• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 18
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 79
  • 79
  • 52
  • 25
  • 19
  • 18
  • 14
  • 13
  • 10
  • 10
  • 9
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Prediction of Surfactant Mildness for Rinse-off Formulations Using Preclinical Assays

McCardy, Nicole R. 21 October 2016 (has links)
No description available.
22

Multivariate Statistical Methods for Testing a Set of Variables Between Groups with Application to Genomics

Alsulami, Abdulhadi Huda 10 1900 (has links)
<p>The use of traditional univariate analyses for comparing groups in high-dimensional genomic studies, such as the ordinary t-test that is typically used to compare two independent groups, might be suboptimal because of methodological challenges including multiple testing problem and failure to incorporate correlation among genes. Hence, multivariate methods are preferred for the joint analysis of a group or set of variables. These methods aim to test for differences in average values of a set of variables across groups. The variables that make the set could be determined statistically (using exploratory methods such as cluster analysis) or biologically (based on membership to known pathways). In this thesis, the traditional One-Way Multivariate Analysis of Variance (MANOVA) method and a robustifed version of MANOVA (Robustifed MANOVA) are compared with respect to Type I error rates and power through a simulation study. We generated data from multivariate normal as well as multivariate gamma distributions with different parameter settings. The methods are illustrated using a real gene expression data. In addition, we investigated a popular method known as Gene Set Enrichment Analysis (GSEA), where sets of genes (variables) that belong to known biological pathways are considered jointly and assessed whether or not they are "enriched" with respect to their association with a disease or phenotype of interest. We applied this method to a real genotype data.</p> / Master of Science (MSc)
23

Development of an Electrical Impedance Tomography System for Breast Cancer and Applications of Multivariate Statistical Methods for Image Improvement / EIT System Development & Multivarite Image Improvement

Jegatheesan, Aravinthan 12 1900 (has links)
This thesis consists of three sections, the first two deal with the development and testing of an electrical impedance tomography prototype system for imaging breast cancer. The third section sues mutlivariate statistical methods to improve EIT image quality. The McMaster EIT System Mk1.0 is the resultant system of the system development. The EIT system is a 48 electrode, single current source, serial acquisition device with an operational frequency between 100Hz to 125kHz. The device is able to inject current between any two electrodes and is able to perform single or differential measurements on any two electrode pairs. The system is equipped with a virtual phase-lock loop and is capable of paramatic imaging. The system was tested using tests common to most electrical devices and specifically designed for EIT systems, to both benchmark the system and detect any errors. The testing revealed the device while able to produce viable EIT images; system suffers from a large stray capacitance. Due to stray capacitance the system injection amplitude accuracy varies with frequency and load. The system SNR is over 100dB with a 125kHz signal with a 5mA signal and compares favourably with existing EIT systems. The CMRR of the system closely tracked the published CMRR of the underlying commercial components and is comparable to existing systems. A second source of error which needs to be rectified in future deigns is the high contact impedence; which causes high direct current offset. Multivariate testing was used to detect errors which could not be easily discovered using conventional testing. The testing, performed iteratively detected several electronic errors which were fixed during development of the device. Six related models were developed for system noise, each with a different set of underlying assumptions about the source of noise. Of the models only one model proved to be a success on both qualitative and quantitative analysis of sample data sets. Finally an alternate model to the Cole-Cole parametric imaging based on PCA was proposed. The model proved to be better at modeling the underlying tissue variations in the presence of noise than Cole-Cole based models. The prototype EIT system presented in this thesis is a viable EIT system, but is in need of improvements to shielding to improve system performance. Also in need of improvement is the operational frequency and modifications toward a distributed architecture. The multivariate methods used for modelling system noise and tissue should be combined into one method for maximum benefit. / Thesis / Master of Applied Science (MASc)
24

