• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 38
  • 14
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 116
  • 106
  • 61
  • 44
  • 30
  • 21
  • 20
  • 20
  • 19
  • 18
  • 15
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

STEREOSELECTIVITY AND REGIOSELECTIVITY<br />IN ORGANIC CHEMISTRY: NOVEL SYSTEMS AND<br />APPLICATIONS

Legrand, Sacha 02 March 2006 (has links) (PDF)
Molecular recognition has become a very important field of research in chemistry during the last decades. This<br />chemical phenomenon is responsible for all processes occurring in biology and asymmetric synthesis is based<br />upon the capability of molecules or substrates to recognise each other in a selective manner. In this thesis, the<br />design, preparation and evaluation of a series of new synthetic receptors has been described. The importance of<br />regioselectivity and stereoselectivity in molecular recognition has also been underlined with two different<br />biological examples.<br />The capability of host molecules, derived from (+)-tartaric acid, to accommodate various guests in a selective<br />manner was demonstrated using 1H-NMR spectroscopy (paper I). These host molecules, known as TADDOLs,<br />enantioselectively recognised the valuable chiral alcohols glycidol and menthol. Macromolecular receptors, i.e.<br />molecularly imprinted polymers (MIPs), were also prepared in order to catalyse the aldol reaction between either<br />(R)- or (S)-camphor and benzaldehyde (paper II). With the help of analytical methods, it was demonstrated that<br />the MIPs interacted in a selective manner with the enantiomers of camphor. Moreover, these MIPs enhanced<br />significantly the rate of the aldol condensation mentioned above.<br />Regarding biological systems, various regioisomeric analogues of benzoic acid have been tested as antifeedants<br />against the pine weevil Hylobius abietis (paper III and IV). The regioisomers studied displayed very different<br />antifeedant activities. The significance of stereoisomerism on pheromone function has been shown in the<br />preparation of lures for the control of the insect pest Argyrotaenia sphaleropa (paper V). It was demonstrated that<br />male leafrollers could be caught by a lure containing components of the female sex pheromone gland.
72

Molecularly Imprinted Polymers: Towards a Rational Understanding of Biomimetic Materials

Molinelli, Alexandra Lidia 22 November 2004 (has links)
The research described in this thesis contributes to the development of new strategies facilitating advanced understanding of the fundamental principles governing selective recognition of molecularly imprinted polymers (MIPs) at a molecular level for the rational optimization of biomimetic materials. The nature of non-covalent interactions involved in the templating process of molecularly imprinted polymers based on the self-assembly approach were investigated with a variety of analytical techniques addressing molecular level interactions. For this purpose, the concerted application of IR and 1H-NMR spectroscopy enabled studying the complexation of the template molecules 2,4-dichlorophenoxyacetic acid, quercetin, and o-, m-, and p-nitrophenol with a variety of functional monomers in the pre-polymerization solution by systematically varying the ratio of the involved components. In aqueous and non protic porogenic solvents, information on the interaction types, thermodynamics, and complex stoichiometry was applied toward predicting the optimum imprinting building blocks and ratios. Molecular dynamics simulations of 2,4-dichlorophenoxyacetic acid and its interactions with the functional monomer 4-vinylpyridine in aqueous and aprotic explicit solvent allowed demonstrating the fundamental potential of computer MD simulations for predicting optimized pre-polymerization ratios and the involved interaction types. The obtained results clearly demonstrate that the application of rapid IR/NMR pre-screening methods in combination with molecular modeling strategies is a promising strategy towards optimized imprinting protocols in lieu of the conventionally applied labor intensive and time-consuming trial-and-error approach. Furthermore, HPLC characterization of the produced MIPs compared to control polymers enabled a systematic approach to imprinting based on advanced understanding of the factors governing the formation of high-affinity binding sites during the polymerization. In addition, the importance of the combination of size, shape, and molecular functionalities for the selective recognition properties of MIPs was investigated. MIPs for the mycotoxins deoxynivalenol and zearalenone and for the antioxidant quercetin were applied as separation materials for advanced sample preparation in beverage analysis. The obtained results demonstrated the potential of MIPs for rapid one-step sample clean-up and pre-concentration from beverages such as wine and beer.
73

Elaboration of a new sensor based on molecularly imprinted polymers for the detection of molecules in physiological fluids

