• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 39
  • 16
  • 2
  • Tagged with
  • 129
  • 90
  • 76
  • 52
  • 52
  • 51
  • 34
  • 31
  • 24
  • 22
  • 19
  • 19
  • 19
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

AlGaN/GaN MBE 2DEG heterostructures interplay between surface-, interface- and device properties /

Kočan, Martin. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2003--Aachen.
52

Mikrostruktur und Phasenbildung hochorientierter TiNiCu- und NiMnAl-Formgedächtnisschichten, hergestellt mittels Molekularstrahl-Epitaxie

Thienhaus, Sigurd. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2005--Bonn.
53

Methode zur Bestimmung der Adatomkonzentration von Dotierstoffen

Oehme, Michael. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Stuttgart.
54

Two-Dimensional Ferromagnetism and Topology at the Surface of MnBi\(_2\)Te\(_4\) - Bi\(_2\)Te\(_3\) Heterostructures - MBE Growth, Magnetism and Electronic Properties / Zweidimensionaler Ferromagnetismus und Topologie an der Oberfläche von MnBi\(_2\)Te\(_4\) - Bi\(_2\)Te\(_3\) Heterostrukturen - MBE Wachstum, Magnetismus und elektronische Eigenschaften

Kagerer, Philipp Thomas January 2024 (has links) (PDF)
In this thesis, a model system of a magnetic topological heterostructure is studied, namely a heterosystem consisting of a single ferromagnetic septuple-layer (SL) of \(MnBi_2Te_4\) on the surface of the three-dimensional topological insulator \(Bi_2Te_3\). Using MBE and developing a specialized experimental setup, the first part of this thesis deals with the growth of \(Bi_2Te_3\) and thin films of \(MnBi_2Te_4\) on \(BaF_2\)-substrates by the co-evaporation of its binary constituents. The structural analysis is conducted along several suitable probes such as X-ray diffraction (XRD, XRR), AFM and scanning tunnelling electron microscopy (STEM). It is furthermore found that the growth of a single septuple-layer of \(MnBi_2Te_4\) on the surface of \(Bi_2Te_3\) can be facilitated. By using X-ray absorption and circular magnetic dichroism (XAS, XMCD), the magnetic properties of \(MnBi_2Te_4\) are explored down to the monolayer limit. The layered nature of the vdW crystal and a strong uniaxial magnetocrystalline anisotropy establish stable out-of plane magnetic order at the surface of \(MnBi_2Te_4\), which is stable even down to the 2D limit. Pushing the material system to there, i.e. a single SL \(MnBi_2Te_4\) further allows to study the phase transition of this 2D ferromagnet and extract its critical behaviour with \(T_c \, = \, 14.89~k\) and \(\beta \, = \, 0.484\). Utilizing bulk crystals of the ferromagnetic \(Fe_3GeTe_2\) as substrate allows to influence, enhance and bias the magnetism in the single SL of \(MnBi_2Te_4\). By growing heterostructures of the type \(MnBi_2Te_4\) -- n layer \(Bi_2Te_3\) -- \(Fe_3GeTe_2\)for n between 0 and 2, it is shown, that a