181 |
Rôle des progéniteurs PW1+ dans le développement de l'hypertension artérielle pulmonaire : nouveaux acteurs cellulaires du remodelage vasculaire / Role of PW1+ progenitor cells in vascular remodeling during pulmonary arterial hypertensionDierick, France 22 September 2015 (has links)
L'hypertension artérielle pulmonaire (HTAP) est caractérisée par une atteinte progressive et chronique des vaisseaux pulmonaires entraînant une augmentation des résistances vasculaires pulmonaires. Mes travaux de doctorat ont eu pour but de comprendre l'implication des progéniteurs vasculaires dans le remodelage et dans la néomuscularisation des vaisseaux pulmonaires, caractéristique de l'HTAP. Une nouvelle population de cellules progénitrices positives pour le marqueur PW1, récemment identifiée dans les tissus adultes, a la capacité de se différencier en cellules musculaires lisses (CMLs). Notre hypothèse a donc été que cette population progénitrice pourrait être recrutée, se différencierait en CMLs et participerait ainsi au remodelage vasculaire au cours de l'HTAP. Nous avons mis en évidence la présence de trois populations progénitrices PW1+ dans le poumon de souris, capables de se différencier en CMLs vasculaires. Les cellules PW1+ sont résidentes et sont mobilisées dans 2 modèles d'HTAP; leur recrutement est précoce, dès 4j d'hypoxie chronique chez la souris ; le nombre de cellules PW1+ est augmenté chez le rat traité à la monocrotaline. Des résultats préliminaires suggèrent une implication des macrophages et de la voie CXCR4 dans ce recrutement des progéniteurs PW1+. Chez le patient HTAP, les cellules PW1+ sont très nombreuses dans les lésions artérielles et nous avons commencé à les isoler par FACS. Cette meilleure compréhension des mécanismes de mobilisation des progéniteurs vasculaires permet d'identifier des pistes thérapeutiques potentielles, et d'encourager à poursuivre les recherches sur ce versant cellulaire encore peu exploité dans cette maladie. / Pulmonary arterial hypertension (PAH) is characterized by vascular remodeling and neomuscularization. PW1+ progenitor cells were identified in various adult tissues and can differentiate in smooth muscle cells (SMC) in vitro. Our hypothesis was that PW1+ progenitor cells are recruited to participate in the vascular remodeling during PAH. PW1+ cells are localized in the lung parenchyma and in the perivascular zone in rodent and human lungs. Three resident myogenic PW1+ populations were identified in the mouse lung. After 4 days of CH, two of these PW1+ populations were significantly increased. The number of pulmonary proliferating PW1+ cells and the proportion of vessel-associated SMC derived from PW1+ cells were also significantly increased, attesting a recruitment and a differentiation of PW1+ cells into pulmonary vascular SMC during early chronic hypoxia-induced neomuscularization. Moreover, in the MCT-injected rat lungs, a severe PH model, the number of PW1+ cells was also increased. Preliminary data suggest that macrophages and CXCR4 axis are involved in the mobilization of PW1+ progenitor cells. In the human PAH lung, PW1+ cells were observed in remodeled vascular structures and seem increased as compared to control lung. A better understanding of vascular progenitor cells mobilization mechanisms will help determining the pathological pathways involved in the disease and identifying new potential therapeutic avenues.
|
182 |
Identification des mécanismes moléculaires et physiopathologiques impliqués dans la dystrophie facioscapulohumérale / Identification of molecular and pathophysiological mechanisms involved in facioscapulohumeral muscular dystrophyEl Khatib, Nour 14 September 2016 (has links)
La dystrophie musculaire facioscapulohumérale (FSHD) est une maladie autosomique dominante, caractérisée par une faiblesse et une atrophie progressive de certains muscles squelettiques. La FSHD est liée à une répression inefficace de la région des macrosatellites D4Z4 sur le chromosome 4, entraînant l'expression inappropriée dans le muscle squelettique, d’un gène à double homeobox 4 (DUX4), et la dérégulation des gènes avoisinants. La surexpression de DUX4 est responsable du phénotype atrophié des myotubes FSHD et induit la dérégulation de gènes impliqués dans la réponse au stress oxydant. Malgré les avancés majeures dans la compréhension du locus morbide, les mécanismes exacts impliqués dans la FSHD ne sont pas totalement compris et aucun traitement curatif n’est disponible. Cependant, de nombreuses données montrent le rôle prépondérant du stress oxydant dans la FSHD. Récemment, nous avons caractérisé la présence d’un stress oxydant dans les biopsies musculaires et les prélèvements sanguins des patients atteints de FSHD. Nous avons démontré que ce stress est corrélé à une altération de la fonction musculaire chez ces patients et qu’une supplémentation en antioxydants adaptée améliore la fonction musculaire et réduit les dommages oxydatifs. Par ailleurs, nous avons démontré que les myoblastes dérivés des biopsies FSHD sont plus sensibles à des agents pro-oxydants et présentent des défauts de différenciation. L’objectif de nos travaux est de caractériser les mécanismes moléculaires impliqués dans la FSHD afin de faciliter la mise en place d’approches thérapeutiques. Ce projet de thèse original réunit à la fois une approche fondamentale et clinique.Grâce à la mise en place d’un nouveau modèle in vitro de culture primaire de myoblastes de patients atteints de FSHD, nous avons montré la présence d’un stress oxydant dans ces myoblastes corroborant les observations précédemment obtenues aux niveaux systémiques et musculaires chez ces patients. Par ailleurs, les traitements par des agents pro-oxydants (paraquat et peroxyde d'hydrogène) ont un effet différentiel sur l’expression des enzymes antioxydantes par rapport aux contrôles suggérant un défaut dans les mécanismes d'adaptation au stress oxydant chez les patients atteints de FSHD.D’autre part, afin d'améliorer les procédures de réadaptation pour les patients atteints de FSHD, nous avons proposé d'étudier la faisabilité, la sécurité et l'efficacité de l’entraînement de force par électrostimulation neuromusculaire (ESNM) pour contrer la faiblesse musculaire des quadriceps chez ces patients. Cette étude, en cours, semble être une stratégie de réhabilitation prometteuse pour les patients atteints de FSHD et n’a montré aucun effets indésirables jusqu’à présent. / Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disease, characterized by progressive weakness and atrophy of specific skeletal muscles. FSHD is linked to an inefficient repeat-mediated epigenetic repression of the D4Z4 macrosatellite repeat array on chromosome 4, resulting in the unappropriated expression in skeletal muscle of the double homeobox 4 (DUX4) retrogene. DUX4 overexpression leads to atrophic myotubes phenotype and dysregulation of antioxidant genes. Despite major progress in the