Marie, Héléne 19 December 2013 (has links) (PDF)
This thesis aimed at elaborating an optical sensor to detect molecules in a biological fluid. Two steroids and a xenobiotic were identified as biomarkers released in some body fluids: cyproterone acetate, cortisol and 2,4-dichlorophenoxyacetic acid respectively. On one hand, detection was performed by Molecularly Imprinted Polymers (MIPs). These tailor-made synthetic receptors display numerous qualities that foster their integration in sensors. MIPs were therefore developed against the targeted analytes. Formulation optimization was led thanks to experimental designs. On the other hand, optical transduction was made possible thanks to the structuring of a polymer into a photonic crystal. Opals were manufactured with a new process suitable for large scales and were used to mold MIPs in inverse opals. Thus, submicron structures of the polymer are responsible for the color of the sensor. A change of color is triggered by the recognition of the analyte by the polymer (upon swelling). Polymers studied displayed sufficient swelling observed by spectrophotometry. Finally, the work of this thesis consisted in elaborating polymer formulations and their integration in a sensor so as to detect an analyte with direct, rapid and unobtrusive means.
74

Fiber optic chemical sensors based on molecularly imprinted polymers for the detection of mycotoxins

Ton, Xuan-Anh 25 October 2013 (has links) (PDF)
This thesis describes the development of highly selective fiber optic sensors using molecularly imprinted polymers (MIPs) as recognition elements associated with fluorescence for detection. Additionally, we extended the study to the development of other MIP-based optical sensors and sensing methods. MIPs are synthetic biomimetic receptors possessing specific cavities designed for a target molecule. Produced by a templating process at the molecular level, MIPs are capable of recognizingand binding target molecules with selectivities and affinities comparable to those of natural receptors. Compared to biological recognition elements, MIPs are more stable, cheaper and easier to integrate into standard industrial fabrication processes. Hence, MIPs have become interesting alternatives to biomolecules as recognition elements for biosensing. In the first part of this thesis (Chapter 2), MIPs were synthesized by in-situ laser-induced photopolymerization in only a few seconds, as a micrometer-sized tip at the extremity of a telecommunication optical fiber. Photonic and physico-chemical parameters were optimized to tailor the properties of the polymer micro-objects. Gold nanoparticles were incorporated into the MIP microtip for signal enhancement. To prove the efficiency of the sensor, initial studies were performed with a MIP templated with N-carbobenzyloxy-L-phenylalanine (Z-L-Phe) and the fluorescent amino acid derivative dansyl-L-phenylalanine as analyte. The fluorescence was collected either externally at the tip level by an optical fiber connected to a spectrofluorimeter or by collection of the fluorescent signal re-emitted into the fiber through the second arm of a Y-shaped bifurcated fiber. The fluorescent analyte could be detected in the low nM concentrations. In order to monitor nonfluorescent analytes, a naphthalimide-based fluorescent monomer was incorporated into the MIP during its synthesis; fluorescence enhancement was observed when analyte binding occurs. Using this system, the sensor containing a MIP specific for the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), could detect and quantify this analyte at concentrations as low as 2.5 nM. The signaling MIP-based sensor was also applied to analytes of interest for food safety and biomedical applications, such as the mycotoxin citrinin and the sphingolipid, D-erythro-sphingosine-1-phosphate. In the second part of the thesis (Chapter 3), a different type of fiber optic sensor: cheap, fast and made for "single-use", was developed by using 4-cm long disposable polystyrene evanescent wave optical fiber waveguides. The coating of the MIP was either performed ex-situ, by dip-coating the fiber in a suspension of MIP particles synthesized beforehand, or in-situ by evanescent-wave photopolymerization directly on the fiber. The resulting fiber optic sensor could detect 2,4-D in the low nM range and demonstrated specific and selective recognition of the herbicide over its structural analogues and other non-related carboxyl-containing analytes. Additionally, we demonstrated the versatility of the system by applying the evanescent wave fiber optic sensor to detect citrinin, a mycotoxin, by simply coating the waveguide with a MIP specific for citrinin. This type of technology could possibly be extended to detect other carboxyl-containing analytes, as long as a specific MIP for the concerned analyte is available. In parallel, the technique of evanescent-wave photopolymerization was used for the synthesis of signaling MIP microdots on continuous and nanostructured gold films. This study lays the foundations for future development of plasmonic MIP nanosensors and microchips. In the last part of the thesis (Chapter 4), an innovative sensing method, based on the use of MIPs and analysis by fluorescence polarization, was developed in order to allow the fast and directquantification of analytes in food and environmental samples.
75

Fiber optic chemical sensors based on molecularly imprinted polymers for the detection of mycotoxins

