• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 21
  • 5
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 76
  • 76
  • 25
  • 23
  • 22
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Polyfunkční dům / Multi-functional Building

Hirt, Lukáš January 2015 (has links)
I deal with new building of multi-functional building. The building will be located in the town Brno-Horni Herspice, Sokolova street, parcel number 707/1, Brno district. Multi-functional building has four floors. Maximum dimensions the outline of the building are 20.56X21.06m. Height of the parapet wall is 12.815m above 0. The building is build on foundation strips of plain concrete 20/25. Concrete slab is reinforce with kari net 150x150x6. The building is designed from the masonry system Sendwix. The precast staircase is made of reinforced concrete. Ceilings are designed of the floor slabs Spiroll. Roof above cafe and flats is flat with coating covering.
72

Polyfunkční objekt / Multifunctional building

Šuba, Pavel January 2015 (has links)
This thesis solves the design of multifunctional building. The building is situated on the outskirts of Mikulov in the cadastral area Mikulov in Moravia. Plot number is the 5087th. Multifunctional house will be used for housing of 26 people and providing commercial services. There are considered groceries and hairdressing salon. The building is designed without a basement, four-storey, with a gabled roof. It is based on the footings of plain concrete. The structural system consists of wall formwork system from VELOX.
73

APPOLO - Towards integrated urban education in Pretoria : a multi-functional vertical primary school

Du Plessis, Dewald 30 November 2010 (has links)
The Apollo Project investigates the recent establishment of numerous private educational institutions in the inner city of Pretoria. It identifies the need for adequate urban educational facilities and explores the use of existing buildings as schools. An existing educational cluster is identified at the eastern edge of the inner city, defined by Church, Du Toit and Pretorius Streets, and Nelson Mandela Drive. This city block and the ones surrounding it contain numerous primary, secondary and tertiary educational institutions in a predominant industrial/automotive precinct. An urban design framework is proposed for the precinct. It is envisioned that the precinct may be developed as a mixed-use urban educational campus. Within the existing city block and the urban framework proposal, the Apollo Centre, located on the corner of Church-and Du Toit Street, is selected for an adaptive re-use intervention. The proposed use is an urban primary school. The Apollo project investigates current pedagogical trends, which informed a concept that is largely defined by the idea of contextual learning within a vertical structure. Transparency and integration of education with the urban environment is at the core of the proposal. The traditional notion of horizontal education is explored in a vertical manner. The existing structure is analyzed and a position taken regarding the adaptive re-use process that informs the design. Precedent Studies include existing schools within the inner city of Pretoria as well as local and international schools. The process of converting the Apollo Centre into a primary educational facility, that shares its resources on a cross-programming basis, is explored in a series of proposals. The numerous explorations are considered in their various aspects, as well as their relationship to the whole, which then leads to a final design proposal. Key areas of the proposed Apollo Primary School will finally be resolved technically. A conclusion summarizes the author’s thoughts on the result of the project. / Mini Dissertation (MArch(Prof))--University of Pretoria, 2010. / Architecture / unrestricted
74

Obchodní dům "Centrum" v Brně / "Centrum" Department Store in Brno

Dvořáková, Zuzana January 2014 (has links)
The subject of the thesis is an architectural study of the reconstruction and extension of the "Centrum" department store in Brno. It is a dominant building designed by the famous czech architect Vladimir Karfík, which is located at the Urban Conservation Area Brno. Object wasn´t realized with the full extent of the original proposal, so in the project is planned a completion of it. The new solution respects the historical quality of Urban Conservation Area Brno with a concurrent view of the location on the lucrative land in the city center. The architectural concept is based on a return to the original idea of the architect and the addition of my own creative contribution within the extension of the new floors. Draft of the extension is intended so that the individual parts of an object communicate with each other, but they are easily recognizable as well. This idea was filled by both parts linked together visually by horizontal lines and ripple, which is used on balconies of the extension and behind the facade of the current building by shielding walls. However it is emphasized the contrast between an enclosed mass and a free-flowing space. The existing part of the building is used especialy as a leasable area of trade and services. On the upper floors there are areas of administration. Furthermore, there will be a restaurant and cafe with exhibition galleries and apartments are designed on the new added floors. The building is adapted to use by person with limited mobility. Newly added uses in the object will increase the attractiveness of the building and its surroundings.
75

