• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 93
  • 23
  • 13
  • 12
  • 7
  • 5
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 217
  • 126
  • 29
  • 27
  • 23
  • 22
  • 20
  • 20
  • 20
  • 20
  • 20
  • 19
  • 18
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

DEAR DEER - Exploring the possibilities of materials of animal origin from a textile design perspective

Bredberg, Hanna January 2015 (has links)
Through manipulation of the materials and creation of sculptural forms, the knowledge in textile design was used to develop alternative methods for working with materials of animal origin. The project touches the issue of consumption by accentuating the fascinating features of animal materials and proposes a way of taking care of materials looked upon as disposals. It questions how we value what resources we have in our surroundings and how we use them. Or more important – how we are not using them.
92

Compression-moulded and multifunctional cellulose network materials

Galland, Sylvain January 2013 (has links)
Cellulose-based materials are widely used in a number of important applications (e.g. paper, wood, textiles). Additional developments are suggested by the growing interest for natural fibre-based composite and nanocomposite materials. The motivation is not only in the economic and ecological benefits, but is also related to advantageous properties and characteristics. The objective of this thesis is to provide a better understanding of process-structure-property relationships in some novel cellulose network materials with advanced functionalities, and showing potential large-scale processability. An important result is the favourable combination of mechanical properties observed for network-based cellulose materials. Compression-moulding of cellulose pulp fibres under high pressure (45 MPa) and elevated temperature (120 – 180 oC) provides an environmentally friendly process for preparation of stiff and strong cellulose composite plates. The structure of these materials is characterized at multiple scales (molecular, supra-molecular and microscale). These observations are related to measured reduction in water retention ability and improvement in mechanical properties. In a second part, cellulose nanofibrils (NFC) are functionalized with in-situ precipitated magnetic nanoparticles and formed into dense nanocomposite materials with high inorganic content. The precipitation conditions influence particle size distributions, which in turn affect the magnetic properties of the material. Besides, the decorated NFC network provides high stiffness, strength and toughness to materials with very high nanoparticle loading (up to 50 vol.%). Subsequently, a method for impregnation of wet NFC network templates with a thermosetting epoxy resin is developed, enabling the preparation of well-dispersed epoxy-NFC nanocomposites with high ductility and moisture durable mechanical properties. Furthermore, cellulose fibrils interact positively with the epoxy during curing (covalent bond formation and accelerated curing). Potential large scale development of epoxy-NFC and magnetic nanocomposites is further demonstrated with the manufacturing of 3D shaped compression-moulded objects. Finally, the wet impregnation route developed for epoxy is adapted to prepare UV-curable NFC nanocomposite films with a hyperbranched polymer matrix. Different chemical modifications are applied to the NFC in order to obtain moisture durable oxygen barrier properties. / <p>QC 20131111</p>
93

Optimisation of the process parameters of the resin film infusion process.

Von Klemperer, Christopher Julian. January 1999 (has links)
The resin film infusion process or RFI is a vacuum assisted moulding method for producing high quality fibre reinforced components. The goals of this research have been to investigate this new process, with the aim of determining how the process could be used by the South African composites industry. This included factors such as suitable materials systems, and optimum process parameters. The RFI process is a new composite moulding method designed to allow fibre reinforced products to be manufactured with the ease of pre-preg materials while still allowing any dry reinforcement material to be used. The high pressures required for traditional manufacturing methods such as autoclaves, matched dies and R TM can be avoided while still having very accurate control over the fibre / resin ratio. Moreover, the RFI process is a "dry" process and hence avoids many of the environmental and health concerns associated with wet lay-up and vacuum bag techniques. Furthermore the simple lay-up process requires less skill than a wet lay-up and vacuum bag method. Through a combination of mathematical modelling and physical testing, a material system has been identified. The primary process parameters were identified and a strenuous regime of testing was performed to find optimum values of these parameters. These results were finally feed back into the development of the mathematical model. / Thesis (Ph.D.)-University of Natal, Durban, 1999.
94

Crashworthiness modelling of SMC composite materials.

