• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Atomistische Modellierung und Simulation des Filmwachstums bei Gasphasenabscheidungen

Lorenz, Erik E. 30 January 2015 (has links) (PDF)
Gasphasenabscheidungen werden zur Produktion dünner Schichten in der Mikro- und Nanoelektronik benutzt, um eine präzise Kontrolle der Schichtdicke im Sub-Nanometer-Bereich zu erreichen. Elektronische Eigenschaften der Schichten werden dabei von strukturellen Eigenschaften determiniert, deren Bestimmung mit hohem experimentellem Aufwand verbunden ist. Die vorliegende Arbeit erweitert ein hochparalleles Modell zur atomistischen Simulation des Wachstums und der Struktur von Dünnschichten, welches Molekulardynamik (MD) und Kinetic Monte Carlo-Methoden (KMC) kombiniert, um die Beschreibung beliebiger Gasphasenabscheidungen. KMC-Methoden erlauben dabei die effiziente Betrachtung der Größenordnung ganzer Nano-Bauelemente, während MD für atomistische Genauigkeit sorgt. Erste Ergebnisse zeigen, dass das Parsivald genannte Modell Abscheidungen in Simulationsräumen mit einer Breite von 0.1 µm x 0.1 µm effizient berechnet, aber auch bis zu 1 µm x 1 µm große Räume mit 1 Milliarden Atomen beschreiben kann. Somit lassen sich innerhalb weniger Tage Schichtabscheidungen mit einer Dicke von 100 Å simulieren. Die kristallinen und amorphen Schichten zeigen glatte Oberflächen, wobei auch mehrlagige Systeme auf die jeweilige Lagenrauheit untersucht werden. Die Struktur der Schicht wird hauptsächlich durch die verwendeten molekulardynamischen Kraftfelder bestimmt, wie Untersuchungen der physikalischen Gasphasenabscheidung von Gold, Kupfer, Silizium und einem Kupfer-Nickel-Multilagensystem zeigen. Stark strukturierte Substrate führen hingegen zu Artefakten in Form von Nanoporen und Hohlräumen aufgrund der verwendeten KMC-Methode. Zur Simulation von chemischen Gasphasenabscheidungen werden die Precursor-Reaktionen von Silan mit Sauerstoff sowie die Hydroxylierung von alpha-Al2O3 mit Wasser mit reaktiven Kraftfeldern (ReaxFF) berechnet, allerdings ist weitere Arbeit notwendig, um komplette Abscheidungen auf diese Weise zu simulieren. Mit Parsivald wird somit die Erweiterung einer Software präsentiert, die Gasphasenabscheidungen auf großen Substraten effizient simulieren kann, dabei aber auf passende molekulardynamische Kraftfelder angewiesen ist.
2

Feldeffekttransistoren auf Basis von Kohlenstoffnanoröhrchen: Vergleich zwischen atomistischer Simulation und Bauelementesimulation

Fuchs, Florian 16 December 2014 (has links) (PDF)
Kohlenstoffnanoröhrchen (CNTs) sind vielversprechende Kandidaten für neuartige nanoelektronische Bauelemente, wie zum Beispiel Transistoren für Hochfrequenzanwendungen. Simulationen CNT-basierter Bauelemente sind dabei unverzichtbar, um deren Anwendungspotential und das Verhalten in Schaltungen zu untersuchen. Die vorliegende Arbeit konzentriert sich auf einen Methodenvergleich zwischen einem atomistischen Ansatz basierend auf dem Nichtgleichgewichts-Green-Funktionen-Formalismus und einem Modell zur numerischen Bauelementesimulation, welches auf der Schrödinger-Gleichung in effektiver-Massen-Näherung basiert. Ein Transistor mit zylindrischem Gate und dotierten Kontakten wird untersucht, wobei eine effektive Dotierung genutzt wird. Es wird gezeigt, dass die Beschränkungen des elektronischen Transports durch Quan- teneffekte im Kanal nur mit dem atomistischen Ansatz beschrieben werden können. Diese Effekte verhindern das Auftreten von Band-zu-Band-Tunnelströmen, die bei der numerischen Bauelementesimulation zu größeren Aus-Strömen und einem leicht ambipolaren Verhalten führen. Das Schaltverhalten wird hingegen von beiden Modellen vergleichbar beschrieben. Durch Variation der Kanallänge wird das Potential des untersuchten Transistors für zukünftige Anwendungen demonstriert. Dieser zeigt bis hinab zu Kanallängen von circa 8 nm einen Subthreshold-Swing von unter 80 mV/dec und ein An/Aus-Verhältnis von über 10⁶.
3