Profile Monitoring for Mixed Model Data

Jensen, Willis Aaron 26 April 2006 (has links)
The initial portion of this research focuses on appropriate parameter estimators within a general context of multivariate quality control. The goal of Phase I analysis of multivariate quality control data is to identify multivariate outliers and step changes so that the estimated control limits are sufficiently accurate for Phase II monitoring. High breakdown estimation methods based on the minimum volume ellipsoid (MVE) or the minimum covariance determinant (MCD) are well suited to detecting multivariate outliers in data. Because of the inherent difficulties in computation many algorithms have been proposed to obtain them. We consider the subsampling algorithm to obtain the MVE estimators and the FAST-MCD algorithm to obtain the MCD estimators. Previous studies have not clearly determined which of these two estimation methods is best for control chart applications. The comprehensive simulation study here gives guidance for when to use which estimator. Control limits are provided. High breakdown estimation methods such as MCD and MVE can be applied to a wide variety of multivariate quality control data. The final, lengthier portion of this research considers profile monitoring. Profile monitoring is a relatively new technique in quality control used when the product or process quality is best represented by a profile (or a curve) at each time period. The essential idea is often to model the profile via some parametric method and then monitor the estimated parameters over time to determine if there have been changes in the profiles. Because the estimated parameters may be correlated, it is convenient to monitor them using a multivariate control method such as the T-squared statistic. Previous modeling methods have not incorporated the correlation structure within the profiles. We propose the use of mixed models (both linear and nonlinear) to monitor linear and nonlinear profiles in order to account for the correlation structure within a profile. We consider various data scenarios and show using simulation when the mixed model approach is preferable to an approach that ignores the correlation structure. Our focus is on Phase I control chart applications. / Ph. D.
25