understanding of the genetic locus, exact mechanisms that lead to FSHD defects are not completely understood and no curative treatment is available. However, several lines of evidence have proposed oxidative stress and myogenesis defect as the major biological processes affected in FSHD. Recently, we characterized oxidative stress in skeletal muscle biopsies and blood samples from patients with FSHD. We demonstrated that oxidative stress is associated with reduced physical performance in patients with FSHD and that antioxidants adapted strategy was effective to reduce oxidative stress and maintain muscle functions. Furthermore, satellite cell-derived myoblasts from these patients were more susceptible to pro-oxidant agents than control myoblasts and showed a defect in differentiation. The originality of this project relies on creating a synergy between basic and clinical research. The major goal of this work is to identify molecular mechanisms involved in FSHD oxidative stress in order to identify therapeutic approaches.Using in vitro cell model of FSHD, recently developed and optimized in our team, we demonstrate the presence of oxidative stress in FSHD primary myoblast cultures that corroborates previous observations at systemic and muscular levels. Furthermore, treatments with different pro-oxidant agents (paraquat and hydrogen peroxide) have a differential effect on the expression of antioxidant enzymes compared to controls, suggesting a defect in the oxidative stress adaptive response in FSHD myoblasts.Furthermore, in order to improve rehabilitation procedures for patients affected with FSHD, we proposed to investigate the feasibility, safety, and effectiveness of neuromuscular electrostimulation (NMES) strength training to counteract quadriceps muscle weakness in these patients. This ongoing study appears to be a promising rehabilitation strategy and shows no adverse effect for patients with FSHD.
|
183 |
La dysfonction musculaire du patient Broncho-pneumopathie Chronique Obstructive : à propos de quelques mécanismes impliqués dans l’amélioration de la fonction musculaire induite par les programmes de réentrainement / Muscle dysfunction of COPD patients : about some mechanisms involved in the improvement of muscle function induced by programs trainingAbdellaoui, Aldjia 14 October 2011 (has links)
Nous ne sommes plus autorisés à parler de la BPCO comme d'une simple maladie respiratoire mais plutôt comme une maladie générale. Parmi les atteintes systémiques, la dysfonction musculaire apparaît comme un facteur clé dans la physiopathologie de la BPCO car elle domine l'évolution de la maladie. Par ailleurs, le mystère autour de l'origine exacte de cette dysfonction reste encore entier. Il est maintenant bien établi qu'au cours des épisodes d'exacerbations, la dysfonction musculaire atteint son paroxysme, de plus en absence d'accompagnement musculaire spécifique la récupération est quasi nulle. Ainsi, les objectifs de ce travail de thèse ont étés la compréhension des mécanismes impliqués, d'une part, dans la dysfonction musculaire périphérique des patients BPCO stables et instables (après épisode d'exacerbation) et, d'autre part, dans l'amélioration de la fonction musculaire après différents programmes de réentraînements à l'effort. Dans le cadre de notre première étude, nous avons rapporté que l'oxydation des protéines, plus particulièrement les protéines mitochondriales était plus élevée dans le quadriceps des patients avec une BPCO stable. De plus, nous avons montré que les épisodes d'exacerbations sont associés à une augmentation de l'oxydation des protéines, au niveau mitochondriales et contractiles, corrélée à une dysfonction musculaire. Dans un second temps, nous avons envisagé un réentrainement par électrostimulation chez les patients en cours d'exacerbation et un réentrainement individualisé au seuil ventilatoire (intensité modérée) pour les patients cliniquement stables. Nos résultats indiquent que les deux programmes d'entraînement proposés préviennent le stress oxydant musculaire et améliorent la fonction musculaire périphérique chez les patients BPCO. Cependant, les adaptations mitochondriales restent limitées chez les patients BPCO stables comparativement aux sujets contrôles. En conclusion, nos résultats montrent que les protéines contractiles et mitochondriales sont la cible d'une augmentation du stress oxydant musculaire particulièrement au cours d'une exacerbation. Par ailleurs, des programmes de réentraînement adaptés à la sévérité de la fonction musculaire préviennent les dommages liés au stress oxydant musculaire et contribuent à l'amélioration de la fonction musculaire périphérique. Ainsi, nous pensons que nos résultats pourront probablement favoriser l'amélioration de la prescription du réentraînement à l'effort chez les patients BPCO. / We are no longer allowed to consider COPD as a simple respiratory disease but rather as a systemic disease. Among the systemic effects, muscle dysfunction appears to be a key factor in the pathogenesis of COPD because it strongly influences how the disease will progress. However, the exact origin of muscle dysfunction is still unknown. It is acknowledged that during COPD exacerbations muscle dysfunction is worsened and that, in the absence of post-exacerbation muscle training, recovery is slow and partial. Thus, the objectives of this thesis were first to try to understand the cellular mechanisms involved in the peripheral muscle dysfunction in patients with stable and unstable (after exacerbations) COPD and, then, to assess different programs of physical training to improve muscle function in such patients.Concerning the identification of the mechanisms underlying peripheral muscle dysfunction, we found that protein oxidation, particularly mitochondrial protein oxidation, is higher in the quadriceps of patients with stable COPD than in control subjects. In addition, we have shown that COPD exacerbations are associated with increased muscle oxidative damage of mitochondrial and contractile proteins that is correlated with the level of muscle dysfunction. We then assessed a training protocol using neuromuscular electrostimulation for patients during COPD exacerbation and a training program of moderate intensity (ventilatory threshold) for clinically stable patients. Our results indicate that the two training programs prevent oxidative stress and improve muscle function in COPD patients. However, mitochondrial adaptation is limited in patients with stable COPD compared with controls. In conclusion, our results show that contractile and mitochondrial proteins are the target of increased oxidative stress particularly during COPD exacerbation. However, training programs tailored to the severity of muscle dysfunction can prevent further oxidative damage and contribute to improving muscle function. Our findings might help improving the choice of training programs for patients with COPD.