Atomistische Modellierung und Simulation des Filmwachstums bei Gasphasenabscheidungen

Lorenz, Erik E. 27 November 2014 (has links)
Gasphasenabscheidungen werden zur Produktion dünner Schichten in der Mikro- und Nanoelektronik benutzt, um eine präzise Kontrolle der Schichtdicke im Sub-Nanometer-Bereich zu erreichen. Elektronische Eigenschaften der Schichten werden dabei von strukturellen Eigenschaften determiniert, deren Bestimmung mit hohem experimentellem Aufwand verbunden ist. Die vorliegende Arbeit erweitert ein hochparalleles Modell zur atomistischen Simulation des Wachstums und der Struktur von Dünnschichten, welches Molekulardynamik (MD) und Kinetic Monte Carlo-Methoden (KMC) kombiniert, um die Beschreibung beliebiger Gasphasenabscheidungen. KMC-Methoden erlauben dabei die effiziente Betrachtung der Größenordnung ganzer Nano-Bauelemente, während MD für atomistische Genauigkeit sorgt. Erste Ergebnisse zeigen, dass das Parsivald genannte Modell Abscheidungen in Simulationsräumen mit einer Breite von 0.1 µm x 0.1 µm effizient berechnet, aber auch bis zu 1 µm x 1 µm große Räume mit 1 Milliarden Atomen beschreiben kann. Somit lassen sich innerhalb weniger Tage Schichtabscheidungen mit einer Dicke von 100 Å simulieren. Die kristallinen und amorphen Schichten zeigen glatte Oberflächen, wobei auch mehrlagige Systeme auf die jeweilige Lagenrauheit untersucht werden. Die Struktur der Schicht wird hauptsächlich durch die verwendeten molekulardynamischen Kraftfelder bestimmt, wie Untersuchungen der physikalischen Gasphasenabscheidung von Gold, Kupfer, Silizium und einem Kupfer-Nickel-Multilagensystem zeigen. Stark strukturierte Substrate führen hingegen zu Artefakten in Form von Nanoporen und Hohlräumen aufgrund der verwendeten KMC-Methode. Zur Simulation von chemischen Gasphasenabscheidungen werden die Precursor-Reaktionen von Silan mit Sauerstoff sowie die Hydroxylierung von alpha-Al2O3 mit Wasser mit reaktiven Kraftfeldern (ReaxFF) berechnet, allerdings ist weitere Arbeit notwendig, um komplette Abscheidungen auf diese Weise zu simulieren. Mit Parsivald wird somit die Erweiterung einer Software präsentiert, die Gasphasenabscheidungen auf großen Substraten effizient simulieren kann, dabei aber auf passende molekulardynamische Kraftfelder angewiesen ist.:Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis Symbolverzeichnis 1 Einleitung 2 Grundlagen 2.1 Gasphasenabscheidungen 2.1.1 Physikalische Gasphasenabscheidung 2.1.2 Chemische Gasphasenabscheidung 2.1.3 Atomlagenabscheidung 2.1.4 Methoden zur Simulation von Gasphasenabscheidungen 2.2 Molekulardynamik 2.2.1 Formulierung der Molekulardynamik 2.2.2 Auswahl verfügbarer Molekulardynamik-Software 2.2.3 Molekulardynamische Kraftfelder 2.3 Kinetic Monte Carlo-Methoden 2.4 Datenstrukturen 2.4.1 Numerische Voraussetzungen an Gasphasenabscheidungen 2.4.2 Vergleich