ADVANCES ON BILINEAR MODELING OF BIOCHEMICAL BATCH PROCESSES

González Martínez, José María 07 October 2015 (has links)
[EN] This thesis is aimed to study the implications of the statistical modeling approaches proposed for the bilinear modeling of batch processes, develop new techniques to overcome some of the problems that have not been yet solved and apply them to data of biochemical processes. The study, discussion and development of the new methods revolve around the four steps of the modeling cycle, from the alignment, preprocessing and calibration of batch data to the monitoring of batches trajectories. Special attention is given to the problem of the batch synchronization, and its effect on the modeling from different angles. The manuscript has been divided into four blocks. First, a state-of- the-art of the latent structures based-models in continuous and batch processes and traditional univariate and multivariate statistical process control systems is carried out. The second block of the thesis is devoted to the preprocessing of batch data, in particular, to the equalization and synchronization of batch trajectories. The first section addresses the problem of the lack of equalization in the variable trajectories. The different types of unequalization scenarios that practitioners might finnd in batch processes are discussed and the solutions to equalize batch data are introduced. In the second section, a theoretical study of the nature of batch processes and of the synchronization of batch trajectories as a prior step to bilinear modeling is carried out. The topics under discussion are i) whether the same synchronization approach must be applied to batch data in presence of different types of asynchronisms, and ii) whether synchronization is always required even though the length of the variable trajectories are constant across batches. To answer these questions, a thorough study of the most common types of asynchronisms that may be found in batch data is done. Furthermore, two new synchronization techniques are proposed to solve the current problems in post-batch and real-time synchronization. To improve fault detection and classification, new unsupervised control charts and supervised fault classifiers based on the information generated by the batch synchronization are also proposed. In the third block of the manuscript, a research work is performed on the parameter stability associated with the most used synchronization methods and principal component analysis (PCA)-based Batch Multivariate Statistical Process Control methods. The results of this study have revealed that accuracy in batch synchronization has a profound impact on the PCA model parameters stability. Also, the parameter stability is closely related to the type of preprocessing performed in batch data, and the type of model and unfolding used to transform the three-way data structure to two-way. The setting of the parameter stability, the source of variability remaining after preprocessing and the process dynamics should be balanced in such a way that multivariate statistical models are accurate in fault detection and diagnosis and/or in online prediction. Finally, the fourth block introduces a graphical user-friendly interface developed in Matlab code for batch process understanding and monitoring. To perform multivariate analysis, the last developments in process chemometrics, including the methods proposed in this thesis, are implemented. / [ES] La presente tesis doctoral tiene como objetivo estudiar las implicaciones de los métodos estadísticos propuestos para la modelización bilineal de procesos por lotes, el desarrollo de nuevas técnicas para solucionar algunos de los problemas más complejos aún por resolver en esta línea de investigación y aplicar los nuevos métodos a datos provenientes de procesos bioquímicos para su evaluación estadística. El estudio, la discusión y el desarrollo de los nuevos métodos giran en torno a las cuatro fases del ciclo de modelización: desde la sincronización, ecualización, preprocesamiento y calibración de los datos, a la monitorización de las trayectorias de las variables del proceso. Se presta especial atención al problema de la sincronización y su efecto en la modelización estadística desde distintas perspectivas. El manuscrito se ha dividido en cuatro grandes bloques. En primer lugar, se realiza una revisión bibliográfica de las técnicas de proyección sobre estructuras latentes para su aplicación en procesos continuos y por lotes, y del diseño de sistemas de control basados en modelos estadísticos multivariantes. El segundo bloque del documento versa sobre el preprocesamiento de los datos, en concreto, sobre la ecualización y la sincronización. La primera parte aborda el problema de la falta de ecualización en las trayectorias de las variables. Se discuten las diferentes políticas de muestreo que se pueden encontrar en procesos por lotes y las soluciones para ecualizar las variables. En la segunda parte de esta sección, se realiza un estudio teórico sobre la naturaleza de los procesos por lotes y de la sincronización de las trayectorias como paso previo a la modelización bilineal. Los temas bajo discusión son: i) si se debe utilizar el mismo enfoque de sincronización en lotes afectados por diferentes tipos de asincronismos, y ii) si la sincronización es siempre necesaria aún y cuando las trayectorias de las variables tienen la misma duración en todos los lotes. Para responder a estas preguntas, se lleva a cabo un estudio exhaustivo de los tipos más comunes de asincronismos que se pueden encontrar en este tipo de datos. Además, se proponen dos nuevas técnicas de sincronización para resolver los problemas existentes en aplicaciones post-morten y en tiempo real. Para mejorar la detección de fallos y la clasificación, también se proponen nuevos gráficos de control no supervisados y clasificadores de fallos supervisados en base a la información generada por la sincronización de los lotes. En el tercer bloque del manuscrito se realiza un estudio de la estabilidad de los parámetros asociados a los métodos de sincronización y a los métodos estadístico multivariante basados en el Análisis de Componentes Principales (PCA) más utilizados para el control de procesos. Los resultados de este estudio revelan que la precisión de la sincronización de las trayectorias tiene un impacto significativo en la estabilidad de los parámetros de los modelos PCA. Además, la estabilidad paramétrica está estrechamente relacionada con el tipo de preprocesamiento realizado en los datos de los lotes, el tipo de modelo a justado y el despliegue utilizado para transformar la estructura de datos de tres a dos dimensiones. El ajuste de la estabilidad de los parámetros, la fuente de variabilidad que queda después del preprocesamiento de los datos y la captura de las dinámicas del proceso deben ser a justados de forma equilibrada de tal manera que los modelos estadísticos multivariantes sean precisos en la detección y diagnóstico de fallos y/o en la predicción en tiempo real. Por último, el cuarto bloque del documento describe una interfaz gráfica de usuario que se ha desarrollado en código Matlab para la comprensión y la supervisión de procesos por lotes. Para llevar a cabo los análisis multivariantes, se han implementado los últimos desarrollos en la quimiometría de proc / [CA] Aquesta tesi doctoral te com a objectiu estudiar les implicacions dels mètodes de modelització estadística proposats per a la modelització bilineal de processos per lots, el desenvolupament de noves tècniques per resoldre els problemes encara no resolts en aquesta línia de recerca i aplicar els nous mètodes a les dades dels processos bioquímics. L'estudi, la discussió i el desenvolupament dels nous mètodes giren entorn a les quatre fases del cicle de modelització, des de l'alineació, preprocessament i el calibratge de les dades provinents de lots, a la monitorització de les trajectòries. Es presta especial atenció al problema de la sincronització per lots, i el seu efecte sobre el modelatge des de diferents angles. El manuscrit s'ha dividit en quatre grans blocs. En primer lloc, es realitza una revisió bibliogràfica dels principals mètodes basats en tècniques de projecció sobre estructures latents en processos continus i per lots, així com dels sistemes de control estadístics multivariats. El segon bloc del document es dedica a la preprocessament de les dades provinents de lots, en particular, l' equalització i la sincronització. La primera part aborda el problema de la manca d'equalització en les trajectòries de les variables. Es discuteixen els diferents tipus d'escenaris en que les variables estan mesurades a distints intervals i les solucions per equalitzar-les en processos per lots. A la segona part d'aquesta secció es porta a terme un estudi teòric de la naturalesa dels processos per lots i de la sincronització de les trajectòries de lots com a pas previ al modelatge bilineal. Els temes en discussió són: i) si el mateix enfocament de sincronització ha de ser aplicat a les dades del lot en presència de diferents tipus de asincronismes, i ii) si la sincronització sempre es requereix tot i que la longitud de les trajectòries de les variables són constants en tots el lots. Per respondre a aquestes preguntes, es du a terme un estudi exhaustiu dels tipus més comuns de asincronismes que es poden trobar en les dades provinents de lots. A més, es proposen dues noves tècniques de sincronització per resoldre els problemes existents la sincronització post-morten i en temps real. Per millorar la detecció i la classificació de anomalies, també es proposen nous gràfics de control no supervisats i classificadors de falla supervisats dissenyats en base a la informació generada per la sincronització de lots. En el tercer bloc del manuscrit es realitza un treball de recerca sobre l'estabilitat dels paràmetres associats als mètodes de sincronització i als mètodes estadístics multivariats basats en l'Anàlisi de Components Principals (PCA) més utilitzats per al control de processos. Els resultats d'aquest estudi revelen que la precisió en la sincronització per lots te un profund impacte en l'estabilitat dels paràmetres dels models PCA. A més, l'estabilitat paramètrica està estretament relacionat amb el tipus de preprocessament realitzat en les dades provinents de lots, el tipus de model i el desplegament utilitzat per transformar l'estructura de dades de tres a dos dimensions. L'ajust de l'estabilitat dels paràmetres, la font de variabilitat que queda després del preprocessament i la captura de la dinàmica de procés ha de ser equilibrada de tal manera que els models estadístics multivariats són precisos en la detecció i diagnòstic de fallades i/o en la predicció en línia. Finalment, el quart bloc del document introdueix una interfície gràfica d'usuari que s'ha dissenyat e implementat en Matlab per a la comprensió i la supervisió de processos per lots. Per dur a terme aquestes anàlisis multivariats, s'han implementat els últims desenvolupaments en la quimiometria de processos, incloent-hi els mètodes proposats en aquesta tesi. / González Martínez, JM. (2015). ADVANCES ON BILINEAR MODELING OF BIOCHEMICAL BATCH PROCESSES [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/55684 / Premios Extraordinarios de tesis doctorales
26