|
184 |
Direct activation of endogenous Calcineurin A : biological impact of selective peptide aptamers / Activation directe de la calcineurine A endogène : impact biologique d’aptamères peptidiques sélectifs / Impatto biologico della diretta attivazione della Calcineurin A endogena via specifici aptameri peptidiciDibenedetto, Silvia 25 November 2011 (has links)
Des approches thérapeutiques visant à la stimulation de la régénération et/ou à l’inhibition des processus de dégénérescence neuromusculaire pourraient constituer des stratégies efficaces pour préserver le tonus musculaire des patients et augmenter ainsi leur espérance de vie. L’activation de la Calcineurine A (CnA), une phosphatase des sérines et thréonines, contrôle une large gamme de réseaux régulateurs dans le muscle squelettique, notamment en stimulant l’expression de gènes spécifiques des fibres musculaires lentes (de type I). La CnA est considérée comme un acteur clé de la réponse hypertrophique et du processus de régénération dans le muscle squelettique. L’activation de la CnA est ainsi considérée comme une stratégie potentielle pour stimuler la régénération musculaire dans les cas de myopathie. Nous avons identifié un aptamère peptidique qui active la CNA in vitro et in vivo. Dans un modèle murin d’atrophie musculaire induite par dénervation, l’aptamère a montré de significatives capacités thérapeutiques. L’effet curatif de l’aptamère a notamment été observable par une augmentation générale de la surface des muscles traités, mais aussi par un accroissement de la surface individuelle des fibres musculaires.Une augmentation du niveau de NFAT nucléaire dans ces fibres a été observée, en cohérence avec les capacités d’activation de la CnA par notre aptamère. Par ailleurs, une autre observation faite dans les muscles traités avec l’aptamère a été l’augmentation de noyaux centraux, caractéristiques de la présence de nouvelles fibres. Finalement, l’identification du site d’interaction entre la CnA et notre aptamère, permise par l’utilisation de plusieurs formes tronquées de la phosphatase, a offert un aperçu du mécanisme d’action de l’aptamère à l’échelle moléculaire. Dans l’ensemble, les études présentées ici ont offert la première démonstration qu’une activation directe de la CnA endogène a un impact significatif sur les processus cellulaires, résultant en la stimulation de la régénération musculaire et l’amélioration de l’état physiopathologique chez les modèles animaux utilisés. / Therapeutic approaches leading to the stimulation of regeneration, and/or inhibition of degeneration processes in neuromuscular disorders are believed to offer valid therapeutic strategies that would preserve muscle tone and contribute to the quality of life while lengthening patient life span. Activation of CalcineurinA (CnA), a threonine-serine phosphatase, controls gene regulatory programs in skeletal muscle by stimulating slow muscle fiber (type I) gene expression. This phosphatase has been also identified as a key mediator in the hypertrophic response and in skeletal muscle regeneration. Activation of CnA is, therefore, considered as a potentially interesting means of stimulating muscle regeneration in myopathies. We have identified a peptide aptamer that activates CnA in vitro, in cells and in vivo. In a mouse model for denervation-induced muscle atrophy, CnA-activating peptide aptamers show significant positive impact. This is reflected in larger overall muscle cross-sectional surface area due to an increased number of fibers and larger individual fiber surface area. Insight into the biological mechanism is afforded by observation of increased levels of nuclear NFAT transcription factor in these fibers, in agreement with peptide aptamer-mediated activation of CnA. Furthermore, a significant increase in central nuclei, characteristic of the presence of new fibers, is observed in muscles treated with the peptide aptamers specifically activating CnA. Identification of the specific binding site of the peptide aptamer on CnA was achieved using several truncations of the phosphatase, offering insight into the molecular mechanism of action. Together, these studies offer the first proof that direct activation of endogenous CnA has a measureable impact on cellular responses resulting in stimulation of muscle regeneration and enhancement of pathophysiological state in selected animal models. / Specifici approcci terapeutici diretti alla stimolazione della rigenerazione e/o dell’inibizione dei processi degenerativi in patologie neuromuscolari, sono considerati come strategie efficaci per preservare il tono muscolare e aumentare in questo modo la speranza di vita dei pazienti. L’attivazione della Calcineurin A (CnA), una treonina/serina fosfatasi, controlla una vasta gamma di vie di trasduzione nel muscolo scheletrico, stimolando in particolare l’espressione dei geni specifici delle fibre muscolari lente (tipo 1). La Cna rappresenta un elemento chiave nella risposta ipertrofica e nel processo di rigenerazione muscolare. Per questo motivo, l’attivazione della CnA é considerata come un’approccio terapeutico interessante per stimolare la rigenerazione muscolare nelle miopatie. Nel nostro laboratorio, abbiamo identificato un aptamero peptidico che attiva la CnA sia in vitro che in vivo. In un modello murino di atrofia muscolare indotta tramite denervazione, l’aptamero petidico risulta avere delle significative potenzialità terapeutiche. Tale effetto si riflette in un aumento della superficie totale delle sezioni trasversali dei muscoli trattati, dovuto all’aumento sia del numero delle fibre che alla loro superficie individuale. L’effetto dell’aptamero peptidico sull’attivazione della CnA , nelle fibre trattate in vivo é dimostrata dall’osservazione della localizzazione prevalentemente nucleare del fattore di trascrizione NFAT, principale substrato della CnA. Un notevole aumento di nuclei centrali, caratteristica principale del processo di rigenerazione muscolare, é inoltre osservato in queste fibre. L’identificazione del sito d’interazione dell’aptamero peptidico e la proteina tramite l’utilizzo di vari costrutti della CnA ha permesso di avanzare delle ipotesi sul meccanismo d’azione dell’aptamero a livello molecolare. In conclusione, gli studi esposti in questa tesi rappresentano la prima dimostrazione che la diretta attivazione della CnA endogena ha un notevole effetto sulla stimolazione della rigenerazione muscolare e porta al miglioramento dello stato fisio-patologico nei modelli murini utilizzati.