der Laufzeiten für verschiedene Datenstrukturen 2.4.3 Effiziente Datenstrukturen 2.4.4 Alpha-Form 3 Methoden und Modelle 3.1 Stand der Forschung 3.1.1 Anwendungen von KMC-Simulationen für die Gasphasenabscheidung 3.1.2 Anwendung von MD-Simulationen für die Gasphasenabscheidung 3.2 Parsivald-Modell 3.2.1 Zielsetzung für Parsivald 3.2.2 Beschreibung des Parsivald-Modells 3.2.3 Annahmen und Einschränkungen 3.2.4 Erweiterungen im Rahmen der Masterarbeit 3.2.5 Behandlung von fehlerhaften Ereignissen 3.3 Laufzeitanalyse von Parsivald-Simulationen 3.3.1 Ereignis-Laufzeit TE 3.3.2 Ereignis-Durchsatz RE 3.3.3 MD-Laufzeit TMD 3.3.4 Worker-Laufzeit Tworker 3.3.5 Serielle Laufzeit T1 3.3.6 Anzahl der parallelen Prozesse p 3.3.7 Workerdichte rhoworker 3.3.8 Parallele Laufzeit Tp 3.3.9 Speedup Sp 3.3.10 Parallele Effizienz Ep 3.3.11 Auswertung der Laufzeitparameter 3.3.12 Fazit 3.4 MD-Simulationen: Methoden und Auswertungen 3.4.1 Zeitskalen in MD-Simulationen 3.4.2 Relaxierungen 3.4.3 Strukturanalysen 3.4.4 Bestimmung der Dichte und Temperatur 3.4.5 Radiale Verteilungsfunktionen, Bindungslänge und Koordinationszahl 3.4.6 Oberfläche, Schichtdicke, Rauheit und Porösität 3.4.7 Reaktionen und Stabilität von Molekülen 4 Simulationen von Gasphasenabscheidungen 4.1 Gold-PVD 4.1.1 Voruntersuchungen 4.1.2 Thermodynamische Eigenschaften 4.1.3 Simulation von Gold-PVD 4.1.4 Skalierbarkeit mit der Simulationsgröße 4.1.5 Fazit 4.2 Kupfer-PVD 4.2.1 Voruntersuchungen 4.2.2 Thermodynamische Eigenschaften 4.2.3 Simulation von Kupfer-PVD 4.2.4 Untersuchung der maximalen Workerdichte 4.2.5 Fazit 4.3 Multilagen-PVD 4.3.1 Multilagen-Simulationen mit Parsivald 4.3.2 Vergleich mit Ergebnissen reiner MD-Simulationen 4.3.3 Vergleich der Parallelisierbarkeit 4.3.4 Fazit 4.4 Silizium-PVD 4.4.1 Voruntersuchungen 4.4.2 Simulationen von Silizium-PVD 4.4.3 Fazit 4.5 Aluminiumoxid-ALD 4.5.1 ReaxFF-Parametersätze 4.5.2 Voruntersuchungen 4.5.3 Fazit 5 Zusammenfassung und Ausblick 5.1 Zusammenfassung 5.2 Ausblick A Physikalische Konstanten und Stoffeigenschaften B Datenstrukturen B.1 Übersicht über KMC-Operationen B.2 Beschreibung grundlegender Datenstrukturen B.3 Delaunay-Triangulationen B.3.1 Ausgewählte Eigenschaften einer Delaunay-Triangulation B.3.2 Algorithmen zur Konstruktion einer Delaunay-Triangulation C Ergänzungen zur Laufzeitanalyse von Parsivald C.1 Einfluss der Ereignis-Laufzeit auf die effiziente Raumgröße weff C.2 Zusätzliche Einflüsse auf das Maximum der Prozesse pmax C.3 Abschätzung der maximalen Workerdichte per Random Sequential Adsorption D Ergänzungen zur Simulation von Gold-PVD E Multilagen-PVD E.1 Porenbildung bei Unterrelaxation E.2 Simulationen mit Lagendicken von jeweils 5 nm F Simulation der CVD-Precursormoleküle Silan und Sauerstoff F.1 Stabilität der Precursormoleküle F.2 Reaktion der Precursormoleküle Literaturverzeichnis
4