Selvarajalu, Vinodhan. January 2003 (has links)
The purpose of this research is to make an investigation into the crashworthiness modelling of Sheet Moulding Compound (SMC) composite materials, and to study the response of SMC composite structures under dynamic loading. The primary research objectives are thus to review classical and advanced material failure models, and to perform numerical simulation of the crash of composite structures using already available material models. Additionally, a new material model is to be developed for implementation into a commercially available finite element package. In parallel with the numerical simulation of the crasrung of an SMC composite structure, experimentation is performed which is used as a source of validation and comparison with the simulation. For this purpose a testing regime is introduced, which may be mirrored in simulation. As any material model requires initial experimental inputs, the purpose of experimentation is twofold, with testing required both for the quantification of the required model inputs and the basic material characterisation before simulation may begin, as well as for the proposed validation and comparison after the simulation has been carried out. Thus the design of the testing methodology, as well as the design, selection and fabrication of the testing equipment and the composite specimens and demonstrators, as well the actual testing itself, are necessary secondary requirements of the project. Once the testing regime has been facilitated and carried out, numerical simulation validation using already available composite material models may then be carried out at various levels. The results are then analysed and validated with the resultant justification of a new model being developed. The critical viewpoint to be delivered throughout is the need for theoretical formulations for material modelling to be extensively researched and validated in terms of their implementabilty and practicality, a key analysis seemingly missing in most technical write-ups. Such analyses are performed and discussed here, rughlighting the volume of additional work that is encompassed by such a study. / Thesis (M.Sc.Eng.)-University of Natal, Durban, 2003.
95

Rhéologie et microstructures des Sheet Moulding Compounds hautes performances au cours de leur mise en forme par compression / Microstructure and rheology of high performances sheet moulding compounds during compression moulding

Ferre Sentis, Dimitri 11 April 2017 (has links)
Ce travail porte sur la mise en forme par compression des Sheet Moulding Compounds (SMC), matériaux composites à matrice polymère renforcés par des fibres courtes. Il s’inscrit dans un plus vaste projet visant à la création d'un outil de simulation du procédé de compression des SMC. Il se focalise sur le développement d’outils et de méthodes de caractérisation de la rhéologie et des microstructures dédiés à aux formulations de SMC allégées ou à fort taux de fibres, dans le but de construire un modèle rhéologique prenant en compte la forte compressibilité de ces matériaux. Dans un premier temps, des essais de compression sur site industriel sont réalisés en utilisant des flans de différentes couleurs. Couplés à des images 3D obtenues par microtomographie à rayons X, ils permettent de mettre en évidence la complexité des mécanismes de déformation vus par les SMC au cours de leur mise en forme par compression. En parallèle, des essais de compression sur rhéomètre transparent mettent en évidence une forte compressibilité des SMC qui se traduit par un écoulement en deux phases : une cinématique de consolidation suivie d’un écoulement isovolume. La consolidation et ses liens avec la porosité initiale des SMC est ensuite étudiée grâce à des essais de compression avec observations 3D in situ et en temps réel réalisées dans un microtomographe à rayons X synchrotron. De là, différents dispositifs expérimentaux permettant de caractériser les SMC dans des sollicitations représentatives du procédé ont été développés. Ainsi, un dispositif de traction, couplé à des mesures de champs cinématiques par corrélation d’images ainsi qu’à des observations des évolutions microstructurelles par microtomographie à rayons X a été mis au point, il permet de mieux comprendre le comportement des SMC au cours de la phase d’estampage. Un dispositif de compression œdométrique permettant une mesure des états de contrainte au cours de la compression ainsi qu’un dispositif de cisaillement simple permettant d’appliquer une contrainte normale variable ont également été développés afin d’étudier les liens entre la consolidation des SMC et leur cisaillement. Les différentes campagnes expérimentales réalisées au cours de ces travaux mettent d’une part en évidence des différences importantes au niveau des microstructures des formulations étudiées et de leurs évolutions en écoulement. D’autre part, les résultats expérimentaux mettent également en évidence un comportement mécanique viscoélastoplastique non linéaire, anisotrope et compressible, fortement dépendant de la microstructure initiale des SMC. Sur la base de tous ces essais un modèle rhéologique visqueux, compressible, isotrope transverse est proposé et ses paramètres constitutifs sont identifiés. / This study focuses on the compression moulding Sheet Moulding Compounds (SMCs), i.e., short fibre-reinforced thermoset polymer composites. It is part of a wider project aiming at the development of software to simulate the SMC compression moulding. It focuses on the development of tools and methods to characterise the rheology and the microstructures high fibre content and ultralight SMCs in order to build a rheological model that takes into account the noticeable compressibility of these materials. For that purpose, industrial compression using colored sheets were carried out and coupled with 3D images obtained from X-ray microtomography. They highlighted the complexity of flow-induced mechanisms during compression moulding. Compression experiments were also performed on a transparent rheometer to highlight the high compressibility of SMCs which resulted in a two steps flow: a compaction followed by an isovolume flow. The consolidation stage and its links with the initial porosity is then studied through 3D in situ and real time observations of compression tests carried out inside an X-ray synchrotron microtomograph. In addition, various experimental an dedicated rheometers were developed following flow modes close to those encountered during the compression moulding process. Hence, a tensile device was developed and coupled with (i) local kinematic strain field measurements using digital image correlation as well as (ii) microstructural observations obtained from X-ray microtomography. It allowed a better understanding of the stamping phase during the early stage of the SMC compression moulding process. Furthermore, an oedometric compression device equipped with sensors to measure the stress state during compression, together with a simple shear device allowing normal stress to be tuned, were developed in order to study the link between SMC consolidation and their shear behaviour. First of all, experimental results showed strong differences in the microstructures of the studied formulations and in their evolutions during the SMC flow. They also highlighted an anisotropic, compressible, nonlinear viscoelastoplastic mechanical behavior that strongly depended on the initial SMC microstructure. On the basis of these experimental results, a viscous, compressible and transversely isotropic rheological model was proposed and its consitutitve parameters were identified.
96