|
185 |
Role of GSK3β - MLK3 - p38γ MAPK Signalling in Satellite Cell Proliferation Regulation / Le rôle de la voie de signalisation GSK3β-MLK3-p38γ MAPK dans la régulation de la prolifération des cellules satellitesRahal, Pamela 02 July 2015 (has links)
MLK3 est une ser/thr MAP3K qui active la voie de signalisation des MAPKs dans différents types cellulaires. GSK3β interagit et active MLK3 en la phosphorylant sur le residue ser 792. Cependant, le rôle de MLK3 ainsi que l’interaction entre MLK3 et GSK3β n’ont pas été précédemment étudiés dans le muscle squelettique. La croissance post-natale du muscle et la régénération musculaire chez l’adulte sont dépendantes de l’accrétion de myonoyaux, un processus médié par les cellules satellites qui prolifèrent, se différencient puis fusionnent aux fibres préexistantes. Durant ma thèse, j’ai démontré que GSK3β agit en amont de MLK3 pour induire la prolifération des cellules satellites, et cela par l’activation de la voie de signalisation MLK3-p38γ MAPK. In vivo, les muscles de souris déficientes injectés par la CTX montrent une diminution du nombre de cellules satellites prolifératrices Pax7+/ki67+, ainsi qu’une accélération du processus de régénération. En conclusion, mes résultats évoquent un nouveau rôle de MLK3 dans le muscle squelettique pouvant servir pour vaincre les dystrophies musculaire. / MLK3 is a Ser/Thr MAP3K, which activates MAPKs signalling pathways in different cell types. The Ser/Thr kinase GSK3-β directly phosphorylate Ser 792 residue and activate MLK3. Since neither the role of MLK3, nor GSK3-β -MLK3 interaction have been previously investigated in muscle, the aim of my thesis was to elucidate their contribution in the regulation of muscle mass and physiology.Skeletal muscle post-natal growth and adult regeneration relies on satellite cell-mediated myonuclear accretion, during which, activated satellite cells, proliferate, differentiate and fuse with preexisting myotubes.I have demonstrated that in skeletal muscle, GSK3-β acts upstream of MLK3 to induce satellite cells proliferation through the induction of MLK3-p38γ MAPK signalling. Similarly, in vivo CTX-induced TA damage in MLK3 KO mice resulted in decreased number of proliferating Pax7+/ki67+ satellite cells, with a rapid muscle regeneration ability.These data suggest provide a yet unknown role of MLK3 in skeletal muscle tissue that could help in curing age-related muscle dystrophies.
|
186 |
Characterization of the dystrophic muscle by ²³Na NMR and ¹H NMR T₂ spectrum / Caractérisation du muscle dystrophique par RMN du ²³Na et spectre RMN T₂ du ¹HGerhalter, Teresa 12 July 2018 (has links)
Le but de la thèse était d'étudier la sensibilité de nouveaux biomarqueurs RMN visant à quantifier les changements pathologiques dans le muscle dystrophique. La dystrophie musculaire (DM) désigne un groupe hétérogène de maladies avec une atrophie musculaire progressive associée à un état de faiblesse. Elle est caractérisée par des degrés variables de nécrose, de régénération, de troubles de l'homéostasie ionique, d'inflammation chronique et finalement par le remplacement des muscles par du tissu fibro-graisseux. Mon objectif était d’évaluer la RMN du ²³Na et les techniques avancées de mesure du temps de relaxation transversal ¹H (T₂) en tant que des biomarqueurs sensibles et précoces. La RMN du ²³Na mesure les concentrations de sodium étroitement contrôlées et donne sa distribution dans le tissu. Cette information peut être utilisée pour évaluer l'homéostasie ionique et l'intégrité cellulaire. Cependant, la concentration in vivo en ²³Na est faible, la RMN du ²³Na souffre donc d'une faible sensibilité par rapport à ¹H. L’altération du T₂ ¹H du muscle, communément interprétée comme un indicateur de l'activité de la maladie, est liée à une variété d’événements non-spécifiques tels que l'œdème, l'inflammation ou la nécrose, qui précèdent le remplacement musculaire par la graisse. Des protocoles comprenant diverses méthodes de RMN du ²³Na et de ¹H T₂ ont été mis en œuvre pour évaluer les tissus musculaires squelettiques sains et dystrophiques sur des modèles animaux et sur patients. Ce travail fournit des preuves que la RMN du ²³Na pourrait offrir un biomarqueur sensible capable de surveiller l'altération spécifique du muscle dystrophique à un stade très précoce. / The aim of the thesis is to investigate the sensitivity of novel NMR outcome measures (OM) aiming to quantify pathological changes in the dystrophic muscle. Muscular dystrophy (MD) refers to a heterogeneous group of diseases with progressive muscle wasting and associated weakness characterized by variable degrees of necrosis, regeneration, ionic homeostasis disturbances, chronic inflammation, and, ultimately, resulting in the replacement of muscles by fibro-fatty tissue. My focus was on the evaluation of ²³Na NMR and advanced ¹H transverse relaxation time (T₂) techniques as early, sensitive OM. ²³Na NMR measures the tightly controlled sodium concentrations and distribution in skeletal muscle tissue. This biophysical information can be used to assess ion homeostasis and cell integrity. However, ²³Na NMR suffers from a low sensitivity and in vivo concentration compared to ¹H. Alterations in the muscle ¹H T₂, commonly interpreted as an indicator of disease activity, are linked to a variety of non-specific events like oedema, inflammation, or necrosis that precede the actual muscle replacement by fat. Protocols including different ²³Na NMR and ¹H T₂ methods were implemented to evaluate healthy and dystrophic skeletal muscle tissues of animal models and patients. This work provides evidence that ²³Na NMR could offer a sensitive outcome measure able to monitor specific alteration of the dystrophic muscle at a very early stage.
