• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 106
  • 14
  • 6
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 174
  • 174
  • 31
  • 28
  • 27
  • 20
  • 19
  • 17
  • 16
  • 15
  • 15
  • 15
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Advances in electrical capacitance tomography

Marashdeh, Qussai Mohammad 07 August 2006 (has links)
No description available.
162

The Evolution of Biometric Authentication: A Deep Dive Into Multi-Modal Facial Recognition: A Review Case Study

Abdul-Al, Mohamed, Kyeremeh, George Kumi, Qahwaji, Rami, Ali, N.T., Abd-Alhameed, Raed 18 October 2024 (has links)
Yes / This survey provides an insightful overview of recent advancements in facial recognition technology, mainly focusing on multi-modal face recognition and its applications in security biometrics and identity verification. Central to this study is the Sejong Face Database, among other prominent datasets, which facilitates the exploration of intricate aspects of facial recognition, including hidden and heterogeneous face recognition, cross-modality analysis, and thermal-visible face recognition. This paper delves into the challenges of accurately identifying faces under various conditions and disguises, emphasising its significance in security systems and sensitive sectors like banking. The survey highlights novel contributions such as using Generative Adversarial Networks (GANs) to generate synthetic disguised faces, Convolutional Neural Networks (CNNs) for feature extractions, and Fuzzy Extractors to integrate biometric verification with cryptographic security. The paper also discusses the impact of quantum computing on encryption techniques and the potential of post-quantum cryptographic methods to secure biometric systems. This survey is a critical resource for understanding current research and prospects in biometric authentication, balancing technological advancements with ethical and privacy concerns in an increasingly digital society. / European Union’s Horizon-Marie Skłodowska-Curie Actions (MSCA)-RISE-2019-2023, Marie Skłodowska-Curie, Research, and Innovation Staff Exchange (RISE), titled: Secure and Wireless Multimodal Biometric Scanning Device for Passenger Verification Targeting Land and Sea Border Control
163

Using multi-modal bio-digital technologies to support the assessment of cognitive abilities of children with physical and neurological impairments

Gan, Hock Chye January 2015 (has links)
Current studies done using a learning test for children have problems as they only make evaluations of Physically and Neurologically Impaired (PNI) children who can succeed in the test and can be considered as a PASS/FAIL test. This pilot study takes a holistic view of cognitive testing of PNI children using a user-test-device triad model and provides a framework using non-PNI children and adults as controls. Comparisons using adapted off-the-shelf novel interfaces to the computer, in particular, an Electroencephalograph (EEG) head-set, an eye-tracker and a head-tracker and a common mouse were carried out. In addition, two novel multi-modal technologies were developed based on the use of brain-waves and eye-tracking as well as head-tracking technologies to support the study. The devices were used on three tests with increasing cognitive complexity. A self-developed measure based on success streaks (consecutive outcomes) was introduced to improve evaluations of PNI children. A theoretical model regarding a fit of ability to devices was initially setup and finally modified to fit the view of the empirical model that emerged from the outcomes of the study. Results suggest that while multi-modal technologies can address weaknesses of the individual component modes, a compromise is made between the user’s ability for multi-tasking between the modes and the benefits of a multi-modal device but the sample size is very small. Results also show children failing a test with a mouse but passing it subsequently when direct communication is used suggesting that a device can affect a test for children who are of a developing age. This study provides a framework for a more meaningful conversation between educational psychologists as well as other professionals and PNI parents because it provides more discrimination of outcomes in cognitive tests for PNI children. The framework provides a vehicle that addresses scientifically the concerns of parents and schools.
164

Development of Sparse Recovery Based Optimized Diffuse Optical and Photoacoustic Image Reconstruction Methods