Avaliação de alterações em redes de drenagem de microbacias como subsídio ao zoneamento geoambiental de bacias hidrográficas: aplicação na bacia hidrográfica do Rio Capivari - SP. / Alteration evaluation in microbasin drainage systems as a subsidy to the geoenvironmental zoning of hydrographic basins: application in the Capivari river hydrographic basin.

Collares, Eduardo Goulart 01 December 2000 (has links)
A rede de drenagem se constitui em importante indicador de alterações ocorridas na composição da paisagem de bacias hidrográficas, seja por mudanças na sua estruturação, forma ou então por ganho ou perda de canais. O objetivo deste trabalho é apresentar e aplicar uma proposta metodológica, com base em análise morfométrica temporal das redes de drenagem de microbacias, visando a avaliação das alterações e o zoneamento regional de uma bacia hidrográfica. A metodologia envolve o uso de imagens de sensoriamento remoto e técnicas de geoprocessamento para a caracterização das atividades antrópicas e levantamento das variáveis morfométricas em duas datas, com um intervalo de 23 anos. A avaliação das alterações e a consequente classificação das microbacias são efetuadas com base em análise estatística multivariada. A proposta foi aplicada na bacia hidrográfica do rio Capivari e os resultados comprovam que ocorreram alterações significativas na composição da rede de drenagem no período de análise. As variáveis morfométricas que mais contribuíram para a avaliação das alterações foram a Densidade de Drenagem e Densidade Hidrográfica. Dentre as microbacias que mais se alteraram estão as urbanas ou em processo de urbanização e, dentre aquelas onde as alterações foram menos pronunciadas estão as microbacias rurais, com predomínio de pastagens e/ou cana de açúcar. / The drainage system is an important indicator of the alterations occurred in the composition of the hydrographic basin environment, either due to changes in their structure and shape or due to channel loss and gain. The objective of this project is to present and apply a methodological proposal, based on time morphometric analysis of the microbasin drainage systems, aiming at the alteration evaluation and the regional zoning of a hydrographic basin. The methodology involves the use of remote images and geoprocessing techniques for the characterization of the anthropic activities and the determination of the morphometric variables on two dates, with a 23-year interval. The evaluation of the alterations and the consequent microbasin classification are carried out based on multivariate statistical analysis. The proposal was applied on Capivari river hydrographic basin, and the results prove that there were significative alterations in the drainage system composition in the analyzed period. The morphometric variables which most contributed to the alteration evaluation were the Drainage Density and the Hydrographic Density. Among the microbasins which were most altered there are the urban and under urbanization ones, and among those which had less significative alterations there are the rural microbasins, prevailing the pasture lands and sugar-cane raising.
27

