPGIP1. In die geval van EPG2 is hierdie interaksie en moontlike inhibisie met ’n PGIP die eerste waarneming in die verband. In ’n verdere poging om die in planta-interaksie tussen VvPGIP1 en die EPGs van die Suid-Afrikaanse B. cinerea ras uit te klaar, is ’n plantgebasseerde twee-hibriede toets aangelê, maar geen klinkklare resultate kon verkry word nie. Vorige werk het bevestig dat verskeie natuurlike mutasies in PGIP-enkoderende gene, afkomstig van verskillende V. vinifera kultivars, voorkom. Hierdie resultaat en die feit dat hierdie mutasies verskille in EPG inhibisie en uiteindelik vatbaarheid vir siektes kan beïnvloed, het aanleiding gegee tot die isolering van ’n verdere 37 PGIP-enkoderende gene uit ‘n verskeidenheid druifplantgenotipes, sommige waarvan juis bekend vir hul weerstand teen patogene is. Die gekombineerde resultate wat in dié studie verkry is, maak ’n waardevolle bydrae tot die verstaan van plant-patogeeninteraksies, spesifiek met die modelering van interaksies van patogeen- en plantgebasseerde proteïene. Die moontlikheid om in vivo-metodes soos chlorofilfluoressensie te gebruik in in planta-analises, is besonder bemoedigend om in vitro-resultate te versterk en ook in konteks te plaas.
448

The in vivo and in vitro effects of diethyldithiocarbamate on autoimmune New Zealand Black/White F₁ hybrid, MRL/Mp-lpr/lpr and related and normal murine strains.

Halpern, Melissa Dale. January 1989 (has links)
New Zealand Black/White F₁ hybrid (NZB/W) and MRL/Mp-lpr/lpr (MRL/lpr) mice spontaneously develop a Systemic Lupus Erythematosus-like autoimmune disease. While the primary immunologic defect in the NZB/W is due to B cells, in the MRL/lpr it is a result of T cell abnormalities. Diethyldithiocarbamate (DTC), an agent suggested to enhance T cell function, was used to treat both strains. Weekly treatment of NZB/W mice with 25 mg/kg DTC had no significant effect upon survival or autoantibody levels but did induce changes in cell surface antigen expression. MRL/lpr mice treated with DTC displayed normalization of cell surface antigen expression (particularly increased expression of Lyt-2, macrophage markers and Lyt-2⁺/L3T4⁺ thymocytes), decreased lymphoproliferation and thymic atrophy, decreased serum autoantibody levels and kidney deposition of C3 and IgM, restored responses to mitogens and significantly prolonged survival. To determine both the influence of MRL background and lpr genes and to better understand on what cell populations DTC effects, changes in cell surface antigen expression were examined in DTC treated MRL-+/+, Balb/c, and Balb/lpr strains. The only consistent similarities observed between all strains tested were DTC induced changes in Mac-1 splenocyte surface antigen expression. In vitro studies showed DTC to have variable effects upon the mitogenic responses of lymphoid cells to phytohemagluttinin, but DTC alone stimulated both MRL/lpr and Balb/lpr lymphocytes. DTC stimulated the null cell population that predominates in lpr gene-bearing mice, but all observed in vitro effects of DTC were dependent upon the adherent cell population included in culture. DTC had no apparent direct effects upon adherent cells alone however. These studies have shown that DTC is capable of positive effects upon one autoimmune murine strain, the MRL/lpr, but not the NZB/W. DTC appears to affect macrophages, but other cell populations are required to obtain full activity of this compound. The variable effects of DTC emphasize the need to define the immunopathology of individual patients with autoimmune disease before initiating treatment with immunomodulative therapy.
449

Role of methionine sulfoxide reductase in thermal-induced spreading depression coma in Drosophila melanogaster

Unknown Date (has links)
Drosophila melanogaster encounter periods of increased temperature or decreased oxygen in its native environment. One consequence of these environmental stresses is increased production of reactive oxygen species that damage major molecules within cells. Another consequence is that flies fall into a protective coma where biological functions are minimized to conserve energy expenditures. This biological phenomenon is called spreading depression. The overarching aim of this project is to determine if methionine sulfoxide reductases affect entrance or exit from the protective coma induced by acute thermal stress. The data revealed that complete deficiency of Msr in young flies causes a faster induction of the coma. In both young and old flies, Msr does not affect average recovery time but does affect the pattern of recovery from coma. Entrance into the coma is age dependent with young flies maintaining activity longer than before entering into the coma as compared to old flies. / by Karin Schey. / Thesis (M.S.)--Florida Atlantic University, 2012. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
450

Autophagy gene atg-18 regulates C. elegans lifespan cell nonautonomously by neuropeptide signaling

Unknown Date (has links)
In the round worm C. elegans, it has recently been shown that autophagy, a highly conserved lysosomal degradation pathway that is present in all eukaryotic cells, is required for maintaining healthspan and for increasing the adult lifespan of worms fed under dietary restriction conditions or with reduced IGF signaling. It is currently unknown how extracellular signals regulate autophagy activity within different tissues during these processes and whether autophagy functions cell-autonomously or nonautonomously. We have data that for the first time shows autophagy activity in the neurons and intestinal cells plays a major role in regulating adult lifespan and the longevity conferred by altered IGF signaling and dietary restriction, suggesting autophagy can control these phenotypes cell non-autonomously. We hypothesize that autophagy in the neurons and intestinal cells is an essential cellular process regulated by different signaling pathways to control wild type adult lifespan, IGF mediated longevity and dietary restriction induced longevity. Excitingly we also have found that in animals with reduced IGF signaling autophagy can control longevity in only a small subset of neurons alone. Autophagy in either specific individual chemosensory neurons or a small group of them is completely sufficient to control IGF mediated longevity. This work provides novel insight to the function and regulation of autophagy which will help shed light on understanding this essential process in higher organisms, including mammals. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection

Page generated in 0.0656 seconds