Micro-injection moulding of three-dimensional integrated microfluidic devices

Attia, Usama M. January 2009 (has links)
This thesis investigates the use of micro-injection moulding (μIM), as a high-volume process, for producing three-dimensional, integrated microfluidic devices. It started with literature reviews that covered three topics: μIM of thermoplastic microfluidics, designing for three-dimensional (3-D) microfluidics and functional integration in μIM. Research gaps were identified: Designing 3-D microfluidics within the limitations of μIM, process optimisation and the integration of functional elements. A process chain was presented to fabricate a three-dimensional microfluidic device for medical application by μIM. The thesis also investigated the effect of processing conditions on the quality of the replicated component. The design-of-experiments (DOE) approach is used to highlight the significant processing conditions that affect the part mass taking into consideration the change in part geometry. The approach was also used to evaluate the variability within the process and its effect on the replicability of the process. Part flatness was also evaluated with respect to post-filling process parameters. The thesis investigated the possibility of integrating functional elements within μIM to produce microfluidic devices with hybrid structures. The literature reviews highlighted the importance of quality control in high-volume micromoulding and in-line functional integration in microfluidics. A taxonomy of process integration was also developed based on transformation functions. The experimental results showed that μIM can be used to fabricate microfluidic devices that have true three-dimensional structures by subsequent lamination. The DOE results showed a significant effect of individual process variables on the filling quality of the produced components and their flatness. The geometry of the replicated component was shown to have effect on influential parameters. Other variables, on the other hand, were shown to have a possible effect on process variability. Optimization statistical tools were used to improve multiple quality criteria. Thermoplastic elastomers (TPE) were processed with μIM to produce hybrid structures with functional elements.
97

Prozessintegrierter Transfer von Nanopartikeln auf Polycarbonatoberflächen beim Spritzgießen