Seleção de variáveis aplicada ao controle estatístico multivariado de processos em bateladas

Peres, Fernanda Araujo Pimentel January 2018 (has links)
A presente tese apresenta proposições para o uso da seleção de variáveis no aprimoramento do controle estatístico de processos multivariados (MSPC) em bateladas, a fim de contribuir com a melhoria da qualidade de processos industriais. Dessa forma, os objetivos desta tese são: (i) identificar as limitações encontradas pelos métodos MSPC no monitoramento de processos industriais; (ii) entender como métodos de seleção de variáveis são integrados para promover a melhoria do monitoramento de processos de elevada dimensionalidade; (iii) discutir sobre métodos para alinhamento e sincronização de bateladas aplicados a processos com diferentes durações; (iv) definir o método de alinhamento e sincronização mais adequado para o tratamento de dados de bateladas, visando aprimorar a construção do modelo de monitoramento na Fase I do controle estatístico de processo; (v) propor a seleção de variáveis, com propósito de classificação, prévia à construção das cartas de controle multivariadas (CCM) baseadas na análise de componentes principais (PCA) para monitorar um processo em bateladas; e (vi) validar o desempenho de detecção de falhas da carta de controle multivariada proposta em comparação às cartas tradicionais e baseadas em PCA. O desempenho do método proposto foi avaliado mediante aplicação em um estudo de caso com dados reais de um processo industrial alimentício. Os resultados obtidos demonstraram que a realização de uma seleção de variáveis prévia à construção das CCM contribuiu para reduzir eficientemente o número de variáveis a serem analisadas e superar as limitações encontradas na detecção de falhas quando bancos de elevada dimensionalidade são monitorados. Conclui-se que, ao possibilitar que CCM, amplamente utilizadas no meio industrial, sejam adequadas para banco de dados reais de elevada dimensionalidade, o método proposto agrega inovação à área de monitoramento de processos em bateladas e contribui para a geração de produtos de elevado padrão de qualidade. / This dissertation presents propositions for the use of variable selection in the improvement of multivariate statistical process control (MSPC) of batch processes, in order to contribute to the enhacement of industrial processes’ quality. There are six objectives: (i) identify MSPC limitations in industrial processes monitoring; (ii) understand how methods of variable selection are used to improve high dimensional processes monitoring; (iii) discuss about methods for alignment and synchronization of batches with different durations; (iv) define the most adequate alignment and synchronization method for batch data treatment, aiming to improve Phase I of process monitoring; (v) propose variable selection for classification prior to establishing multivariate control charts (MCC) based on principal component analysis (PCA) to monitor a batch process; and (vi) validate fault detection performance of the proposed MCC in comparison with traditional PCA-based and charts. The performance of the proposed method was evaluated in a case study using real data from an industrial food process. Results showed that performing variable selection prior to establishing MCC contributed to efficiently reduce the number of variables and overcome limitations found in fault detection when high dimensional datasets are monitored. We conclude that by improving control charts widely used in industry to accomodate high dimensional datasets the proposed method adds innovation to the area of batch process monitoring and contributes to the generation of high quality standard products.
28

Caracterização de tecidos mamários através de modelos estatísticos utilizando o espalhamento de raios-x\". / Breast Tissue Characterization by Statistical Models Using X-Ray Scattering