|
187 |
Évaluation du rôle de nouvelles isoformes de PDE dans la compartimentation des nucléotides cycliques dans les cellules musculaires lisses vasculaires et les cardiomyocytes / Evaluation of the role of new PDE isoforms in cyclic nucleotide compartmentation in vascular smooth muscle cells and cardiomyocytesZhang, Liang 28 September 2017 (has links)
Les deux nucléotides cycliques, AMPc et GMPc, sont des seconds messagers importants qui régulent une grande variété de fonctions cellulaires, en particulier la fonction contractile cardiovasculaire, la croissance des cardiomyocytaires et la prolifération des cellules musculaires lisses vasculaires. Les phosphodiestérases (PDE) dégradent les nucléotides cycliques et exercent un contrôle local de leur concentration intracellulaire. Une altération de la voie de signalisation des nucléotides cycliques est impliquée dans plusieurs situations pathologiques telles que l’hypertension artérielle systémique ou pulmonaire, l’athérosclérose et l'hypertrophie cardiaque. Ainsi, les PDE constituent de puissantes cibles thérapeutiques pour restaurer un contrôle correct des nucléotides cycliques. Onze familles de PDEs sont actuellement décrites, les PDE1-6 étant les plus étudiées et les PDE 7-11 représentant de nouvelles familles.L'objectif de cette thèse était d'étudier le rôle respectif de 4 familles de PDEs, la PDE1, famille stimulée par le complexe Ca2+/calmoduline, les PDE5 et PDE9 spécifiques du GMPc, et la PDE8 spécifique de l'AMPc, dans le contrôle des concentrations intracellulaires d'AMPc ([AMPc]i) et de GMPc ([GMPc]i) dans les cellules musculaires lisses aortiques de rat (CMLARs) et les myocytes cardiaques de rat en utilisant une approche pharmacologique facilitée par le développement de nouveaux inhibiteurs sélectifs de PDEs. Les activités d'hydrolyse d’AMPc et de GMPc ont été mesurées par dosage enzymatique, tandis que les [AMPc]i et [GMPc]i ont été suivies sur cellules isolées, in situ, en temps réel, grâce à l'utilisation de l'imagerie FRET (Fluorescence Resonance Energy Transfer). Dans les CMLARs en culture, une activité d'hydrolyse des nucléotides cycliques via les PDE1, PDE5 et PDE9 a été observée. Nous avons montré un rôle fonctionnel de la PDE1 non stimulée dans le contrôle de l’augmentation de la [GMPc]i induite par le peptide natriurétique de type C (CNP). Il est intéressant de noter que, lors de l’élévation de la concentration intracellulaire en Ca2+, la PDE1 exerce également un contrôle de la réponse GMPci induite par le monoxyde d’azote (NO) et de la réponse AMPc médiée par la stimulation des récepteurs β-adrénergiques (β-AR). La PDE5 exerce un rôle majeur dans la réponse GMPc provoquée par l'activation de la guanylyl cyclase (GC) soluble par le NO ou des GC membranaires par les peptides natriurétiques, CNP et ANP. En revanche, la PDE9 ne régule que la réponse GMPc induite par le NO dans les RASMC cultivées. Aucune activité ou fonction hydrolytique de l'AMPc n'a été révélée avec l'inhibiteur de la PDE8 dans les CMLARs ou les cardiomyocytes de rat. Dans ces cellules cardiaques, l'activité d'hydrolyse médiée par la PDE1 n'a été détectée que sur la réponse GMPc et uniquement en présence de Ca2 +/Calmoduline. L'inhibiteur de la PDE1 n'a que légèrement affecté la réponse AMPc médiée par les récepteurs β-AR, par augmentation du pic du signal FRET.En conclusion, notre travail démontre que dans les cellules musculaires lisses vasculaires, les PDE1, PDE5 et PDE9 exercent une régulation spécifique et locale des [AMPc]i et [GMPc]i, renforçant le rôle clé des PDEs dans la compartimentation subcellulaire de la signalisation des nucléotides cycliques. / The two cyclic nucleotides cAMP and cGMP are important second messengers that regulate a large variety of cellular functions, in particular cardiovascular contractile function, cardiomyocyte cell growth and vascular smooth muscle cell proliferation. Phosphodiesterases (PDEs) degrade cyclic nucleotides, and exert a fine local control of their intracellular concentration. Alteration of cyclic nucleotides signaling pathway is involved in several pathological situations such as systemic and pulmonary arterial hypertensions, atherosclerotic lesions and cardiac hypertrophy. Thus, PDEs constitute potent therapeutic targets to restore a right cyclic nucleotide function. Eleven families of PDEs are now described, PDE1-6 being the most studied and PDE 7-11 representing the new families.The aim of the present thesis was to investigate the respective role of 4 PDE families, the Ca2+/calmodulin-stimulated PDE1, the cGMP-specific PDE5 and PDE9, and the cAMP-specific PDE8, in controlling intracellular cAMP ([cAMP]i) and intracellular cGMP ([cGMP]i) concentrations in both rat aortic smooth muscle cells (RASMCs) and cardiac myocytes by using a pharmacological approach taken advantage of the development of new selective PDE inhibitors. Cyclic AMP- and cGMP-hydrolyzing activities were measured by enzymatic assay on cell lysate, whereas real-time [cAMP]i and [cGMP]i were followed in situ in isolated cells using Fluorescence Resonance Energy Transfer (FRET) imaging. In cultured RASMCs, PDE1, PDE5 and PDE9 hydrolyzing activities were observed. We showed a functional role of basal PDE1 in controlling [cGMP]i increased by the C-type Natriuretic Peptide (CNP). Interestingly, upon high intracellular Ca2+ concentration, PDE1 also regulated the Nitric Oxide (NO)-mediated [cGMP]i response and the β-adrenoceptor (β-AR)-mediated [cAMP]i response. PDE5 exerted a major role in degrading [cGMP]i produced by the activation of either the soluble guanylyl cyclase (GC) elicited by NO or the particulate GCs by the natriuretic peptides, CNP and ANP. By contrast, PDE9 only regulated NO-induced [cGMP]i increase in cultured RASMCs. No cAMP-hydrolyzing activity or function was revealed with the PDE8 inhibitor in RASMCs or cardiac myocytes. In rat cardiomyocytes, PDE1-mediated hydrolyzing activity was only detected on cGMP in the presence of Ca2+/calmodulin. Unexpectedly, PDE1 inhibition slightly affected the β-AR-mediated [cAMP]i response by increasing the peak of FRET signal.In conclusion, our work underscores the distinct role of PDE1, PDE5, and PDE9 in locally regulating the [cAMP]i and [cGMP]i, in vascular smooth muscle cells, strengthening the concept of PDEs as key actors of cyclic nucleotide subcellular compartmentation.