Ton, Xuan-Anh 25 October 2013 (has links) (PDF)
This thesis describes the development of highly selective fiber optic sensors using molecularly imprinted polymers (MIPs) as recognition elements associated with fluorescence for detection. Additionally, we extended the study to the development of other MIP-based optical sensors and sensing methods. MIPs are synthetic biomimetic receptors possessing specific cavities designed for a target molecule. Produced by a templating process at the molecular level, MIPs are capable of recognizingand binding target molecules with selectivities and affinities comparable to those of natural receptors. Compared to biological recognition elements, MIPs are more stable, cheaper and easier to integrate into standard industrial fabrication processes. Hence, MIPs have become interesting alternatives to biomolecules as recognition elements for biosensing. In the first part of this thesis (Chapter 2), MIPs were synthesized by in-situ laser-induced photopolymerization in only a few seconds, as a micrometer-sized tip at the extremity of a telecommunication optical fiber. Photonic and physico-chemical parameters were optimized to tailor the properties of the polymer micro-objects. Gold nanoparticles were incorporated into the MIP microtip for signal enhancement. To prove the efficiency of the sensor, initial studies were performed with a MIP templated with N-carbobenzyloxy-L-phenylalanine (Z-L-Phe) and the fluorescent amino acid derivative dansyl-L-phenylalanine as analyte. The fluorescence was collected either externally at the tip level by an optical fiber connected to a spectrofluorimeter or by collection of the fluorescent signal re-emitted into the fiber through the second arm of a Y-shaped bifurcated fiber. The fluorescent analyte could be detected in the low nM concentrations. In order to monitor nonfluorescent analytes, a naphthalimide-based fluorescent monomer was incorporated into the MIP during its synthesis; fluorescence enhancement was observed when analyte binding occurs. Using this system, the sensor containing a MIP specific for the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), could detect and quantify this analyte at concentrations as low as 2.5 nM. The signaling MIP-based sensor was also applied to analytes of interest for food safety and biomedical applications, such as the mycotoxin citrinin and the sphingolipid, D-erythro-sphingosine-1-phosphate. In the second part of the thesis (Chapter 3), a different type of fiber optic sensor: cheap, fast and made for "single-use", was developed by using 4-cm long disposable polystyrene evanescent wave optical fiber waveguides. The coating of the MIP was either performed ex-situ, by dip-coating the fiber in a suspension of MIP particles synthesized beforehand, or in-situ by evanescent-wave photopolymerization directly on the fiber. The resulting fiber optic sensor could detect 2,4-D in the low nM range and demonstrated specific and selective recognition of the herbicide over its structural analogues and other non-related carboxyl-containing analytes. Additionally, we demonstrated the versatility of the system by applying the evanescent wave fiber optic sensor to detect citrinin, a mycotoxin, by simply coating the waveguide with a MIP specific for citrinin. This type of technology could possibly be extended to detect other carboxyl-containing analytes, as long as a specific MIP for the concerned analyte is available. In parallel, the technique of evanescent-wave photopolymerization was used for the synthesis of signaling MIP microdots on continuous and nanostructured gold films. This study lays the foundations for future development of plasmonic MIP nanosensors and microchips. In the last part of the thesis (Chapter 4), an innovative sensing method, based on the use of MIPs and analysis by fluorescence polarization, was developed in order to allow the fast and directquantification of analytes in food and environmental samples.
76

Development and characterization of sensing layers based on molecularly imprinted conducting polymers for the electrochemical and gravimetrical detection of small organic molecules / Développement et caractérisation de couches sensibles à base de polymères conducteurs à mémoire moléculaire pour la détection électrochimique et gravimétrique de petites molécules