considerable magnetic coupling can be introduced between the \(MnBi_2Te_4\) top-layer and the substrate. Finally the interplay between topology and magnetism in the ferromagnetic extension is studied directly by angle-resolved photoemission spectroscopy. The heterostructure is found to host a linearly dispersing TSS at the centre of the Brillouin zone. Using low temperature and high-resolution ARPES a large magnetic gap opening of \(\sim\) 35 meV is found at the Dirac point of the TSS. By following its temperature evolution, it is apparent that the scaling behaviour coincides with the magnetic order parameter of the modified surface. / In dieser Arbeit wird ein Modellsystem einer magnetischen topologischen Heterostruktur untersucht, genauer ein Heterosystem, das aus einer einzelnen ferromagnetischen Septupellage (SL) aus \(MnBi_2Te_4\) auf der Oberfläche des dreidimensionalen topologischen Isolators \(Bi_2Te_3\) besteht. Mittels MBE und eines eigens entwickelten Setups befasst sich der erste Teil mit dem Wachstum von \(Bi_2Te_3\) und \(MnBi_2Te_4\) auf \(BaF_2\)-Substraten durch die Ko-Verdampfung ihrer binären Bestandteile. Die Strukturanalyse wird mit Hilfe von Röntgenbeugung (XRD, XRR), AFM und Rastertunnel-Elektronenmikroskopie (STEM) durchgeführt. Darüber hinaus wird festgestellt, dass das Wachstum einer einzelnen SL von \(MnBi_2Te_4\) auf der Oberfläche von \(Bi_2Te_3\) möglich ist. Mit Hilfe von Röntgenabsorption und des zirkularen magnetischen Dichroismus (XAS, XMCD) werden die magnetischen Eigenschaften von \(MnBi_2Te_4\) bis zur Monolage untersucht. Die geschichtete Natur des vdW-Kristalls und eine starke uniaxiale magnetokristalline Anisotropie stabilisieren eine magnetische Ordnung an der Oberfläche von \(MnBi_2Te_4\), die sogar bis zum 2D-Limit stabil ist. Bei Betrachtung einer einzigen SL \(MnBi_2Te_4\), kann man den Phasenübergang dieses 2D-Ferromagneten weiter untersuchen und sein kritisches Verhalten mit \(T_c \, = \, 14,89~k\) und \(\beta \, = \, 0,484\) extrahieren. Die Verwendung von \(Fe_3GeTe_2\) als Substrat ermöglicht es, den Magnetismus in einzelnen SL von \(MnBi_2Te_4\) zu beeinflussen und zu verstärken. Durch Aufwachsen von Heterostrukturen des Typs \(MnBi_2Te_4\) -- n Schicht \(Bi_2Te_3\) -- \(Fe_3GeTe_2\) für n zwischen 0 und 2 wird gezeigt, dass eine beträchtliche magnetische Kopplung zwischen der \(MnBi_2Te_4\) Deckschicht und dem Substrat erreicht werden kann. Schließlich wird das Zusammenspiel zwischen Topologie und Magnetismus in dem System direkt durch winkelaufgelöstes ARPES untersucht. Die Heterostruktur weist einen linear dispergierendes TSS im Zentrum der Brillouin-Zone auf. In der Temperaturabhängigkeit wird eine große magnetische Lücke von \(\sim\) 35 meV am Dirac-Punkt des TSS gefunden, deren Skalierungsverhalten mit dem magnetischen Ordnungsparameter der modifizierten Oberfläche übereinstimmt.
55