Holistic-Lightweight Approach for actuation systems of the next generation aircraft

Seung, Taehun 19 September 2019 (has links)
Currently the system development of aircraft engineering concentrates its focus on the reduction of energy consumption more than ever before. As a consequence, the efficiency of subsystems inside the aircraft is highlighted. According to previous investigations the simplification/unification of conventional multifaceted board energy systems by means of electric power management is the most promising way concerning aircraft global efficiency improvement. The main aim of the present work was to optimize a multi-device, heavy duty EHA-System by introducing of a comprehensive perspective. In order to achieve the final, non-plus-ultra improvement level, the attributes of architecture, hardware and operation method were combined in an interactive manner, whereas particular attention has been paid to the mutual enhancing influences. The maximum reduction of losses, the minimizing of consumption and weight optimization can be achieved concurrently when the physical coherences between the involved subsystems are understood and their hidden potentials are exploited. This can only be achieved in one way and the detail follows: The most effective way to reduce both manufacturing effort and weight is to introduce a multiple-allocation philosophy. The highest reliability possible can be achieved by novel cascade-nested system architecture and strict restraining of the control logic. By employing an ultra-low-loss hardware concept, the energy efficiency can be maximized at a necessary minimum own weight. Last but not least, possibly the most important cognition is that an intelligent operation method will improve the actual system and influence the entire system positively and with a lower effort. The final conclusion is that the only and reasonable way to achieve an ultimate optimized solution of an actuation system is an all-encompassing consideration. Eventually it was to recognize that the final result is nothing but ultimate lightweight architecture, i.e. a non-plus-ultra solution. / Gegenwärtig konzentriert sich die Technologieentwicklung für Flugzeuge auf die Reduktion des Energieverbrauchs mehr denn je zuvor. Hierfür ist die Effizienz der an Bord befindlichen, nicht propulsiven Subsysteme neben der Wirkungsgradverbesserung der Triebwerke von zentraler Bedeutung. Laut vorangegangenen Untersuchungen und Studien ist die Vereinfachung bzw. Vereinheitlichung der Vielfalt der konventionellen Bordenergiesysteme durch ein adäquates Energiemanagement unter Verwendung von Elektrizität der aussichtsreichte Weg zur Effizienzverbesserung auf der Gesamtflugzeugebene. Durch die Elektrifizierung wurden die einzelnen Geräte zwar zuverlässiger und energieeffizienter als je zuvor aber gleichzeitig erheblich schwerer, sodaß ein signifikanter Verlust an Nutzlasten auf Gesamtflugzeugebene hervorgerufen wird. Das Hauptziel der vorliegenden Arbeit war es, ein Schwerlast-EHA-System mit mehrfachen Betätigungseinheiten durch Einführung von umfassenden Perspektiven zu optimieren. Durch Einführung der sog. ganzheitlichen Leichtbauweise demonstriert die Arbeit, wie das Subsystem mit mehreren Endgeräten ultimativ optimiert werden kann, ohne Abstriche an Gewichtsbilanz u/o Kompromiß mit der Energieeffizienz zu machen. Um eine wahrhaftige Optimierung, d.h. die Erreichung des ultimativen, Nonplusultra-Verbesserungslevels zu erreichen, wurden die Systemarchitektur, die Hardware und die Operationsmethode interaktiv kombiniert, wobei die besondere Aufmerksamkeit auf die interaktiven, zur Verbesserung führenden Einflüsse gelegt wurde. Die Minimierung des Energieverbrauchs und die ultimative Gewichtsoptimierung gleichzeitig können erreicht werden, wenn die physikalischen Zusammenhänge zwischen den involvierten Subsystemen verstanden und ihre verborgenen Potentiale ausgenutzt werden. Der einzige und vernünftige Weg zur Erreichung der ultimativen Optimierung eines Betätigungssystems ist eine allumfassende Betrachtung, also eine ganzheitliche Betrachtungs- bzw. Vorgehensweise.
76