Cunha, Diego Merigue da 24 March 2006 (has links)
Em um exame mamográfico, quando os fótons de raios-X incidem sobre a mama, uma parte destes fótons é transmitida sem ser desviada da trajetória inicial (radiação transmitida primária), permitindo a formação da imagem mamográfica, e outra é dispersa de sua trajetória inicial pelo tecido (radiação espalhada), atuando de forma deletéria na imagem mamográfica. Entretanto, recentes investigações têm demonstrado que a radiação espalhada pode ser útil na caracterização de tecidos. O objetivo deste trabalho é desenvolver um modelo de diagnóstico de alterações no tecido mamário utilizando as informações presentes na distribuição angular da radiação espalhada (perfil de espalhamento). Os perfis de espalhamento de 40 amostras de tecidos mamários foram obtidos utilizando um difractômetro comercial SIEMENS D5005, operando em modo reflexão na energia de 8,04 keV e variando o detector da posição angular de 5º a 150º, correspondendo a um intervalo de x de 0,03Å-1 a 0,62 Å-1. As amostras de tecido foram previamente classificadas histopatologicamente como tecidos normais, fibroadenomas (neoplasias benignas) e diferentes tipos de carcinomas (neoplasias malignas). Neste trabalho, três modelos de diagnóstico baseados na análise estatística dos perfis de espalhamento foram desenvolvidos. O primeiro, analisa seis parâmetros extraídos dos perfis de espalhamento, já o segundo e o terceiro utilizam análise multivariada (análise de componentes principais e análise de discriminante, respectivamente) para reconhecimento de padrões. Para cada modelo, valores de sensibilidade, especificidade e índice de concordância entre o diagnóstico baseado no modelo utilizado e o diagnóstico histopatológico foram obtidos. Dentre os modelos desenvolvidos, aquele que utiliza análise de discriminante proporciona o melhor diagnóstico das alterações encontradas no tecido, permitindo diferenciar tecidos normais e neoplasias benignas e malignas. Com base nos resultados obtidos conclui-se que modelos baseados na análise estatística dos perfis de espalhamento permitem classificar histologicamente tecidos mamários. / In mammography, when x-ray photons reach the breast, a fraction of these photons is transmitted without interaction with any tissues (primary transmitted radiation), allowing the formation of the mammographic image, and another fraction of them is deviated by the tissue from its initial trajectories (scattered radiation), reducing the image contrast. However, recent investigations have demonstrated that scattered radiation can be a useful diagnostic tool. The purpose of this work is to develop a diagnostic model for breast tissue characterization using the angular distribution of the scattered radiation (scattering profile). The scattering profiles of 40 breast tissue samples were obtained in a SIEMENS D5005 diffractometer, operating in reflection mode at 8,04keV, and varying the angular position of the detector from 5º to 150º, corresponding to an x interval from 0,03 Å-1 to 0,62 Å-1. All tissue samples were previously classified histopathologically as normal tissues, fibroadenomas (benign alteration) and several types of carcinomas (malignant alteration). Three models of diagnostic based on the statistical analysis of the scattering profiles were developed. The first one was constructed using six parameters extracted from the scattering profiles and the second and third models used the whole information from the scattering profiles. The latter two used multivariate analysis (principal component analysis and discriminant analysis, respectively) for pattern recognition. For each model, values of sensitivity, specificity and rate of agreement between the model diagnostic and histopathological results were obtained. Among the developed models, the discriminant analysis provides the best diagnostic of the lesions present in the tissues (normal tissues, benign and malignant alterations). From the results, it is possible to conclude that models based on the statistical analysis of the scattering profiles allow the histological classification of breast tissues.
29

Estudos metabolômicos da subfamília Barnadesioideae (Asteraceae) / Metabolomics studies of the subfamily Barnadesioideae (Asteraceae)