Tunneling spectroscopy of highly ordered organic thin films / Tunnelspektroskopie von hochgeordneten organischen Dünnschichten

Törker, Michael 23 May 2003 (has links) (PDF)
In this work, a Au(100) single crystal was used as substrate for organic molecular beam epitaxy. Highly ordered organic thin films of the molecules 3,4,9,10-perylenetetracarboxylic-3,4,9,10-dianhydrid (PTCDA) and hexa-peri-hexabenzo-coronene (HBC) as well as organic-organic heterostructures on reconstructed Au(100) were prepared. The molecular arrangement was characterized in Scanning Tunneling Microscopy and Low Energy Electron Diffraction investigations. Scanning Tunneling Spectroscopy data were recorded on monolayer and submonolayer PTCDA films. Measurements on closed PTCDA layers at different fixed tip sample separations revealed a peak +0.95V. Other measurements performed consecutively on a PTCDA island and on uncovered Au(100) areas showed that this peak is indeed caused by the PTCDA molecules. Another set of consecutive measurements on herringbone and square phase PTCDA islands indicates that in the normalized differential conductivity the peak shape and peak position depend on the molecular arrangement. The STS data are compared to UPS and IPES results, already published. In the case of highly ordered films of HBC on Au(100) it was possible to derive the energetic positions of the HBC frontier orbitals and the energies of the molecular states next to these frontier orbitals from Tunneling Spectroscopy measurements. These measurements were performed using two different tip materials. The results are compared to UPS measurements, to theoretical calculations of the electronic conductance based on a combination of the Landauer transport formalism with a density-functional-parametrized tight-binding scheme within the Local Density Approximation (LDA) as well as semiempirical quantum chemistry calculations. / Für die hier dargestelleten Arbeiten wurde ein Au(100) Einkristall als Substrat für die organische Molekularstrahlepitaxie verwendet. Hochgeordnete organische Dünnschichten der Moleküle 3,4,9,10-Perylen-tetracarbonsäure-3,4,9,10-dianhydrid (PTCDA) und Hexa-peri-hexabenzo-coronen (HBC) sowie organisch-organische Heteroschichten wurden auf der Au(100) Oberfläche abgeschieden. Die Struktur der Schichten wurde mittels Rastertunnelmikroskopie (STM) und Niederenergetischer Elektronenbeugung (LEED) untersucht. Tunnelspektroskopiedaten wurden für Monolagen sowie Submonolagen von PTCDA aufgenommen. Messungen an geschlossenen PTCDA Filmen zeigen für verschiedene Probe-Spitze-Abstände ein Maximum in der normierten differentiellen Leitfähigkeit bei +0.95V. Aufeinanderfolgende Messungen auf PTCDA-Inseln und unbedeckten Gebieten der Au(100) Oberfläche zeigen eindeutig, dass dieses Maximum auf die PTCDA Moleküle zurückzuführen ist. Weitere Messungen an PTCDA Inseln unterschiedlicher Struktur (Fischgrätenstruktur bzw. quadratische Struktur) belegen einen Zusammenhang zwischen der Anordnung der Moleküle und der Peakposition bzw. Peakform in der normierten differentiellen Leitfähigkeit. Die STS Daten werden mit UPS und IPES Ergebnissen aus der Literatur verglichen. Im Falle hochgeordneter HBC Schichten auf Au(100) war es möglich, neben dem höchsten besetzten und niedrigsten unbesetzten Molekülorbital auch die energetische Position der jeweils nächsten Orbitale zu bestimmen. Diese Messungen wurden mit zwei unterschiedlichen Spitzenmaterialien durchgeführt. Die Ergebnisse für HBC auf Au(100) werden mit UPS Daten sowie mit theoretischen Rechnungen verglichen.
56