Low-Power Policies Based on DVFS for the MUSEIC v2 System-on-Chip

Mallangi, Siva Sai Reddy January 2017 (has links)
Multi functional health monitoring wearable devices are quite prominent these days. Usually these devices are battery-operated and consequently are limited by their battery life (from few hours to a few weeks depending on the application). Of late, it was realized that these devices, which are currently being operated at fixed voltage and frequency, are capable of operating at multiple voltages and frequencies. By switching these voltages and frequencies to lower values based upon power requirements, these devices can achieve tremendous benefits in the form of energy savings. Dynamic Voltage and Frequency Scaling (DVFS) techniques have proven to be handy in this situation for an efficient trade-off between energy and timely behavior. Within imec, wearable devices make use of the indigenously developed MUSEIC v2 (Multi Sensor Integrated circuit version 2.0). This system is optimized for efficient and accurate collection, processing, and transfer of data from multiple (health) sensors. MUSEIC v2 has limited means in controlling the voltage and frequency dynamically. In this thesis we explore how traditional DVFS techniques can be applied to the MUSEIC v2. Experiments were conducted to find out the optimum power modes to efficiently operate and also to scale up-down the supply voltage and frequency. Considering the overhead caused when switching voltage and frequency, transition analysis was also done. Real-time and non real-time benchmarks were implemented based on these techniques and their performance results were obtained and analyzed. In this process, several state of the art scheduling algorithms and scaling techniques were reviewed in identifying a suitable technique. Using our proposed scaling technique implementation, we have achieved 86.95% power reduction in average, in contrast to the conventional way of the MUSEIC v2 chip’s processor operating at a fixed voltage and frequency. Techniques that include light sleep and deep sleep mode were also studied and implemented, which tested the system’s capability in accommodating Dynamic Power Management (DPM) techniques that can achieve greater benefits. A novel approach for implementing the deep sleep mechanism was also proposed and found that it can obtain up to 71.54% power savings, when compared to a traditional way of executing deep sleep mode. / Nuförtiden så har multifunktionella bärbara hälsoenheter fått en betydande roll. Dessa enheter drivs vanligtvis av batterier och är därför begränsade av batteritiden (från ett par timmar till ett par veckor beroende på tillämpningen). På senaste tiden har det framkommit att dessa enheter som används vid en fast spänning och frekvens kan användas vid flera spänningar och frekvenser. Genom att byta till lägre spänning och frekvens på grund av effektbehov så kan enheterna få enorma fördelar när det kommer till energibesparing. Dynamisk skalning av spänning och frekvens-tekniker (såkallad Dynamic Voltage and Frequency Scaling, DVFS) har visat sig vara användbara i detta sammanhang för en effektiv avvägning mellan energi och beteende. Hos Imec så använder sig bärbara enheter av den internt utvecklade MUSEIC v2 (Multi Sensor Integrated circuit version 2.0). Systemet är optimerat för effektiv och korrekt insamling, bearbetning och överföring av data från flera (hälso) sensorer. MUSEIC v2 har begränsad möjlighet att styra spänningen och frekvensen dynamiskt. I detta examensarbete undersöker vi hur traditionella DVFS-tekniker kan appliceras på MUSEIC v2. Experiment utfördes för att ta reda på de optimala effektlägena och för att effektivt kunna styra och även skala upp matningsspänningen och frekvensen. Eftersom att ”overhead” skapades vid växling av spänning och frekvens gjordes också en övergångsanalys. Realtidsoch icke-realtidskalkyler genomfördes baserat på dessa tekniker och resultaten sammanställdes och analyserades. I denna process granskades flera toppmoderna schemaläggningsalgoritmer och skalningstekniker för att hitta en lämplig teknik. Genom att använda vår föreslagna skalningsteknikimplementering har vi uppnått 86,95% effektreduktion i jämförelse med det konventionella sättet att MUSEIC v2-chipets processor arbetar med en fast spänning och frekvens. Tekniker som inkluderar lätt sömn och djupt sömnläge studerades och implementerades, vilket testade systemets förmåga att tillgodose DPM-tekniker (Dynamic Power Management) som kan uppnå ännu större fördelar. En ny metod för att genomföra den djupa sömnmekanismen föreslogs också och enligt erhållna resultat så kan den ge upp till 71,54% lägre energiförbrukning jämfört med det traditionella sättet att implementera djupt sömnläge.

Page generated in 0.1801 seconds