|
188 |
Étude physiopathologique de la myopathie auto-immune des souris NOD invalidées pour la voie de costimulation ICOS/ICOSL. / Physiopathological study of autoimmune myopathy in disabled NOD mice for the ICOS/ICOSL costimulation pathwayBourdenet, Gwladys 15 December 2017 (has links)
Les myopathies inflammatoires (MI) représentent un groupe hétérogène de maladies caractérisépar une faiblesse musculaire chronique et symétrique associée à une augmentation du taux sérique decréatine phosphokinase (CPK). Les MI sont actuellement subdivisées en 5 entitées : les dermatomyosites,les myopathies nécrosantes auto-immunes, la myosite à inclusion, la polymyosite et les myosites dechevauchement. A ce jour, le diagnostic des MI repose sur l’association de signes cliniques, decaractéristiques anatomopathologiques sur la biopsie musculaire et la présence d’auto-anticorps (aAc). Eneffet, la découverte d’aAc spécifiques et/ou associés aux myosites (MSA/MAA) a considérablementamélioré le diagnostic et le pronostic de la maladie. Cependant, un nombre non négligeable de patientsatteints de MI sont séronégatifs pour les MSA/MAA connus. Par ailleurs, la biopsie musculaire nécessaireau diagnostic est parfois guidée par imagerie par résonance magnétique (IRM), bien qu’il n’ait pas étéprouvé que les données d’imagerie soient corrélées aux signes histologiques. Enfin, le traitement des MIrepose sur l’utilisation d’immunosuppresseurs systémiques, une approche non spécifique de laphysiopathologie de la maladie. Les modèles animaux de MI les plus utilisés sont induits et nonspontanés : ils reposent principalement sur l’immunisation d’animaux contre des protéines telles que lamyosine, la protéine C ou l’histidyl-tRNA synthétase.Les souris NOD (non obese diabetic) sont le modèle classique d’étude du diabète de type 1.Lorsque ces souris sont invalidées pour la voie de costimulation lymphocytaire ICOS/ICOSL, les souris nedéveloppent plus de diabète mais présentent alors une atteinte musculaire. Dans ce travail, nous avonsétudié le phénotype et caractérisé l’atteinte musculaire des souris NOD Icos-/- et NOD Icosl-/-. Nous avonsainsi établi le 1er modèle murin spontané de MI, dont la physiopathologie est médiée par leslymphocytes T CD4+ et la sécrétion d’IFN-γ. Par ailleurs, ces souris présentent un déficit en lymphocytes Trégulateurs. Nous avons également identifié 4 auto-antigènes (aAg) candidats cibles d’aAc chez ces souris.La recherche des aAc correspondants aux aAg orthologues dans le sérum des patients atteints de MI apermis d’identifier, pour l’un d’entre eux, une minorité d’individus séropositifs grâce au développementd’un nouveau test ALBIA (addressable laser bead immunoassay). Il pourrait donc s’agir d’un nouveaubiomarqueur. Dans la perspective de nouvelles évaluations thérapeutiques, nous avons établi desdonnées préliminaires montrant que l’interleukine 2 à faibles doses permet de retarder l’apparition de lamaladie. Enfin, nous avons mis à profit ce modèle et démontré la corrélation entre les données généréespar IRM et par analyse histologique de l’inflammation, confortant le rôle de cette technique d’imagerie àla fois pour le diagnostic et le suivi des MI. / Inflammatory Myopathies (IM) are a heterogeneous group of diseases characterized bychronic and symmetrical muscle weakness associated to increased creatine phosphokinase (CPK)levels, according to entity concerned. Currently, IM are divided into 5 main entities:dematomyositis, immune-mediated necrotizing myopathies, inclusion body myositis, polymyositisand overlap myositis. Nowadays, IM diagnosis is based on clinical signs associated to pathologicfeatures on muscle biopsy and presence of auto-antibodies (aAb). Indeed, the discovery of myositisspecific and/or associated auto-antibodies (MSA/MAA) had considerably improve disease diagnosisand prognosis. However, substantial proportion of IM patients do not display any knownMSA/MAA. Furthermore, diagnosis requires muscle biopsy. This biopsy is sometimes guided bymagnetic resonance imaging (MRI), even though correlation between MRI findings and pathologicalfeatures is not established. Lastly, therapeutics used in IM treatment are systemicimmunosuppressive agents, i.e. not specific to IM pathophysiology. Animal models of IM are mainlybased on active immunization against different proteins as myosin, C protein orhistidyl-tRNA synthetase, while spontaneous models are required to identify pathophysiologicalmechanisms that new therapeutics should target.NOD (non obese diabetic) mice are the main model of type 1 diabetes. When invalidatedfor ICOS/ICOSL costimulation pathway, these mice do not develop diabetes but present musculardisorders. In this work, we study Icos-/- and Icosl-/- NOD mice phenotype and characterize theremuscle lesion. Thus, we have established this model as the first paradigm of IM. Pathophysiologicalstudy in these mice demonstrated that disease is CD4+ T cell dependent and associated to IFN-γproduction. Furthermore, we shown a quantitative defect in regulatory T cells. We have alsoidentified 4 candidate autoantigens (aAg) in Icos-/- and Icosl-/- NOD mice. Searching forcorresponding aAb against ortholog proteins in patients with IM, we identified for one of them, alow percentage of seropositive individuals using a new ALBIA (addressable laser beadimmunoassay). It could be identified as a new biomarker. In order to evaluate new therapies, weestablished preliminary data showing that low dose interleukin 2 therapy allow to delay diseaseonset. Lastly, we took advantage of this new model to demonstrate the correlation betweenMRI findings and histological inflammation features, confirming the valuable role of MRI for thediagnosis and monitoring of IM.