Von der organischen Heteroepitaxie zu organisch-organischen Heterostrukturen

Schmitz-Hübsch, Thomas 09 November 2003 (has links) (PDF)
In der vorliegenden Arbeit wurde das Wachstum der planaren aromatischen Moleküle Perylen-3,4,9,10-tetracarbonsäure-3,4,9,10-dianhydrid (PTCDA) und Peri-Hexabenzocoronen (HBC) auf verschiedenen einkristallinen Oberflächen von Gold und Graphit untersucht. Zur Abscheidung der Moleküle und zur Herstellung dünner hochgeordnerter organischer Schichten wurde eine Molekularstrahlepitaxieanlage mit mehreren Kammern aufgebaut. Bei den Untersuchungen des Wachstums von PTCDA auf der Au(111)- und Au(100)-Fläche wurden drei Klassen von Strukturen gefunden: Eine Fischgrätenstruktur, deren Gitterparameter und molekulare Anordnung der (102)-Ebene des PTCDA-Kristalls entsprechen, eine quadratische Struktur, sowie eine Stabstruktur, die der (010)-Ebene des PTCDA-Kristalls zugeordnet werden kann. Während die Stabstruktur auf Au(100) ein inkommensurables Wachstum zeigt, konnten alle anderen PTCDA-Strukturen sowohl auf Au(111) als auch auf Au(100) als point-on-line epitaktisch klassifiziert werden. Die HBC-Schichten auf Au(111), Au(100)hex und Graphit zeigen abweichend von der Kristallstruktur eine hexagonale Symmetrie. Auf Graphit wächst HBC in einer kommensurablen Struktur. Auf den beiden Au-Oberflächen existieren mehrere Strukturen, die sich in ihrer Orientierung und ihren Gitterkonstanten unterscheiden. Neben einer dominierenden HBC-Struktur lassen sich auf den Au-Flächen weitere Strukturen beobachten, deren Auftreten durch den Bedeckungsgrad und die Substratmorphologie, d.h. die Stufenzahl und Terrassengröße des Substrates bestimmt wird. Alle diese HBC-Strukturen konnten als kommensurabel klassifiziert werden. Die Anordnung der HBC-Moleküle in Multilagen wurde für das System HBC auf Au(100)hex mit Hilfe molekularmechanischer Berechnungen modelliert. Die HBC-Moleküle sind in der zweiten Lage gegenüber denen der ersten Lage so verschoben, dass die C-Atome der Moleküle eine graphitähnliche Anordnung zeigen. Wie die STM Untersuchung der organischen Heteroschichten aus HBC und PTCDA zeigen, ist es möglich, epitaktische organische Heteroschichten auch von Molekülen herzustellen, die sich in ihren Gitterkonstanten und in der Symmetrie unterscheiden. Erstmals ließen sich derartige Schichten mittels Rastertunnelmikroskopie direkt und durch LEED auch im reziproken Raum abbilden. Aus dem in den STM Bildern sichtbaren Moirékontrast wurde die Orientierung der beiden organischen Gitter bestimmt. PTCDA wächst bezüglich des HBC-Gitters weder kommensurabel noch point-on-line koinzident, zeigt jedoch eine feste Winkelorientierung. Es handelt sich in diesem Fall um eine inkommensurable Struktur bezüglich des HBC-Gitters, die jedoch bezüglich des zugrundeliegenden Graphitgitters point-on-line Koinzidenz zeigt. Das Versagen der einfachen geometrischen Epitaxiemodelle kann in diesem Fall auf die Existenz mehrerer, energetisch nahezu gleichwertiger Adsorptionsplätze innerhalb der Einheitszelle des Substrates zurückgeführt werden.
57