Lattach, Youssef 18 October 2011 (has links)
Dans le domaine des capteurs chimiques et biologiques, les besoins toujours croissants en termes de sensibilité, de rapidité et de sélectivité de l’analyse nécessitent le développement de couches sensibles transductrices de plus en plus performantes. Dans ce contexte et dans l’optique de pouvoir détecter de petites molécules non électroactives, telles que l’atrazine (ATZ), nous avons conçu, caractérisé et développé des couches sensibles constituées de polymères conducteurs fonctionnalisés à empreintes moléculaires (MICP) et les avons intégrées au sein de capteurs électrochimiques et gravimétriques. A partir de solutions d’acétonitrile contenant de l’ATZ, molécule empreinte en interaction avec des monomères fonctionnels dérivés du thiophène (FM = TMA, TAA, EDOT, TMeOH ou Th), différents polythiophènes FM-MICP de structures et de fonctionnalités différentes ont été électrosynthétisés sur substrats d’or et utilisés pour la détection de l’ATZ. Nous avons montré que les propriétés de reconnaissance des FM-MICP résultaient de la présence en leur sein d’empreintes moléculaires, fonctionnalisées par les résidus FM, qui conservaient la mémoire géométrique et fonctionnelle des molécules cibles. Néanmoins, une adsorption non-spécifique se produit systématiquement à la surface des couches sensibles et affecte par conséquent la sélectivité de la reconnaissance. Les techniques de caractérisation de surface employées nous ont permis de mettre en évidence l’influence de l’épaisseur et des propriétés structurales des couches sensibles sur l’efficacité de la détection. En outre, nous avons montré que du fait de la porosité de la couche polymère, le processus de reconnaissance se produisait en volume. Par ailleurs, des mesures électrochimiques corrélées à des calculs semi-empiriques ont permis de démontrer l’influence de la nature de FM d’abord sur la force de l’interaction ATZ-FM au sein de la solution de pré-polymérisation, ensuite sur le nombre d’empreintes moléculaires et enfin sur la sensibilité des FM-MICP vis-à-vis de l’ATZ. La couche TAA-MICP, qui présente un faible seuil de détection (10-9 mol L-1) ainsi qu’une large gamme dynamique (10-8 à 10-4 mol L-1), est la plus performante des couches sensibles puisqu’elle offre le meilleur compromis entre une détection spécifique de l’ATZ relativement élevée et une adsorption non-spécifique relativement faible. Enfin, le TAA-MICP a été utilisé comme couche sensible au sein d’un capteur électrochimique original à ondes acoustiques de surface (ESAW) dans l’optique de réaliser des mesures gravimétriques et électrochimiques couplées et simultanées. / In the field of chemical and biological sensors, the increased need for better sensitivity, faster response and higher selectivity during an analysis process, requires the development of more and more efficient transducing sensing layers. In this context, and with the aim to detect small non-electroactive molecules, such as atrazine (ATZ), we designed, characterized and developed sensing layers constituted by functionalized Molecularly Imprinted Conducting Polymers (MICP) and we integrated them into electrochemical and gravimetrical sensors. Starting from acetonitrile pre-polymerization media containing ATZ as template molecules in the presence of thiophene-based functional monomers (FM, namely TMA, TAA, EDOT, TMeOH or Th), differently functionalized and structurally different polythiophene-based FM-MICP films were electrosynthesized onto gold substrates and used for ATZ detection. The sensing properties of FM-MICP layers were shown to result from the presence in their backbones of pre-shaped FM-functionalized imprinted cavities which keep the memory of the targets. Nevertheless, non-specific adsorption onto the surface of the sensing layers takes place systematically, which affects the selectivity of the recognition process. Thanks to surface characterization techniques, we highlighted the influence of the thickness and of the structural properties of the layers on the efficiency of the recognition process. Besides, this latter was shown to operate in the bulk of the polymer matrixes thanks to layers porosity. On another hand, electrochemical measurements correlated with semi-empirical calculations demonstrated the influence of the nature of FM on the strength of the ATZ-FM interaction in the pre-polymerization medium, and then on the number of ATZ molecular imprints and on the sensitivity towards ATZ of the FM-MICP layers. We showed that TAA-MICP, which presents a low limit of detection (10-9 mol L-1) and a large dynamic range (10-8 to 10-4 mol L-1), is the best sensing layer since it offers the best compromise between high level of specific detection of ATZ and low level of non-specific adsorption. Finally, TAA-MICP was used as sensitive layer in an original Electrochemical Surface Acoustic Wave sensor (ESAW) which enabled simultaneous coupled gravimetric and electrochemical measurements.
77

Development of molecularly imprinted polymers for the recognition of urinary nucleoside cancer biomarkers / Développement de polymères à empreintes moléculaires pour la reconnaissance de biomarqueurs nucléosidiques urinaires du cancer

Krstulja, Aleksandra 27 February 2015 (has links)
Ce rapport de thèse présente l’étude de la technologie des empreintes moléculaires pour le développement de polymères spécifiques et sélectifs envers des biomarqueurs urinaires nucléosidiques du cancer colorectal chez l’Homme. L’objectif principal était de développer des polymères à empreintes moléculaires compatibles aux milieux aqueux en utilisant la technique du « dummy template », l’approche non-covalente and la polymérisation radicalaire en masse. Nous nous sommes concentrés principalement sur la qualité des polymères à partir de leur formulation, c’est-à-dire la spécificité et la sélectivité. Cela a été mené de façon empirique d’abord par la production de poudres issues de polymères monolithiques. Ainsi, pour atteindre les objectifs fixés, nous avons exploré le choix de la molécule « template ». Une étude de modèle est présentée au chapitre 3, en utilisant trois nucléosides 2’,3’,5’-peracétylés comme molécule empreinte dans une approche « dummy template ». Ensuite, en s’appuyant sur la connaissance apportée par le chapitre 3, nous avons développé des polymères à empreintes moléculaires (MIPs) sélectifs de la pseudouridine et de la N7-méthylguanosine dans les chapitres 4 et 5, respectivement, en utilisant la 2’,3’,5’-tri-O-acétylpseudouridine et la 2’,3’,5’-tri-O-acétylguanosine comme templates. L’étude de la rétention des nucléosides recherchés et de leurs analogues structuraux menée par chromatographie en phase liquide et par analyse frontale a permis de déterminer la capacité des différents polymères et de connaître leur comportement dans de l’urine synthétique. Finalement, pour évaluer la possible application de ces polymères dans un échantillon réel, l’urine humaine, la technique de l’extraction sur phase solide à empreintes moléculaires ou MISPE a été développée. Ainsi, une purification sélective des biomarqueurs cibles, tels que la pseudouridine et la N7-méthylguanosine, dans des échantillons d’urines a pu être démontrée. / This thesis report presents the exploration of molecularly imprinted polymer (MIP) technology for developing of a sensitive and selective polymers used in urinary nucleoside biomarker recognition. The main goal was to develop water compatible MIPs prepared by a “dummy template” imprinting technology, using a non-covalent approach and radical-polymerization in bulk. We were focusing mostly on the polymer quality in the formulation (rigidity, stability and repeatability). This was chosen empirically first by production of powders from monolithic MIP. Thus, to accomplish the stated goals, we have explored the choice of the template molecule. A model study presented by Chapter 3, using three 2’3’5’-tri-Operacylateduridine nucleosides as templates in a “dummy” template approach was first developed. Then, applying the knowledge of the type of template choice, we developed a selective MIP for recognition of pseudouridine and N7-methylguanosine in the studies presented in Chapter 4 and Chapter 5 respectively. By using 2’3’5’-tri-O-acetylpseudouridine and 2’3’5’-tri-O-acetylguanosine as templates. Chromatographic methods like HPLC retention and frontal analysis were used in the interest of determining the binding capacity of synthesized polymers, and the behavior in synthetic urine. Finally, to evaluate the possible application of these polymers in urine, molecularly imprinted solid phase extraction (MISPE) was developed. Selective purification of urine samples containing pseudouridine and N7-methylguanosine obtained in the end.
78