Shaw, Calvin B January 2014 (has links) (PDF)
Diffuse optical tomography uses near infrared (NIR) light as the probing media to re-cover the distributions of tissue optical properties with an ability to provide functional information of the tissue under investigation. As NIR light propagation in the tissue is dominated by scattering, the image reconstruction problem (inverse problem) is non-linear and ill-posed, requiring usage of advanced computational methods to compensate this. Diffuse optical image reconstruction problem is always rank-deficient, where finding the independent measurements among the available measurements becomes challenging problem. Knowing these independent measurements will help in designing better data acquisition set-ups and lowering the costs associated with it. An optimal measurement selection strategy based on incoherence among rows (corresponding to measurements) of the sensitivity (or weight) matrix for the near infrared diffuse optical tomography is proposed. As incoherence among the measurements can be seen as providing maximum independent information into the estimation of optical properties, this provides high level of optimization required for knowing the independency of a particular measurement on its counterparts. The utility of the proposed scheme is demonstrated using simulated and experimental gelatin phantom data set comparing it with the state-of-the-art methods. The traditional image reconstruction methods employ ℓ2-norm in the regularization functional, resulting in smooth solutions, where the sharp image features are absent. The sparse recovery methods utilize the ℓp-norm with p being between 0 and 1 (0 ≤ p1), along with an approximation to utilize the ℓ0-norm, have been deployed for the reconstruction of diffuse optical images. These methods are shown to have better utility in terms of being more quantitative in reconstructing realistic diffuse optical images compared to traditional methods. Utilization of ℓp-norm based regularization makes the objective (cost) function non-convex and the algorithms that implement ℓp-norm minimization utilizes approximations to the original ℓp-norm function. Three methods for implementing the ℓp-norm were con-sidered, namely Iteratively Reweigthed ℓ1-minimization (IRL1), Iteratively Reweigthed Least-Squares (IRLS), and Iteratively Thresholding Method (ITM). These results in-dicated that IRL1 implementation of ℓp-minimization provides optimal performance in terms of shape recovery and quantitative accuracy of the reconstructed diffuse optical tomographic images. Photoacoustic tomography (PAT) is an emerging hybrid imaging modality combining optics with ultrasound imaging. PAT provides structural and functional imaging in diverse application areas, such as breast cancer and brain imaging. A model-based iterative reconstruction schemes are the most-popular for recovering the initial pressure in limited data case, wherein a large linear system of equations needs to be solved. Often, these iterative methods requires regularization parameter estimation, which tends to be a computationally expensive procedure, making the image reconstruction process to be performed off-line. To overcome this limitation, a computationally efficient approach that computes the optimal regularization parameter is developed for PAT. This approach is based on the least squares-QR (LSQR) decomposition, a well-known dimensionality reduction technique for a large system of equations. It is shown that the proposed framework is effective in terms of quantitative and qualitative reconstructions of initial pressure distribution.
165

Nature Inspired Optimization Techniques For Flood Assesment And Land Cover Mapping Using Satellite Images

Senthilnath, J 05 1900 (has links) (PDF)
With the advancement of technology and the development of more sophisticated remote sensing sensor systems, the use of satellite imagery has opened up various fields of exploration and application. There has been an increased interest in analysis of multi-temporal satellite image in the past few years because of the wide variety of possible applications of in both short-term and long-term image analysis. The type of changes that might be of interest can range from short-term phenomena such as flood assessment and crop growth stage, to long-term phenomena such as urban fringe development. This thesis studies flood assessment and land cover mapping of satellite images, and proposes nature inspired algorithms that can be easily implemented in realistic scenarios. Disaster monitoring using space technology is one of the key areas of research with vast potential; particularly flood based disasters are more challenging. Every year floods occur in many regions of the world and cause great losses. In order to monitor and assess such situations, decision-makers need accurate near real-time knowledge of the field situation. How to provide actual information to decision-makers for effective flood monitoring and mitigation is an important task, from the point of view of public welfare. Over-estimation of the flooded area leads to over-compensation to people, while under-estimation results in production loss and negative impacts on the population. Hence it is essential to assess the flood damage accurately, both in qualitative and quantitative terms. In such situations, land cover maps play a very critical role. Updating land cover maps is a time consuming and costlier operation when it is performed using traditional or manual methods. Hence, there is a need to find solutions for such problem through automation. Design of automatic systems dedicated to satellite image processing which involves change detection to discriminate areas of land cover change between imaging dates. The system integrates the spectral and spatial information with the techniques of image registration and pattern classification using nature inspired techniques. In the literature, various works have been carried out for solving the problem of image registration and pattern classification using conventional methods. Many researchers have proved, for different situations, that nature inspired techniques are promising in comparison with that of conventional methods. The main advantage of nature inspired technique over any other conventional methods is its stochastic nature, which converges to optimal solution for any dynamic variation in a given satellite image. Results are given in such terms as to delineate change in multi-date imagery using change-versus-no-change information to guide multi-date data analysis. The main objective of this study is to analyze spatio-temporal satellite data to bring out significant changes in the land cover map through automated image processing methods. In this study, for satellite image analysis of flood assessment and land cover mapping, the study areas and images considered are: Multi-temporal MODerate-resolution Imaging Spectroradiometer (MODIS) image around Krishna river basin in Andhra Pradesh India; Linear Imaging Self Scanning Sensor III (LISS III)and Synthetic Aperture Radar(SAR)image around Kosi river basin in Bihar, India; Landsat7thematicmapperimage from the southern part of India; Quick-Bird image of the central Bangalore, India; Hyperion image around Meerut city, Uttar Pradesh, India; and Indian pines hyperspectral image. In order to develop a flood assessment framework for this study, a database was created from remotely sensed images (optical and/or Synthetic Aperture Radar data), covering a period of time. The nature inspired techniques are used to find solutions to problems of image registration and pattern classification of a multi-sensor and multi-temporal satellite image. Results obtained are used to localize and estimate accurately the flood extent and also to identify the type of the inundated area based on land cover mapping. The nature inspired techniques used for satellite image processing are Artificial Neural Network (ANN), Genetic Algorithm (GA),Particle Swarm Optimization (PSO), Firefly Algorithm(FA),Glowworm Swarm Optimization(GSO)and Artificial Immune System (AIS). From the obtained results, we evaluate the performance of the methods used for image registration and pattern classification to compare the accuracy of satellite image processing using nature inspired techniques. In summary, the main contributions of this thesis include (a) analysis of flood assessment and land cover mapping using satellite images and (b) efficient image registration and pattern classification using nature inspired algorithms, which are more popular than conventional optimization methods because of their simplicity, parallelism and convergence of the population towards the optimal solution in a given search space.
166