Von der organischen Heteroepitaxie zu organisch-organischen Heterostrukturen

Schmitz-Hübsch, Thomas 25 August 2003 (has links)
In der vorliegenden Arbeit wurde das Wachstum der planaren aromatischen Moleküle Perylen-3,4,9,10-tetracarbonsäure-3,4,9,10-dianhydrid (PTCDA) und Peri-Hexabenzocoronen (HBC) auf verschiedenen einkristallinen Oberflächen von Gold und Graphit untersucht. Zur Abscheidung der Moleküle und zur Herstellung dünner hochgeordnerter organischer Schichten wurde eine Molekularstrahlepitaxieanlage mit mehreren Kammern aufgebaut. Bei den Untersuchungen des Wachstums von PTCDA auf der Au(111)- und Au(100)-Fläche wurden drei Klassen von Strukturen gefunden: Eine Fischgrätenstruktur, deren Gitterparameter und molekulare Anordnung der (102)-Ebene des PTCDA-Kristalls entsprechen, eine quadratische Struktur, sowie eine Stabstruktur, die der (010)-Ebene des PTCDA-Kristalls zugeordnet werden kann. Während die Stabstruktur auf Au(100) ein inkommensurables Wachstum zeigt, konnten alle anderen PTCDA-Strukturen sowohl auf Au(111) als auch auf Au(100) als point-on-line epitaktisch klassifiziert werden. Die HBC-Schichten auf Au(111), Au(100)hex und Graphit zeigen abweichend von der Kristallstruktur eine hexagonale Symmetrie. Auf Graphit wächst HBC in einer kommensurablen Struktur. Auf den beiden Au-Oberflächen existieren mehrere Strukturen, die sich in ihrer Orientierung und ihren Gitterkonstanten unterscheiden. Neben einer dominierenden HBC-Struktur lassen sich auf den Au-Flächen weitere Strukturen beobachten, deren Auftreten durch den Bedeckungsgrad und die Substratmorphologie, d.h. die Stufenzahl und Terrassengröße des Substrates bestimmt wird. Alle diese HBC-Strukturen konnten als kommensurabel klassifiziert werden. Die Anordnung der HBC-Moleküle in Multilagen wurde für das System HBC auf Au(100)hex mit Hilfe molekularmechanischer Berechnungen modelliert. Die HBC-Moleküle sind in der zweiten Lage gegenüber denen der ersten Lage so verschoben, dass die C-Atome der Moleküle eine graphitähnliche Anordnung zeigen. Wie die STM Untersuchung der organischen Heteroschichten aus HBC und PTCDA zeigen, ist es möglich, epitaktische organische Heteroschichten auch von Molekülen herzustellen, die sich in ihren Gitterkonstanten und in der Symmetrie unterscheiden. Erstmals ließen sich derartige Schichten mittels Rastertunnelmikroskopie direkt und durch LEED auch im reziproken Raum abbilden. Aus dem in den STM Bildern sichtbaren Moirékontrast wurde die Orientierung der beiden organischen Gitter bestimmt. PTCDA wächst bezüglich des HBC-Gitters weder kommensurabel noch point-on-line koinzident, zeigt jedoch eine feste Winkelorientierung. Es handelt sich in diesem Fall um eine inkommensurable Struktur bezüglich des HBC-Gitters, die jedoch bezüglich des zugrundeliegenden Graphitgitters point-on-line Koinzidenz zeigt. Das Versagen der einfachen geometrischen Epitaxiemodelle kann in diesem Fall auf die Existenz mehrerer, energetisch nahezu gleichwertiger Adsorptionsplätze innerhalb der Einheitszelle des Substrates zurückgeführt werden.
58

Ionenstrahlgestützte Molekularstrahlepitaxie von Galliumnitrid-Schichten auf Silizium

Finzel, Annemarie 06 July 2016 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit dem Einfluss einer hyperthermischen Stickstoffionenbestrahlung (Ekin < 25 eV) auf das Galliumnitrid-Schichtwachstum. Dabei wird insbesondere der Einfluss einer Oberflächenrekonstruktion, einer Strukturierung der Oberfläche, einer Zwischenschicht (Pufferschicht) und der Einfluss verschiedener Siliziumsubstratorientierungen auf das epitaktische Wachstum von dünnen Galliumnitrid-Schichten nach einer hyperthermischen Stickstoffionenbestrahlung diskutiert. Ziel war es, möglichst dünne, epitaktische und defektarme Galliumnitrid-Schichten zu erhalten. Für die Charakterisierung der Galliumnitrid-Schichten und der Siliziumsubstrate standen diverse Analysemethoden zur Verfügung. Die kristalline Oberflächenstruktur konnte während des Wachstums mittels Reflexionsbeugung hochenergetischer Elektronen beobachtet werden. Nachfolgend wurde die Oberflächentopografie, die kristalline Struktur und Textur, sowie die optischen Eigenschaften der Galliumnitrid-Schichten mittels Rasterkraftmikroskopie, Röntgenstrahl-Diffraktometrie, hochauflösender Transmissionselektronenmikroskopie und Photolumineszenzspektroskopie untersucht.
59

Formation and Properties of Epitaxial CdSe/ZnSe Quantum Dots : Conventional Molecular Beam Epitaxy and Related Techniques / Bildung und Eigenschaften Epitaxischer CdSe/ZnSe-Quantenpunkte : Molekularstrahlepitaxie und Verwandte Methoden