Biotransformação de corantes dispersos do tipo azo pela ação de enzimas redutoras e oxidação fotoeletrocatalítica após pré-concentração por MIP / Biotransformation of disperse azo dyes by the action of reducing enzymes and photoelectrocatalytic oxidation after preconcentration by MIP

Franco, Jefferson Honorio [UNESP] 21 November 2016 (has links)
Submitted by JEFFERSON HONORIO FRANCO null (jeffersonhfranco@gmail.com) on 2016-12-01T15:16:17Z No. of bitstreams: 1 TESE FINAL-IMPRESSÃO CD.pdf: 4568825 bytes, checksum: 666b30b163102c69eb93110502678419 (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-12-05T12:50:59Z (GMT) No. of bitstreams: 1 franco_jh_dr_araiq_par.pdf: 1149871 bytes, checksum: 4c942fc016c94499d690f6474dda7078 (MD5) / Made available in DSpace on 2016-12-05T12:50:59Z (GMT). No. of bitstreams: 1 franco_jh_dr_araiq_par.pdf: 1149871 bytes, checksum: 4c942fc016c94499d690f6474dda7078 (MD5) Previous issue date: 2016-11-21 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Corantes sintéticos do tipo azo têm sido um assunto de grande preocupação ambiental devido ao potencial genotóxico e mutagênico dos produtos de biotransformação. Deste modo, nos últimos anos a consequência da ingestão destes corantes presentes na agua potável servida à população é discutida por diversos autores. Este estudo avalia a ação de microssomas de fígado de rato, enzimas redutoras produzidas pela bactéria Escherichia coli (E. coli) e nitroredutase imobilizada na biotransformação de três corantes dispersos que possuem grupos azo, Disperse Red 73 (DR 73), Disperse Red 78 (DR 78) e Disperse Red 167 (DR 167). A técnica de Espectrofotometria de absorção molecular na região do Uv- visível, Cromatografia Líquida de Alta Eficiência com detector de arranjo de diodos (CLAE-DAD) e Cromatografia líquida acoplada à espectrometria de massas (LC-MS/MS) foram técnicas usadas para identificar os principais produtos gerados após os processos de degradação dos corantes. Polímeros de impressão molecular magnéticos (MMIPs) foram investigados usando reações de polimerização por precipitação para pré-concentração do corante DR 73, juntamente com a degradação por fotoeletrocatálise e subsequente análise dos produtos por LC-MS/MS. Os estudos in vitro do metabolismo de biotransformação dos corantes têxteis com microssoma de fígado de rato mostraram que as reações ocorreram preferencialmente no grupo azo e nitro dos corantes, indicando a redução destes grupos pelas enzimas do citocromo P-450. Foram obtidos dois produtos de degradação para cada corante após reação com a bactéria E. coli; o corante DR 73 originou os produtos 3-((4-aminofenil)(etil)amino)propanitrila e 4-nitroanilina, os produtos 3-((4-aminofenil)(etil)amino)propanitrila e 2-cloro-4-nitroanilina foram obtidos após reação com o corante DR78 e o DR 167 originou dimetil 3,3`-((3-acetamido-4aminofenil)azanediyl)dipropanoato e 2-cloro-4-nitroanilina, indicando a clivagem do grupo azo, possivelmente, pela enzima azoredutase, produzida pela bacteria. A enzima nitroredutase, imobilizada em partículas magnéticas modificadas com tosil, mostrou que a redução dos corantes ocorreu preferencialmente no grupo nitro, enquanto que a enzima livre no meio reacional resultou em mais de um produto de biotransformação para cada corante, atuando em mais de um sítio da molécula, comprovando a eficácia da imobilização enzimática para estudos de biotransformação e formação de produtos majoritários. A mutagenicidade dos corantes foi avaliado pelo ensaio de Salmonella/microssoma realizado nas estirpes TA 98 e TA 100, com e sem S9. De acordo com este ensaio, DR 73 foi o mais mutagênico. O MMIP para o corante DR 73 apresentou excelentes valores de religação (16 mg g−1 e 6 mg g−1, para MMIP e MNIP, respectivamente) indicando que o polímero molecularmente impresso formou cavidades específicas para retenção do corante. Através dos resultados obtidos por LCMS/MS, observou-se 100% de degradação do corante em apenas 60 min de tratamento via fotoeletrocatálise para soluções mais diluidas do mesmo, comprovando a eficiência da técnica na degradação de poluentes. Sendo assim, estes resultados sugerem que o MMIP mostrou uma excelente especificidade e seletividade