Ccapatinta, Gari Vidal Ccana 12 June 2018 (has links)
A metabolômica vem se tornando uma abordagem eficaz para a avaliação abrangente de plantas medicinais, classificação de matérias-primas, além de estudos quimiotaxonômicos. Este trabalho demonstra a aplicabilidade da metabolômica, utilizando a subfamília Barnadesioideae (Asteraceae) como modelo de estudo, na avaliação da qualidade e classificação de espécies medicinais (espécies de Chuquiraga) e no estudo quimiotaxonômico dos principais gêneros de Barnadesioideae (Arnaldoa, Barnadesia, Chuquiraga, Dasyphyllum, Fulcaldea e Schlechtendalia). Em primeiro lugar, a análise dos perfis metabólicos por LC-MS dos membros de Barnadesioideae demonstrou que esta subfamília constitui um grupo quimicamente não explorado com uma diversidade complexa de substancias fenólicas, fenilpropanoides, alquilglicósidos e glicosídeos triterpenoides. As relações intergenéricas dentro da subfamília Barnadesioideae, baseadas na comparação dos seus perfis metabólicos por análises estatísticas multivariadas, mostraram semelhanças com as relações intergenéricas propostas pelo mais recente estudo filogenético com base em marcadores morfológicos e moleculares. Em segundo lugar, a aquisição dos perfis metabólicos de espécies de Chuquiraga (C. jussieui, C. spinosa e C. weberbaueri) por analises de LC-MS, levaram à identificação de uma variedade significativa de compostos fenólicos, fenilpropanoides, alquilglicosídeos e glicosídeos triterpenoides, assim como o estabelecimento de modelos de classificação geográfica e de espécies, além da identificação de metabólitos discriminantes por meio de análises estatísticas multivariadas exploratórias e supervisionadas. Terceiro, uma abordagem clássica foi realizada através da aquisição dos perfis cromatográficos por HPLC de espécies de Chuquiraga para o perfilhamento de compostos fenólicos e a classificação das espécies por meio de análises estatísticas multivariadas exploratórias e supervisionadas. Logo, os resultados revelam a metabolômica como uma valiosa ferramenta auxiliar no controle de qualidade e classificação de plantas medicinais, bem como em estudos de quimiotaxonômia / Metabolomics is emerging as an effective approach for the comprehensive evaluation of medicinal plants, classification of raw material, as well as chemotaxonomic studies. This work demonstrates the applicability of metabolomics, using the subfamily Barnadesioideae (Asteraceae) as a study model, for quality assessment and classification purposes of medicinal species (Chuquiraga genus) and a chemotaxonomy study of six Barnadesioideae genera (Arnaldoa, Barnadesia, Chuquiraga, Dasyphyllum, Fulcaldea and Schlechtendalia). First, the LC-MS metabolic profiles of Barnadesioideae demonstrated that this subfamily constitutes a chemically underinvestigated taxa with a complex diversity of phenolic compounds, phenylpropanoid derivatives, alkyl glycosides, and triterpenoid glycosides. The intergeneric relationships within Barnadesioideae genera, based on the comparison of their LC-MS metabolic profiles by exploratory and supervised analyses, displayed similarities to those of the intergeneric relationships obtained by the most recent phylogenetic study based on morphological and molecular markers. Second, the LC-MS metabolic profiles of three Chuquiraga species (C. jussieui, C. spinosa and C. weberbaueri) lead to the identification of a significant variety of phenolic compounds, phenylpropanoid derivatives, alkyl glycosides, and triterpenoid glycosides, as well as the establishment of prediction models for geographical origin and species classification, as well as the identification of discriminating metabolites by exploratory and supervised multivariate statistical analysis. Third, a classical approach was carried out by acquiring HPLC chromatographic profiles of three Chuquiraga species (C. jussieui, C. spinosa and C. weberbaueri) for profiling phenolic compounds and comparison by exploratory and supervised multivariate statistical analysis. Therefore, our results support metabolomics as a valuable tool in the quality control and classification of medicinal plants as well as in chemotaxonomy studies.
30

Raspodela i profil zagađujućih jedinjenja u abiotskim i biotskim matriksima multivarijacionom analizom / Distribution and profile of pollutants in bioticand abiotic samples by multivariate statisticalapproach