Mahapatra, Suddhasatta January 2007 (has links) (PDF)
Albeit of high technological import, epitaxial self-assembly of CdSe/ZnSe QDs is non-trivial and still not clearly understood. The origin and attributes of these QDs are significantly different from those of their III-V and group-IV counterparts. For III-V and group-IV heterosystems, QD-formation is assigned to the Stranski Krastanow (SK) transition, wherein elastic relaxation of misfit strain leads to the formation of coherent three-dimensional (3D) islands, from a supercritically strained two-dimensional (2D) epilayer. Unfortunately, this phenomenon is inconspicuous for the CdSe/ZnSe heterosystem. Well-defined 3D islands are not readily formed in conventional molecular beam epitaxial (MBE) growth of CdSe on ZnSe. Consequently, several alternative approaches have been adopted to induce/enhance formation of QDs. This thesis systematically investigates three such alternative approaches, along with conventional MBE, with emphasis on the formation-mechanism of QDs, and optimization of their morphological and optical attributes. It is shown here that no distinct 3D islands are formed in MBE growth of CdSe on ZnSe. The surface of the CdSe layer represents a rough 2D layer, characterized by a dense array of shallow (<1nm) abutting mounds. In capped samples, the CdSe deposit forms an inhomogeneous CdZnSe quantum well (QW)-like structure. This ternary QW consists of local Cd-rich inclusions, which confine excitons three-dimensionally, and act as QDs. The density of such QDs is very high (~ 1012 cm-2). The QDs defined by the composition inhomogeneities of the CdZnSe QW presumably originate from the shallow mounds of the uncapped CdSe surface. By a technique wherein a CdSe layer is grown at a low temperature (TG = 230 °C) and subsequently annealed at a significantly higher temperature (TA =310 °C), tiny but distinct 3D islands are formed. In this work, the mechanism underlying the formation of these islands is reported. While the CdSe deposit forms a quasi-two-dimensional (quasi-2D) layer at TG = 230 °C, subsequent annealing at TA = 310 °C results in a thermally activated “up-climb” of adatoms onto two-dimensional clusters (or precursors) and concomitant nucleation of 3D islands. The areal density of QDs, achieved by this technique, is at least a decade lower than that typical for conventional MBE growth. It is demonstrated that further reduction is possible by delaying the temperature ramp-up to TA. In the second technique, formation of distinct islands is demonstrated by deposition of amorphous selenium (a-Se) onto a 2D CdSe epilayer at room temperature and its subsequent desorption at a higher temperature (TD = 230 °C). Albeit the self-assembled islands are large, they are severely truncated during subsequent capping with ZnSe, presumably due to segregation of Cd and Zn-alloying of the islands. The segregation phenomenon is analyzed in this work and correlated to the optical properties of the QDs. Additionally, very distinct vertical correlation of QDs in QD-superlattices, wherein the first QD-layer is grown by this technique and the subsequent ones by migration enhanced epitaxy (MEE), is reported. The process steps of the third variant technique, developed in course of this work, are very similar to those of the previous one-the only alteration being the substitution of selenium with tellurium as the cap-forming-material. This leads not only to large alteration of the morphological and optical attributes of the QDs, but also to formation of unique self-assembled island-patterns. Oriented dashes, straight and buckled chains of islands, and aligned island-pairs are formed, depending on the thickness of the Te-cap layer. The islands are partially alloyed with Te and emit luminescence at very low energies (down to 1.7 eV at room temperature). The Te cap layer undergoes (poly)crystallization during temperature ramp-up (from room temperature to TD) for desorption. Here, it is shown that the self-assembled patterns of the island-ensembles are determined by the pattern of the grain boundaries of the polycrystalline Te layer. Based on an understanding of the mechanism of pattern formation, a simple and “clean” method for controlled positioning of individual QDs and QD-based extended nanostructures, is proposed in this work. The studies carried out in the framework of this thesis provide not only a deeper insight into the microscopic processes governing the heteroepitaxial self-assembly of CdSe/ZnSe(001) QDs, but also concrete approaches to achieve, optimize, and control several technologically-important features of QD-ensembles. Reduction and control of QD-areal-density, pronounced vertical correlation of distinctly-defined QDs in QD-superlattices, and self-assembly of QD-based extended structures, as demonstrated in this work, might turn out to be beneficial for envisioned applications in information-, and communication-technologies. / Trotz