para o corante DR 73 e uma técnica promissora na captação de corantes mutagênicos de águas superficiais, com grande potencial de aplicação e exploração na pré-concentração antes do tratamento. Além disso, a redução destes corantes por sistemas biológicos representa uma grande preocupação ambiental devido ao aumento da genotoxicidade para os seres vivos, em especial a seres humanos, produzindo compostos nocivos, tais como aminas condenadas pela Agência Internacional de Pesquisa sobre o Câncer. / Synthetic azo dyes have been a matter of great concern due to the genotoxic and mutagenic potential of the products originating from azo dye biotransformation. Thus, in recent years the result of the intake of these dyes present in drinking water supplied to a population is discussed by several authors. This work evaluates the action of rat liver microsomes, reducing enzymes produced by the Escherichia coli (E. coli) and nitroreductase immobilized on biotransformation of three disperse dyes bearing azo groups, namely Disperse Red 73 (DR 73), Disperse Red 78 (DR 78), and Disperse Red 167 (DR 167). UV-Vis spectrophotometry, high-performance liquid chromatography with diode array detector (HPLC-DAD), and liquid chromatography coupled to mass spectrometry (LC-MS/MS) were techniques used to identify the main products generated after the process degradation of dyes. Magnetic molecularly imprinted polymers (MMIPs) were investigated using precipitation polymerization reactions for preconcentration of the dye DR 73, together with the photoelectrocatalysis degradation and subsequent analysis of the products by LC-MS/MS. In vitro studies of biotransformation metabolism of textile dyes with rat liver microsome showed that the reactions occur preferentially in the group of azo and nitro dyes, indicating the reduction of these groups by enzymes of the cytochrome P-450. There were obtained two degradation products for each dye after reaction with E. coli; the dye DR 73 gave the product 3 - ((4-aminophenyl) (ethyl) amino) propanitrila and 4-nitroaniline, the product 3 - ((4-aminophenyl) (ethyl) amino) propanitrila and 2-chloro-4-nitroaniline were obtained after reaction with the dye DR78 and DR 167 gave 3,3`-dimethyl-((3-acetamido-4-aminophenyl) azanediyl) dipropanoato and 2chloro-4-nitroaniline; indicating cleavage of the azo group, possibly by azoredutase enzyme produced by bacteria. The nitroreductase enzyme immobilized on modified magnetic particles Tosyl showed that the reduction of dyes occurred preferentially in the nitro group, while the free enzyme in the reaction medium resulted in more than a product of biotransformation for each dye, acting in more than one site of the molecule, proving the efficacy of enzyme immobilization for biotransformation studies and formation of major products. The mutagenicity of the dyes was evaluated by the Salmonella/microsome assay performed on strains TA 98 and TA 100, with and without S9. According to this assay, DR 73 was the most mutagenic. The MMIP to the dye DR 73 showed excellent rebinding values (16 mg g−1 and 6 mg g−1, for MMIP and MNIP, respectively) indicating that the molecularly imprinted polymer formed cavities for specific dye retention. Through the results obtained by LC-MS/MS, it was observed 100% dye degradation in 60 min treatment for more dilute solutions thereof, proving the efficiency of technique in pollutant degradation. Thus, these results suggest that MMIP showed excellent specificity and selectivity for the dye DR 73 and a promising technique in capturing mutagenic dyes of surface water, with great potential for application and operation in the pre-concentration before treatment. Moreover, the reduction of these dyes by biological systems is a major environmental concern due to increased of genotoxicity for living beings, especially humans, producing harmful compounds, such as condemned amines by the International Agency for Research on Cancer.
79

Desenvolvimento e aplicação de plataformas fundamentadas na tecnologia dos polímeros impressos molecularmente para detecção de 4-nitrofeno / Development and application of platforms based on polymer molecularly imprinted technology for detection of 4-nitrofenol