The internal structure of consciousness

Routledge, Andrew James January 2015 (has links)
Our understanding of the physical world has evolved drastically over the last century and the microstructure described by subatomic physics has been found to be far stranger than we could previously have envisaged. However, our corresponding model of experience and its structure has remained largely untouched. The orthodox view conceives of our experience as made up of a number of different simpler experiences that are largely independent of one another. This traditional atomistic picture is deeply entrenched. But I argue that it is wrong. Our experience is extraordinarily rich and complex. In just a few seconds we may see, hear and smell a variety of things, feel the position and movement of our body, experience a blend of emotions, and undergo a series of conscious thoughts. This very familiar fact generates three puzzling questions. The first question concerns the way in which all these different things are experienced together. What we see, for example, is experienced alongside what we hear. Our visual experience does not occur in isolation from our auditory experience, sealed off and separate. It is fused together in some sense. It is co-conscious. We may then ask the Unity Question: What does the unity of consciousness consist in? The second question is the Counting Question: How many experiences does a unified region of consciousness involve? Should we think of our experience at a time as consisting in just one very rich experience, in a handful of sense-specific experiences, or in many very simple experiences? How should we go about counting experiences? Is there any principled way to do so?The third and final question, the Dependency Question, concerns the degree of autonomy of the various different aspects of our unified experience. For example, would one's visual experience be the same if one's emotional experience differed? Is the apparent colour of a sunset affected by the emotional state that we are in at the time? I offer a new answer to the Unity Question and argue that it has striking implications for the way that we address the Counting Question and the Dependency Question. In particular, it supports the view that our experience at a time consists in just one very rich experience in which all of the different aspects are heavily interdependent.
167

Route choice and traffic equilibrium modeling in multi-modal and activity-based networks

Zimmermann, Maëlle 06 1900 (has links)
No description available.
168

Realistic Virtual Human Character Design Strategy and Experience for Supporting Serious Role-Playing Simulations on Mobile Devices

Kumari, Sindhu 26 May 2022 (has links)
No description available.
169

Hybrid Deep Learning Model for Cellular Network Traffic Prediction : Case Study using Telecom Time Series Data, Satellite Imagery, and Weather Data / Hybrid Djupinlärning Modell för Förutsägelse av Mobilnätstrafik : Fallstudie med Hjälp av Telekomtidsseriedata, Satellitbilder och Väderdata