Feldeffekttransistoren auf Basis von Kohlenstoffnanoröhrchen: Vergleich zwischen atomistischer Simulation und Bauelementesimulation

Fuchs, Florian 20 November 2014 (has links)
Kohlenstoffnanoröhrchen (CNTs) sind vielversprechende Kandidaten für neuartige nanoelektronische Bauelemente, wie zum Beispiel Transistoren für Hochfrequenzanwendungen. Simulationen CNT-basierter Bauelemente sind dabei unverzichtbar, um deren Anwendungspotential und das Verhalten in Schaltungen zu untersuchen. Die vorliegende Arbeit konzentriert sich auf einen Methodenvergleich zwischen einem atomistischen Ansatz basierend auf dem Nichtgleichgewichts-Green-Funktionen-Formalismus und einem Modell zur numerischen Bauelementesimulation, welches auf der Schrödinger-Gleichung in effektiver-Massen-Näherung basiert. Ein Transistor mit zylindrischem Gate und dotierten Kontakten wird untersucht, wobei eine effektive Dotierung genutzt wird. Es wird gezeigt, dass die Beschränkungen des elektronischen Transports durch Quan- teneffekte im Kanal nur mit dem atomistischen Ansatz beschrieben werden können. Diese Effekte verhindern das Auftreten von Band-zu-Band-Tunnelströmen, die bei der numerischen Bauelementesimulation zu größeren Aus-Strömen und einem leicht ambipolaren Verhalten führen. Das Schaltverhalten wird hingegen von beiden Modellen vergleichbar beschrieben. Durch Variation der Kanallänge wird das Potential des untersuchten Transistors für zukünftige Anwendungen demonstriert. Dieser zeigt bis hinab zu Kanallängen von circa 8 nm einen Subthreshold-Swing von unter 80 mV/dec und ein An/Aus-Verhältnis von über 10⁶.:Abkürzungsverzeichnis Symbolverzeichnis Konstanten Mathematische Notation 1. Einleitung 2. Feldeffekttransistoren auf Basis von Kohlenstoffnanoröhrchen 2.1. Geometrische Struktur von Kohlenstoffnanoröhrchen 2.2. Elektronische Eigenschaften von Kohlenstoffnanoröhrchen 2.3. Feldeffekttransistoren auf Basis von Kohlenstoffnanoröhrchen 2.3.1. Möglichkeiten der Kontaktierung 2.3.2. Geometrie des Gates 2.3.3. Kenngrößen zur Transistor-Charakterisierung 3. Simulationsmethoden 3.1. Grundlegende Begriffe 3.1.1. Schrödinger-Gleichung, Wellen- und Basisfunktion 3.1.2. Elektronendichte 3.1.3. Zustandsdichte 3.2. Atomistische Elektronenstrukturrechnung 3.2.1. Dichtefunktionaltheorie 3.2.2. Erweiterte Hückelmethode 3.3. Quantentransport 3.3.1. Streumechanismen und Transportregime 3.3.2. Landauer-Büttiker-Formalismus 3.3.3. Nichtgleichgewichts-Green-Funktionen-Formalismus 3.4. Numerische Bauelementesimulation 3.4.1. Schrödinger-Gleichung in effektiver-Massen-Näherung 3.4.2. Beschreibung der Kontakte 3.4.3. Lösung der Poisson-Gleichung 3.4.4. Selbstkonsistente Rechnung 4. Entwicklung des Modellsystems 4.1. Beschaffenheit des Kanals 4.2. Eigenschaften der Gate-Elektrode 4.3. Eigenschaften der Source- und Drain-Elektroden 5. Ergebnisse und Diskussion 5.1. Numerische Bauelementesimulation 5.1.1. Extraktion der Parameter 5.1.2. Einfluss verschiedener Faktoren auf das Kohlenstoffnanoröhrchen 5.1.3. Transistorverhalten und Transistorregime 5.2. Atomistische Simulation 5.2.1. Einfluss verschiedener Faktoren auf das Kohlenstoffnanoröhrchen 5.2.2. Transistorverhalten und Transistorregime 5.2.3. Einfluss der Dotierung 5.3. Variation der Kanallänge und Methodenvergleich 5.3.1. Diskussion der Transfercharakteristiken 5.3.2. Verhalten von An/Aus-Verhältnis und Subthreshold-Swing 5.4. Variation der Gate-Länge bei fester Kanallänge und Methodenvergleich 5.5. Abschließende Bemerkungen und Vergleich mit Literatur 6. Zusammenfassung der Ergebnisse und Ausblick A. Elektronische Struktur des (7,0)-Kohlenstoffnanoröhrchens B. Simulationsparameter B.1. Parameter für Rechnungen mit Dichtefunktionaltheorie B.2. Parameter für Rechnungen mit erweiterter Hückelmethode B.3. Verwendete Randbedingungen zur Lösung der Poisson-Gleichung C. Vergleich zwischen Dichtefunktionaltheorie und erweiterter Hückelmethode C.1. Physikalische Betrachtung C.2. Rechenzeit und Konvergenz Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Danksagung Selbstständigkeitserklärung

Page generated in 0.0695 seconds