Cordeiro, Walker de Lima 20 June 2017 (has links)
The present work describes the development of a highly sensitive and selective molecularly imprinted electrochemical sensor for 4-nitrophenol detection. A glassy carbon electrode was modified with vyniltrimethoxisylane (VTMS) and multiwall carbon nanotubes (MWCNT). The introduced nanocomposite increased surface area and active sites for electron transfer. When the sillane is used on the synthesis, it is named MIS (molecularly imprinted silane) and NIS (non-imprinted silane) when the analyte is not on the synthesis. For those silane films characterization, it was used the scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and fourier transform infrared spectroscopy (FTIR). This sensor showed its best performance in 0.1 mol L-1 phosphate buffer solution, at pH 7.0. After optimizing the operational conditions, this sensor provided a linear response range for 4-NP from 0.1 up to 100 μmol L-1 and good parameters as LOD, LOQ and sensibility, 0.03 μmol L-1, 0.1 μmol L-1 and 1.4×10-2 A mol L-1 respectively. Furthermore, the MIS/PNP sensor exhibited good stability with adequate reproducibility and accuracy. / No presente trabalho é descrito o desenvolvimento de um sensor eletroquímico altamente sensível e seletivo baseado na tecnolgia dos Polímeros Impresso Molecularmente para detecção de 4-nitrofenol. Um eletrodo de carbono vítreo foi modificado com viniltrimetoxisilano (VTMS) e nanotubos de carbono de pardes múltiplas (MWCNT). O nanocompósito de carbono introduzido aumentou a área superficial e os locais ativos para transferência de elétrons. No método sol-gel quando um sillano é usado na síntese, é denominado MIS (Molecular Imprinted Silane) e NIS (non-imprinted Silane) quando o analito não está na síntese. Para a caracterização dos filmes de silanos utilizou - se a microscopia eletrônica de varredura (MEV), a análise termogravimétrica (TGA) e a espectroscopia de infravermelho por transformação de Fourier (FTIR). Este sensor apresentou o seu melhor desempenho em solução tampão fosfato 0,1 mol L-1, a pH 7,0. Depois de otimizado as condições operacionais, este sensor proporcionou uma faixa de resposta linear para o 4-nitrofenol de 0,1 a 100 μmol L-1 e bons parâmetros como limite de detecção, quantificação e sensibilidade de 0,03 μmol L-1, 0,1 μmol L-1 e 1,4×10-2 A mol L-1 respectivamente. Além disso, o sensor MIS/4-nitrofenol apresentou boa estabilidade com reprodutibilidade e precisão adequadas.
80

Desenvolvimento de polímeros de impressão molecular para microextração em ponteiras de bisfenol A em amostras de urina e análise por GC-MS / Development of molecularly imprinted polymer for disposable pipette extraction of bisphenol A in biological samples and analysis by GC-MS