ihrer großen technologischen Bedeutung ist die epitaktische Selbstorganisation von CdSe/ZnSe QDs noch immer nicht vollständig verstanden. Die Ursachen und Merkmale dieser QDs unterscheiden sich deutlich von ihren III-V- und IV-IV-Gegenstücken. Für III-V- und IV-IV-Heterosysteme wird die QD-Formation dem Stranski-Krastanow-(SK)-Übergang zugeordnet, bei dem, ausgehend von einer hochverspannten zweidimensionalen (2D) Epitaxieschicht, die elastische Relaxation von durch Gitterfehlanpassung hervorgerufener Verspannung zur Formation von dreidimensionalen (3D) Inseln führt. Im Falle des CdSe/ZnSe-Heterosystems ist es unklar, ob das SK-Modell die Formation von QDs zutreffend beschreibt. Beim Wachstum durch Molekularstrahlepitaxie (engl.: molecular beam epitaxy, MBE) von CdSe auf ZnSe kommt es nicht zur Bildung von 3D-Inseln, wie es für die meisten III-V- und IV-IV-Heterosysteme charakteristisch ist. Infolgedessen wurden mehrere alternative Herangehensweisen eingesetzt, um die Formation der QDs anzuregen bzw. zu verbessern. Diese Doktorarbeit beschreibt die systematische Untersuchung dreier solcher alternativer Ansätze im Zusammenspiel mit konventioneller MBE. Der Schwerpunkt liegt auf dem Formationsmechanismus der QDs und Optimierung ihrer morphologischen und optischen Eigenschaften. Beim MBE-Wachstum von CdSe auf ZnSe findet keine Bildung ausgeprägter, dreidimensionaler Inseln statt. Die Oberfläche der CdSe-Schicht stellt eine rauhe 2D-Schicht dar, gekennzeichnet durch eine dichte Anordung flacher, aneinander angrenzender Hügel. In bedeckten Proben bildet die CdSe-Ablagerung eine inhomogene CdZnSe-quantentrog-ähnliche (engl.: quantum well, QW) Struktur . Dieser ternäre QW enthält lokale Cd-reiche Einschlüsse, die die Bewegung von Exzitonen in drei Dimensionen einschränken und als QDs fungieren. Die Dichte solcher QDs ist sehr hoch (~ 1012 cm-2). Diese durch die Inhomogenität des CdZnSe-QW definierten QDs haben ihren Ursprung in den flachen Hügeln der unbedeckten CdSe-Oberfläche. Mit einer Methode, bei der man eine CdSe-Schicht bei niedriger Temperatur (TG = 230 °C) wachsen lässt und anschießend bei höherer Temperatur (TA = 310 °C) tempert, kommt es zur Bildung winziger, aber ausgeprägter, 3D-Inseln. In dieser Arbeit wird der Mechanismus, der der Bildung dieser Inseln zugrunde liegt, beschrieben. Während die CdSe-Ablagerung eine quasi-zweidimensionale (quasi-2D) Schicht bei TG = 230 °C bildet, führt das darauf folgende Tempern bei TA = 310 °C zu einem thermisch aktivierten „up-climb“ von Adatomen auf zweidimensionale Cluster (oder Vorgänger, engl.: precursor), bei gleichzeitiger Nukleation von 3D-Inseln. Die Flächendichte von QDs, die mit dieser Methode erreicht werden kann, ist mindestens eine Größenordung geringer als es für konventionelles MBE-Wachstum typisch ist. Eine weitere Verringerung ist möglich, indem der Temperaturanstieg auf TA verzögert wird. In einer zweiten Variante wird die Bildung großer und ausgeprägter Inseln durch Aufbringen einer amorphen Selenschicht (&#945;-Se) auf eine 2D-CdSe-Epischicht bei Raumtemperatur und anschließender Desorption bei höherer Temperatur (TD = 230 °C) demonstriert. Obwohl die selbstorganisierten Inseln groß sind, werden sie durch nachträgliches Bedecken mit ZnSe stark abgeflacht, was durch Segregation von Cd und Legieren der Inseln mit Zn hervorgerufen wird. Das Segregationsphänomen sowie sein Zusammenhang mit den optischen Eigenschaften der QDs wird in dieser Arbeit untersucht. Weiterhin wird vertikale Korrelation von QDs in QD-Übergittern beschrieben, in welchen die erste QD-Schicht mit dieser Methode wachsen gelassen wurde. Darauf folgende Schichten werden duch „migration enhanced epitaxy“ (MEE) aufgebracht. Die Prozessschritte der dritten Variante sind denen der eben beschriebenen sehr ähnlich. Die einzige Abwandlung besteht in der Substitution von Selen mit Tellur als bedeckendes Material. Diese Variation führt nicht nur zu beträchtlicher Veränderung der morphologischen und optischen Eigenschaften der QDs, sondern auch zur Bildung einzigartiger Muster von selbstorganisierten Inseln. Abhängig von der Dicke der Tellurbedeckung kommt es zur Bildung orientierter „dashes“, gerader und gebogener Ketten von Inseln und ausgerichteter Inselpaare. Die Inseln sind teilwese mit Tellur legiert und strahlen Lumineszenz in einem sehr niedrigen Energiebereich ab (bis hinunter zu 1,7 eV bei Raumtemperatur). Im Gegensatz zur &#945;-Se-Bedeckung kommt es in der Te-Schicht während der Temperaturerhöhung (von Raumtemperatur zu TD) zur Polykristallisierung. Es wird gezeigt, dass die selbstorganisierten Muster der Inseln durch die Verteilung der Korngrenzen der polykristallinen Te-Schicht bestimmt werden. Basierend auf dem Verständnis des Mechanismus der Musterbildung wird hier eine einfache und „saubere“ Methode für die kontrollierte Positionierung individueller QDs und QD-basierter, ausgedehnter Nanostrukturen vorgeschlagen.
60