Đurišić-Mladenović Nataša 16 November 2012 (has links)
<p>U okviru disertacije analizirano je prisustvo različitih postojanih zagađujućih<br />materija u abiotskim i biotskim uzorcima iz različitih regiona, uključujući i uzorke<br />zemlji&scaron;ta iz Novog Sada i okolnih naselja, i to zagađujuće materije organskog<br />(policiklične aromatične ugljovodonike, polihlorovane bifenile i organohlorne<br />pesticide) i neorganskog (te&scaron;ki elementi) porekla. Dobijeni rezultati uvr&scaron;teni su u<br />baze zajedno sa relevantnim podacima iz međunarodnih radova i na taj način<br />formirane su baze koje prevazilaze lokalne interese pojedinačnih istraživanja.<br />Primenom multivarijacionih metoda analize ovakvih baza utvrđen je stepen<br />zagađenosti ispitivanih uzoraka u odnosu na rezultate iz literature, a takođe je<br />razmatrana struktura formiranih multidimenzionalnih baza sa ciljem analize<br />raspodele postojanih zagađujućih jedinjenja u posmatranim matriksima i<br />identifikacije zajedničkih izvora zagađenja. Primenom različitih (matematičkih)<br />predtretmana podataka u bazama, a zatim njihovom analizom izabranim<br />multivarijacionim metodama, izvr&scaron;ena je procena uticaja predtretmana na<br />rezultate i mogućnosti njihove interpretacije, kao i ispitivanje zavisnosti između<br />posmatranih veličina i grupisanje uzoraka. Specifični ciljevi istraživanja su<br />omogućili da se:<br />- utvrde sličnosti i razlike pri kori&scaron;ćenju različitih načina izražavanja<br />analitičkih rezultata (apsolutne vrednosti koncentracije nasuprot relativnih<br />procentualnih udela, tzv. kompozicionih podataka) u okviru baza<br />podataka i pri izdvajanju informacija iz multidimenzionalnih baza<br />primenom multivarijacionih metoda,<br />- utvrdi uticaj različitih načina pripreme (obrade) podataka pre primene<br />multivarijacionih metoda radi dobijanja potpunijih informacija u cilju bolje<br />interpretacije podataka i smanjenja dimenzija baza podataka;<br />- ispitaju regionalne i vremenske razlike i/ili sličnosti između prisustva<br />posmatranih jedinjenja u abiotskim i biotskim matriksima radi uočavanja<br />dominantnih izvora zagađenja u određenim oblastima i vremenskim<br />periodima uz istovremenu karakterizaciju eksperimentalno ispitanih<br />uzoraka u odnosu na uzorke iz drugih regiona.<br />Postignuti rezultati predstavljaju jedinstvene rezultate primene multivarijacionih<br />metoda na bazama sastavljenim od podataka dobijenim u različitim<br />istraživanjima iz sveta o prisustvu postojanih zagađujućih materija u izabranim<br />abiotskim i biotskim uzorcima, doprinoseći tako analizi njihove op&scaron;te raspodele.</p> / <p>Presence of different pollutant classes of both organic (polycyclic aromatic<br />hydrocarbons, polychlorinated biphenyls and organochlorine pesticides) and<br />inorganic origin (heavy elements) were analysed in abiotic and biotic matrices<br />from various regions, including Novi Sad and its surrounding settlements.<br />Obtained results with available data published in the international articles were<br />included in the sets, forming the input matrices to be analysed by chemometric<br />techniques. Analysis of the created sets of data by multivariate approach was<br />performed due to determining pollution level of the investigated samples, as well<br />to elucidate the persistent pollutants distribution and profiles in the selected<br />matrices and to identify the common pollution sources.<br />Using different treatments of a set of input data, influence of these procedures to<br />results was assessed.<br />Specific aims of investigation were:<br />Determination of similarity and differences by using different ways of data<br />expression (apsolute values of concentrations as apposed to relative percent<br />fraction) in interpreration of multidimension data sets on the basis of multivariate<br />statistical approach<br />Determination of different processing of data before multivariate statistical<br />methods due to obtaining adequate information for interpretation of data and<br />reducing a set of original variables<br />Examination of regional and temporal differences and/or similarity among<br />presence of observed compounds in abiotic and biotic matrices due to<br />identification of dominant pollutant sources as well as comparative<br />characterisation of experimantally obtained data in relation to samples from<br />another regions worldwide.<br />Achieved results are unique examples of multivariate methods application on<br />large data sets with results on the occurance of pesistent organic compounds in<br />abiotic and biotic matrices obtained in different studies all over the world.</p>

Page generated in 0.1217 seconds