Tamires Amabile Valim Brigante 26 October 2015 (has links)
O Bisfenol A (BPA, acrônimo da língua inglesa - bisphenol A) é uma substância utilizada na fabricação de embalagens alimentícias e resinas odontológicas. Sua toxicidade deve-se ao fato de que, como disruptor endócrino, afeta o sistema reprodutor, cardiovascular, neuro-endócrino e pode apresentar potencial carcinogênico. Em métodos bioanalíticos, o preparo da amostra tem sido requerido para aumentar a seletividade e sensibilidade analítica, através da remoção dos interferentes da amostra biológica e concentração dos analitos, quase sempre presentes em níveis de traços. A microextração em ponteiras (DPX, acrônimo das iniciais em língua inglesa - Disposable Pipette Extraction), baseada no equilíbrio de sorção do soluto com a fase extratora, consiste em uma ponteira padrão de micropipeta modificada, na qual o sorvente está contido livremente entre dois filtros, permitindo rápida extração do analito em diferentes matrizes complexas. Os polímeros de impressão molecular (MIP acrônimo das iniciais em língua inglesa - Molecularly Imprinted Polymer) consistem em uma rede polimérica tridimensional que possui cavidades seletivas para o reconhecimento molecular do analito ou de substâncias de estrutura análoga. Essa rede polimérica é sintetizada ao redor da substância molde (analito), e a cavidade seletiva é formada após a remoção do molde. As vantagens do processo sol-gel para a síntese do MIP são o controle do tamanho e forma das partículas, ajuste da hidrofobicidade e alta estabilidade térmica. No presente trabalho, o MIP foi sintetizado e utilizado como sorvente para a técnica DPX para a determinação de bisfenol A em amostras de urina por cromatografia em fase gasosa acoplada à espectrometria de massas (GC-MS, acrônimo das iniciais em língua inglesa - Gas Chromatography coupled to Mass Spectrometry). O MIP foi sintetizado pela via sol-gel utilizando aminopropiltrietoxisilano (APTES) como mônomero funcional e tetraetil-orto-silicato (TEOS) como reagente de ligação cruzada. Como molde foram avaliados o BPA para o MIP, e o tetrabromobisfenol A (TBBPA) para o polímero molecularmente impresso com molécula análoga ao analito (DMIP, acrônimo das iniciais em língua inglesa - Dummy Molecularly Imprinted Polymer). Para avaliar a seletividade do MIP, o polímero não impresso (NIP, acrônimo das iniciais em língua inglesa - Non-imprinted Polymer) foi sintetizado seguindo o mesmo procedimento de síntese do MIP com exceção da adição da molécula molde. Apesar de a capacidade de sorção do MIP ser ligeiramente maior, o DMIP foi selecionado como sorvente para minimizar o efeito de memória. O DMIP foi caracterizado por microscopia eletrônica de varredura (MEV) e por espectroscopia vibracional na região do infravermelho por transformada de Fourier (FTIR, acrônico das inicias em língua inglesa - Fourier Transform Infrared). Os parâmetros da técnica DPX, tais como, o tempo de equilíbrio de sorção entre a amostra e o sorvente e condições de dessorção foram otimizadas por técnicas quimiométricas. A robustez do DMIP sintetizado via sol-gel foi comprovada pela reutilização deste sorvente por mais de 100 vezes, sem perda da eficiência da extração. O método desenvolvido DPX/GC-MS apresentou linearidade na faixa de 50 a 500 ng mL-1, precisão com CV (coeficientes de variação) entre 4 e 14% e de exatidão com valores de erro padrão relativo (EPR) de -13,6 a 12,3%. O método de referência utilizando a extração líquido-líquido e GC-MS (LLE/GC-MS), faixa de linearidade de 5 a 50 ng mL-1, foi desenvolvido e validado. Embora o método DPX/GC-MS inovador, quando comparado ao LLE/GC-MS, tenha apresentado maior limite de quantificação, apresentou as seguintes vantagens: simplicidade, rapidez e utilização de menores volumes de amostra e de solventes orgânicos na etapa do preparo da amostra / Bisphenol A (BPA) is widely used in food package and dental resins manufacturing. Its toxicity is due to its endocrine disruptor activity that affects the reproductive, cardiovascular, neurological system and may have carcinogenic potential. In bioanalytical methods the sample preparation has been required to increase the selectivity and analytical sensibility by removing the interfering from the biological matrix and concentration of the analytes that are in trace levels most of the times. The disposable pipette extraction (DPX) is based on sorption equilibrium of the analyte between the sample and the extraction phase. It consists in a pipette that contais the sorbent phase freely between two filters. Then, the extraction of the solute from the complex sample occurs quickly. Molecularly imprinted polymer is a tridimensional polimeric network that has selectivity cavities that can recognize an analyte or a substance with a similar structure. The polimeric network is synthesized around to a template molecule and after removing this template, a selective cavity is formed. The advantages of the sol-gel process for the synthesis of MIP are the control of the size and shape of the particles, hydrophobicity adjustment and high thermal stability. In the present study MIP was synthesized and used as sorbent to DPX method for determination of BPA in urine samples by gas chromatography coupled to mass spectrometry (GC-MS). Sol-gel methodoly was used to synthesize the polymers. Aminopropyltriethoxysilane (APTES) was used as a functional monomer and tetraethyl orthosilicate (TEOS) as crosslinking reagent. BPA and tetrabromobisphenol A (TBBPA) were evaluated as template to the synthesis of MIP and dummy molecularly imprinted polymer (DMIP) which is a molecularly imprinted polymer that uses a template structurally similar to the analyte. The non-imprinted polymer (NIP) was synthesized following the same procedure that MIP, except for the addition of template. It was made to verify the improvement of selectivity and sensibility of molecularly imprinted polymers. Although the sorption capacity of the MIP is slightly larger, DMIP has been selected as a sorbent in order to minimize the memory effect. The DMIP was characterized by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR). The parameters of DPX, such as time sorption equilibrium between the sample and the sorbent and desorption conditions were optimized by chemometrics. Robustness of DMIP sinthesized by sol-gel process was evidenciated for the reuse of DMIP for more than a 100 times. The developed method DPX/GC-MS showed linearity on the range from 50 to 500 ng ml-1, precision values with coefficient of variation (CV) betweeen 4 and 14% and accuracy with relative standard deviation values (RSD) from -13.6 to 12.3%. The reference method using liquid- liquid extraction and GC-MS (LLE/GC-MS) was developed and validated, showing linearity from 0.5 to 50 ng mL-1. Althout the innovative method DPX/GC-MS has showed limit of quantification larger than LLE/GC-MS, it presents the following advantages: simplicity, rapidy and utilization of smaller volumes of organic solvents on the sample preparation step

Page generated in 0.0639 seconds