Shibli, Ali January 2022 (has links)
Cellular network traffic prediction is a critical challenge for communication providers, which is important for use cases such as traffic steering and base station resources management. Traditional prediction methods mostly rely on historical time-series data to predict traffic load, which often fail to model the real world and capture surrounding environment conditions. In this work, we propose a multi-modal deep learning model for 4G/5G Cellular Network Traffic prediction by considering external data sources such as satellite imagery and weather data. Specifically, our proposed model consists of three components (1) temporal component (modeling correlations between traffic load values with historical data points via LSTM) (2) computer vision component (using embeddings to capture correlations between geographic regions that share similar landscape patterns using satellite imagery data and state of the art CNN models), and (3) weather component (modeling correlations between weather measurements and traffic patterns). Furthermore, we study the effects and limitations of using such contextual datasets on time series learning process. Our experiments show that such hybrid models do not always lead to better performance, and LSTM model is capable of modeling complex sequential interactions. However, there is a potential for classifying or labelling regions by their urban landscape and the network traffic. / Förutsägelse av mobilnätstrafik är en kritisk utmaning för kommunikation leverantörer, där användningsområden inkluderar trafikstyrning och hantering av basstationsresurser. Traditionella förutsägelsesmetoder förlitar sig främst på historisk tidsseriedata för att förutsäga trafikbelastning, detta misslyckas ofta med att modellera den verkliga världen och fånga omgivande miljö. Det här arbetet föreslår en multimodal modell med djupinlärning förutsägelse av 4G/5G nätverkstrafik genom att beakta externa datakällor som satellitbilder och väderdata. Specifikt består vår föreslagna modell av tre komponenter (1) temporal komponent (korrelationsmodellering mellan trafikbelastningsvärden med historiska datapunkter via LSTM) (2) datorseende komponent (med inbäddningar för att fånga korrelationer mellan geografiska regioner som delar liknande landskapsmönster med hjälp av satelitbilddata och state-of-the-art CNN modeller), och (3) väderkomponent (modellerande korrelationer mellan vädermätningar och trafikmönster). Dessutom studerar vi effekterna och begränsningarna av att använda sådana kontextuella datamängder på tidsserieinlärningsprocessen. Våra experiment visar att hybridmodeller inte alltid leder till bättre prestanda och att LSTM-modellen är kapabel att modellera komplexa sekventiella interaktioner. Det finns dock en potential att klassificera eller märka regioner efter deras stadslandskap och nättrafiken. / La prévision du trafic sur les réseaux cellulaires est un défi crucial pour les fournisseurs de communication, ce qui est important pour les cas d’utilisation tels que la direction du trafic et la gestion des ressources des stations de base. Les méthodes de prédiction traditionnelles reposent principalement sur des données historiques de séries chronologiques pour prédire la charge de trafic, qui échouent souvent à modéliser le monde réel et à capturer les conditions de l’environnement environnant. Dans ce travail, nous proposons un modèle d’apprentissage profond multimodal pour la prédiction du trafic des réseaux cellulaires 4G/5G en considérant des sources de données externes telles que l’imagerie satellitaire et les données météorologiques. Plus précisément, notre modèle proposé se compose de trois composants (1) composant temporel (modélisation des corrélations entre les valeurs de charge de trafic avec des points de données historiques via LSTM) (2) composant de vision par ordinateur (utilisant des incorporations pour capturer les corrélations entre les régions géographiques qui partagent des modèles de paysage similaires à l’aide de données d’imagerie satellitaire et de modèles CNN de pointe) et (3) composante météorologique (modélisation des corrélations entre les mesures météorologiques et les modèles de trafic). De plus, nous étudions les effets et les limites de l’utilisation de tels ensembles de données contextuelles sur le processus d’apprentissage des séries chronologiques. Nos expériences montrent que de tels modèles hybrides ne conduisent pas toujours à de meilleures performances, et le modèle LSTM est capable de modéliser des interactions séquentielles complexes. Cependant, il est possible de classer ou d’étiqueter les régions en fonction de leur paysage urbain et du trafic du réseau.
170

Psycho-educational intervention to improve the behaviour of children with attention-deficit/hyperactivity disorder

Clark, Mavis 11 1900 (has links)
Much has been said and written over recent years about Attention-Deficit/Hyperactivity Disorder. There is a certain amount of confusion as to what exactly the condition constitutes and controversy continues to rage regarding treatment. A significant number of children appear to be affected. Previously, parents and teachers ·were blamed for failing to discipline effectively. Often, the difficulties remained undiagnosed and untreated. Thanks to the wisdom of so many experts who have generously shared their knowledge and considerable expertise, there is an increased awareness of ADHD. Although there is no cure, there are ways to manage the difficulties. However, early diagnosis and intervention is critical. Since many different symptoms are associated with the disorder, a multi-modal treatment plan has been found to lead to a better outcome. For the purpose of this study, a multi-modal programme was planned to address the needs of a small group of children with ADHD and their parents. The intention was to empower the parents, within a supportive group environment, by providing them with knowledge about the disorder and guidelines for managing the difficult behaviour. In addition, an attempt was made to change the negative behaviour patterns of the children through the medium of story-telling. It was hoped that by reducing the levels of parental stress, parents would be more competent to cope with their educational demands, so that their children could be guided more positively towards adulthood. The results of the programme were positive. Teachers and parents reported better behaviour by the children. The parents' stress levels were reduced. The parents expressed greater understanding about the disorder and a hopefulness that they could better manage their children. They felt they had benefitted from the advice given by other parents who were facing similar challenges. However, they felt that a short-term programme was insufficient to address all their needs and they expressed a need for ongoing support. In view of the chronicity of the disorder and the constantly changing needs of the child on his journey towards adulthood, cognisance was taken of the fact that longterm intervention is essential. / Psychology of Education / D.Ed. (Psychology of Education)

Page generated in 0.0507 seconds