|
189 |
Le rôle des Annexines dans la réparation membranaire des cellules musculaires squelettiques humaines / Annexins in membrane repair of human muscle cellsCroissant, Coralie 09 December 2019 (has links)
Les dystrophies musculaires sont un groupe de pathologies génétiques qui cause une faiblesse et une perte progressive des muscles squelettiques. Parmi elles, la dystrophie des ceintures de type 2B (LGMD2B) est caractérisée par des mutations dans le gène de la dysferline, entrainant de sévères dysfonctionnements, dont un défaut de réparation membranaire. Les ruptures de la membrane plasmique sont des évènements physiologiques induits par des contraintes mécaniques, comme lors de la contraction des fibres musculaires. Les cellules eucaryotes possèdent donc une machinerie protéique assurant une réparation rapide de larges ruptures membranaires. La liste exhaustive des composants de la machinerie de réparation et leur mode d’action reste à établir.Les annexines (Anx) sont de petites protéines solubles, au nombre de 12 chez les mammifères, qui partagent la propriété de lier les membranes exposant des phospholipides chargés négativement en présence de Ca2+. De nombreuses études ont montré l’implication de certaines Anx (AnxA1, A2, A4, A5, A6 et A7) dans la réparation membranaire de différents types cellulaires (muscle, cancer, endothélium…) et dans différentes espèces (souris, poisson-zèbre, homme…). La présence des Anx dans le muscle squelettique, et la participation de plusieurs membres de cette famille dans la réparation membranaire, soulèvent la question d’un rôle collectif de ces protéines dans la protection et la réparation des ruptures du sarcolemme.Les objectifs de ce travail ont été 1) d’identifier les Anx impliquées dans la réparation membranaire des cellules musculaires squelettiques humaines, 2) développer une stratégie de microscopie corrélative pour étudier le site de rupture et la distribution subcellulaire des Anx à haute résolution, 3) élucider la fonction des Anx dans le mécanisme de réparation, et 4) analyser les Anx dans des cellules musculaires dystrophiques. Avec des approches en biologie cellulaire et moléculaire, et en microscopie de fluorescence et électronique, nous avons donc étudié le comportement des Anx lors d’un dommage du sarcolemme.Nous avons ainsi montré que les AnxA1, A2, A4, A5 et A6 sont exprimées dans les myoblastes et les myotubes humains, et sont recrutées au site de rupture quelques secondes après le dommage, en formant une structure dense à l’extérieur du myotube endommagé appelé domaine « cap ». De plus, nous avons pu déterminer l’ordre relatif de recrutement des Anx au site membranaire endommagé. Les premières Anx à être recrutées sont l’AnxA1, suivies des AnxA6 et A5, les moins sensibles au Ca2+. Les dernières Anx recrutées sont les plus sensibles au Ca2+, les AnxA4 puis A2, qui semblent se lier à des vésicules intracellulaires initialement éloignées du site de rupture. Nous avons également étudié l’ultrastructure du site de rupture à haute résolution. Nos résultats ont révélé que le domaine « cap » correspondait à une accumulation de matériel membranaire qui est associé au Anx. En s’appuyant sur nos résultats et la littérature, nous avons proposé un modèle de réparation membranaire, impliquant les AnxA1, A2, A4, A5 et A6, dans les cellules musculaires squelettiques humaines. Nous nous sommes également intéressés à l’expression des Anx dans des lignées de cellules musculaires dystrophiques issues de patients atteints de dystrophies musculaires des ceintures de type 2B (déficients en dysferline) et 1C (déficients en cavéoline-3). Nous avons ainsi montré que le contexte pathologique perturbait l’expression de certaines Anx, sans en modifier leur localisation subcellulaire.En conclusion, ce travail de thèse montre que plusieurs membres de la famille des Anx sont impliqués dans la réparation membranaire, et agissent de concert pour réparer un dommage de la membrane plasmique. L’implication des Anx dans d’autres pathologies, comme le cancer et la pré-éclampsie, renforce l’intérêt de leur étude dans les processus de réparation membranaire et en font une cible thérapeutique potentielle. / Muscular dystrophy encompasses a group of genetic disorders which cause progressive weakness and wasting of skeletal muscle. Among them, limb girdle muscular dystrophy type 2B (LGMD2B) is characterized by mutations in the dysferlin gene leading to several dysfunctions including a failure in cell membrane repair process. Cell membrane disruption is a physiological phenomenon induced by mechanical stress, such as contraction of muscle fibers. Thus, eukaryotic cells have a repair protein machinery ensuring a rapid resealing of large cell membrane ruptures. The exhaustive list of components of the repair machinery and their interplay remain to be established.The annexin (Anx) family consists of twelve soluble proteins in mammals and share the property of binding to membranes exposing negatively charged phospholipids in a Ca2+-dependent manner. Several studies have shown the involvement of Anx (AnxA1, A2, A4, A5, A6 and A7) in membrane repair of different cell types (muscle, cancer, endothelium…) in different species (mouse, zebrafish, human…). The presence of different Anx in skeletal muscle, together with the participation of several members of the Anx family in membrane repair processes, raise the question of a collective role of these proteins in the protection and repair of sarcolemma injuries.The PhD project aimed 1) at identifying Anx that are essential for membrane repair in human skeletal muscle cells, 2) developing a correlative light and electron microscopy to study the wounded site and the Anx