Kroschwald, Felix 09 May 2016 (has links) (PDF)
Im Rahmen dieser Arbeit werden die Nanopartikel mittels verschiedener Beschichtungsverfahren auf eine Zwischenoberfläche (Substrat) appliziert. Diese wird anschließend in die Kavität einer Spritzgießmaschine eingelegt, wobei es während des Spritzgießprozesses zur Übertragung der Nanopartikel auf das PC-Formteil kommt. Als Modellsystem werden dafür Goldnanopartikel (AuNP) verwendet, da diese charakteristische optische, chemische und physikalische Eigenschaften aufweisen. Im weiteren Verlauf wurde die Übertragung von Kohlenstoffnanoröhren (CNT) und Siliziumdioxidnanopartikeln (SiO2-NP) untersucht. Die Oberflächen der SiO2-NP wurden außerdem mithilfe funktioneller Alkoxysilane modifiziert, um den Einfluss der Nanopartikeloberfläche auf die Übertragung zu untersuchen.
98

Mechanical properties and compostability of injection-moulded biodegradable compositions

Burns, Mara Georgieva 19 January 2009 (has links)
Please read the abstract in the dissertation. / Dissertation (MSc)--University of Pretoria, 2009. / Chemical Engineering / unrestricted
99

Investigation of Heat Conduction Through PMC Components Made Using Resin Transfer Moulding

Sakka, Aymen January 2012 (has links)
The increasing demand for polymer matrix composites (PMCs) from the airframe industry raises the issues of productivity, cost and reproducibility of manufactured PMC components. Performance reproducibility is closely related to the manufacturing technique. Resin transfer moulding (RTM) offers the advantage of flexible manufacturing of net-shape PMC components with superior repeatability starting from ready-to-impregnate dry reinforcements. An RTM apparatus was developed for manufacturing PMC plates and demonstrator components representative of actual, PMC components and PMC moulds made and used in the airframe industry. The RTM process developed in this work involved making net-shape dry carbon fibre preforms and impregnating them an epoxy resin, targeting mould applications. Thermal repeatability of different net-shape PMC components manufactured using the RTM apparatus developed in-house was investigated. Effects of bonding an outer copper plate onto the PMC material, targeting mould applications known as integrally heated copper tooling (IHCT), were explored. Heat conduction through the PMC components was studied using simulation models validated by experimental data obtained primarily by thermography. Manufactured PMC components showed good repeatability, particularly in terms of thermal behaviour. The IHCT technique was found to be well suited for mould applications. Expected advantages of thermography were materialised. Finally, the simulation models developed were in good agreement with experimental data.
100

Impacts on recyclability and sustainability in hanger production by replacing polystyrene with the biocomposite DuraSense® Pure S40 Impact D

Santiesteban García, Luisa Fernanda January 2020 (has links)
Biocomposites have gained increasing attention in recent years. The environmental impacts of common plastics have led researchers and industrials to develop alternatives to fully petro-sourced materials (Beigbeder et al., 2019). This paper presents the results obtained from the life cycle assessments conducted for polystyrene (PS) and biocomposite DuraSense® Pure S40 Impact D (DS40). The aim is for DS40 to serve as a more environmentally friendly option to fossil-based plastic in the manufacturing and recycling of hangers. By replacing 40% of the fossil-based PS with wood fibers, DS40 gains an advantage with regard to its environmental impact. Exercising an LCA on a product offers the opportunity to analyze its environmental impacts and sustainability performance based on a cradle to grave perspective. Thus, to determine which factors that could create an adverse effect in the multiple lifecycles of hangers when recycled, four potential environmental factors were used for modelling several scenarios: loss in quality, end-of-life, travel distance, and packaging. The Global Warming Potential (GWP) - kg CO2 equivalent/functional unit was calculated using the GaBi Envision LCA software for each scenario, which subsequently were compared between PS and DS40. After the modelling of multiple scenarios, this study concludes that a hanger recycling system can be a viable activity due to the improved environmental sustainability. However, to remain as the alternative with the lowest GWP, it is necessary to keep what could be detrimental throughout the lives of the hangers made with DS40 to remain out of the loop. Preventing that the incorrect EoL is chosen, abstaining from the use of PE film as packaging, creating products with competent mechanical properties to have good longevity, and reducing the wasted material in each conversion step, make altogether the replacement of PS with DS40 in the production of hangers a less polluting alternative. The result showed that except for travel distance, all other factors considered have the potential to affect the GWP account, and with this, showing that there is more to consider than just the raw materials needed in the manufacturing of goods.

Page generated in 0.0886 seconds