Ferromagnetic (Ga,Mn)As Layers and Nanostructures: Control of Magnetic Anisotropy by Strain Engineering / Ferromagnetische (Ga,Mn)As Schichten und Nanostrukturen: Kontrolle der magnetischen Anisotropie durch Manipulation der Kristallverspannung

Wenisch, Jan January 2008 (has links) (PDF)
This work studies the fundamental connection between lattice strain and magnetic anisotropy in the ferromagnetic semiconductor (Ga,Mn)As. The first chapters provide a general introduction into the material system and a detailed description of the growth process by molecular beam epitaxy. A finite element simulation formalism is developed to model the strain distribution in (Ga,Mn)As nanostructures is introduced and its predictions verified by high-resolution x-ray diffraction methods. The influence of lattice strain on the magnetic anisotropy is explained by an magnetostatic model. A possible device application is described in the closing chapter. / Die vorliegende Arbeit untersucht den fundamentalen Zusammenhang zwischen Gitterverspannung und magnetischer Anisotropie in dem ferromagnetischen Halbleiter (Ga,Mn)As. Die ersten Kapitel bieten eine allgemeine Einleitung in das Materialsystem und eine detaillierte Beschreibung des Wachstumsprozesses mittels Molekularstrahlepitaxie. Eine Finite-Elemente Simulation wird entwickelt, um die Verteilung der Gitterverspannung in (Ga,Mn)As Nanostrukturen zu modellieren. Die daraus abgeleiteten Vorhersagen werden mittels hochauflösender Röntgenbeugung bestätigt. Der Einfluss der Gitterverspannung auf die magnetische Anisotropie wird anhand eines magnetostatischen Modells erklärt. Das abschließende Kapitel gibt einen Ausblick auf eine mögliche praktische Anwendung der beschriebenen Phänomene.

Page generated in 0.0752 seconds