distribution at high resolution, 3) elucidating the function of each Anx in this process and 4) analyzing Anx in dystrophic muscle cells. Using approaches including cellular and molecular biology, fluorescence microscopy and transmission electron microscopy, we studied the behavior of Anx during sarcolemma damage.We showed that AnxA1, A2, A4, A5 and A6 are expressed in human myoblasts and myotubes, and are recruited at the disruption site within seconds after the sarcolemmal damage, forming a dense structure outside the cell, named the “cap” domain. Furthermore, we determined the relative order of Anx recruitment at the disruption site. The first Anx recruited are AnxA1, followed by AnxA6 and A5, the less sensitive to Ca2+. The last Anx recruited are the most sensitive to Ca2+, AnxA4 and A2. AnxA2 and A4 are instead rapidly recruited to intracellular vesicles present deeper in the cytosol. We also studied the ultrastructure of the disruption site at high resolution. Our results revealed that the “cap” domain correspond to a disorganized membrane structure, associated with the Anx. Thanks to our results and the literature, we have proposed a model for membrane repair involving Anx in human skeletal muscle cells. We also looked at the expression of Anx in dystrophic muscle cell lines from patients with limb girdle muscular dystrophy type 2B (dysferline deficient) and 1C (deficient in cadaveoline-3). We have thus shown that the pathological context disrupts the expression of some Anx, without altering their subcellular location.In conclusion, this work shows that several members of the Anx family are involved in membrane repair and act together to repair plasma membrane damage. The implication of Anx in other pathologies, such as preeclampsia or cancer, reinforces the interest of their study in the process of membrane repair.
|
190 |
Validation in vivo de l'implication de nouveaux gènes impliqués dans le développement musculaire des mammifères / In vivo validation of the implication of new genes in mammalian muscle developmentHelary, Louise 19 December 2019 (has links)
Même si les acteurs majeurs du développement musculaire ont été identifiés et les voies de transductions décrites, d’autres régulateurs restent encore à découvrir. Un crible ARNi pratiqué sur un modèle cellulaire couramment utilisé, la lignée myoblastique C2C12, a identifié 20 nouveaux gènes potentiellement impliqués dans la myogenèse in vitro. Au cours de ma thèse, deux de ces gènes ont été invalidés sur modèle souris en utilisant la technologie CRISPR/Cas9 pour valider in vivo leur implication. Pour l’un d’entre eux, seuls les animaux hétérozygotes ont pu être étudiés puisqu’une létalité précoce a été observée chez les homozygotes mutés. Aucune anomalie du développement musculaire n’a été mise en évidence. Une étude plus fine dans les premières phases du développement embryonnaire nous a permis de montrer le rôle indispensable de cette protéine précocement. L’étude du second gène – dont les analyses se poursuivent – semble confirmer in vivo le rôle de ce gène au cours de la myogenèse. Pour éviter la survenue de létalité embryonnaire et observer rapidement les effets de l’invalidation d’autres gènes, une technique de transgenèse somatique s’appuyant sur l’ARN interférence a été mis en place via l’injection de lentivirus contenant une cassette d’expression de shRNA directement dans le tibialis antérieur des souris. La validation de cette approche a été faite sur le gène de la myostatine, régulateur négatif du développement musculaire, et a montré une diminution de l’expression du gène associée à une augmentation de l’aire des fibres musculaires. La même approche appliquée à trois autres gènes renforce l’hypothèse de l’implication d’un des gènes dans le développement musculaire. Cette approche permet donc un crible rapide « in vivo » de gènes identifiés in vitro. Cependant, certaines améliorations doivent être apportées au protocole au regard des résultats obtenus. / Even if the major actors and transduction pathways of muscle development have been identified, there are still unknown regulatory factors. An in vitro RNAi screening performed on C2C12 myoblastic cells has permitted to identify 20 novel genes potentially implicated in myogenesis. During my thesis, two of these genes were invalidated on mouse model using CRISPR/Cas9 technology in order to confirm their implication in vivo. For the first gene, due to an early lethality occurring in homozygous mutated animals, only heterozygous animals were studied and there was no muscular development anomaly detected. A refined study of earlier stages of embryonic development permitted to show the essential role of the protein in these phases. The study of the second gene, still in progress, seems to confirm in vivo the implication of the gene on the myogenesis. In order to avoid embryonic lethality due to germline invalidation and to observe more rapidly the effects of gene invalidation in muscle, we developed a technique of somatic transgenesis based on RNA interference. Lentivirus containing a shRNA expression cassette was injected directly into the tibialis anterior of mice. We validated this approach on Myostatin gene, a well-known negative regulator of muscle development, showing that the decrease of Myostatin gene expression was associated to an increase of muscle fibers area. The same approach was used with three genes and support the hypothesis of the implication of one of them in muscle development. Thus, this approach allows a rapid “in vivo” screening of in vitro identified genes. Nonetheless, some improvements should be brought on the protocol according to the first results.
|
Page generated in 0.1651 seconds