501 |
Screening for Candidate Brain Tumor Genes : Identifying Genes that Cooperate with Platelet-Derived Growth Factor in Glioma Development and ProgressionJohansson, Fredrik January 2006 (has links)
Malignant primary brain tumors, gliomas, often overexpress both platelet-derived growth factor (PDGF) ligands and receptors providing an autocrine and/or paracrine boost to tumor growth. Glioblastoma multiforme (GBM) is the most frequent glioma. Its aggressive and infiltrative growth renders it extremely difficult to treat. Median survival after diagnosis is currently only 14 months. The present thesis describes the use of retroviral tagging to identify candidate cancer-causing genes that cooperate with PDGF in brain tumor formation. Newborn mice were injected intracerebrally with a Moloney murine leukemia retrovirus carrying the sis/PDGF-B oncogene and a replication competent helper virus. Brain tumors with many characteristics of human glioblastomas developed after 13-42 weeks. Analysis of proviral integrations in the brain tumors identified almost 70 common insertion sites (CISs). These CISs were named brain tumor loci and harbored known but also putative novel cancer-causing genes. An array with over 15000 unique cDNAs was used to screen for differentially expressed genes in the mouse brain tumors compared to normal brain. Known tumor genes and markers of immature cells were upregulated in the tumors. Short latency tumors were further distinguished as fast growing and GBM-like. Long latency tumors resembled slow-growing oligodendrogliomas and contained significantly less integrations as compared to short latency tumors. The gene Prkg2, encoding the cGMP-dependent protein kinase II, was targeted by insertions in two brain tumors. Overexpression of Prkg2 in human glioma cell lines led to a reduction in colony formation, cell proliferation and migration. A glioma cell line expressing markers of immature stem cells showed loss of cell adhesion, G1 cell cycle arrest and decreased activation of the survival signaling protein Akt upon stimulation with a cGMP analog that activates the Prkg2 protein. The present thesis shows that proviral tagging may be a useful tool in the search for candidate glioma genes.
|
502 |
Vha16-1對果蠅腸道功能和壽命之調控 / Vha16-1 regulates intestinal function and lifespan in Drosophila melanogaster宋祐陞 Unknown Date (has links)
突變生成(mutagenesis)的方式有許多種,其中insertional mutagenesis為果蠅上常使用建立突變株的方式,本篇論文利用p[GawB]隨機插入果蠅genome中產生大量突變株,並篩選出會影響壽命的突變果蠅M2。進一步的實驗發現M2果蠅為Vha16-1基因的突變,並造成其mRNA表現量的下降,且在低卡路里(5% yeast、5% dextrose)與高卡路里(15% yeast、15% dextrose)的環境下homozygous mutant果蠅皆有減少平均壽命的現象。 Vha16-1所表現的蛋白為Vacuolar-type H+-ATPase (V-ATPase)上的subunit c,V-ATPase主要的功能為藉由消耗ATP來運送氫離子,並可調節胞器或胞外腔室的酸鹼平衡。V-ATPase主要表現在果蠅腸道的copper cell上,此細胞的功能類似於哺乳動物的胃壁細胞(parietal cells),與胃酸的分泌有關,我們發現M2 homozygous mutant果蠅因Vha16-1基因的缺失而有減少腸道酸化的情形發生,符合我們觀察到其在腸道上的表現。此一現象亦在另一株突變果蠅Vha16-1EP2372上加以證實。先前研究顯示果蠅腸道酸鹼平衡的破壞會影響到對養分的吸收,而Vha16-1的缺失亦導致M2果蠅體重與三酸甘油酯的上升,並增加對飢餓的耐受性,而這些代謝上的變化並不會改變M2果蠅對食物的攝取量或者生育能力。綜合這些實驗結果,我們推測Vha16-1基因的缺失會改變腸道功能,並影響果蠅體內代謝的狀態,表現出類似肥胖(obesity)的性狀,而終導致平均壽命的縮短。 / Mutagenesis can be induced by many ways and one of the most common approaches used in Drosophila is insertional mutagenesis. In this study, we screened pGawB insertion lines and identified M2 as a novel mutant with affected lifespan. The mutant allele of M2 carried a pGawB inseration at the 5’ end of the Vha16-1 gene, which caused a reduced Vha16-1 mRNA expression level and a shorten lifespan in homozygous mutants under both low calorie (5% yeast and 5% dextrose) and high calorie (15% yeast and 15% dextrose) foods. Vha16-1 encodes the c subunit of the Vacuolar-type H+-ATPase (V-ATPase) which is known to regulate pH homeostasis by pumping protons across organelle and plasma membranes. V-ATPase is highly expressed by the Copper cells which are located at the Drosophila middle midgut and functionally similar to the gastric acid producing parietal cells in mammals. Along the same line, we found that Vha16-1 pGawB drives GFP reporter was observed along the Drosophila gastrointestinal tract. M2 as well as the other Vha16-1 hypomorphic mutant line, EP2372, also showed reduced midgut acidification. This disrupted pH homeostasis in the Drosophila midgut region may be associated with increased body weight, triglyceride, and starvation resistance that observed in M2 mutants. The feeding behavior and reproductive function, however, were not affected in M2 mutant flies. In summary, our data suggested Vha16-1 deficits may alter normal intestinal function or internal metabolic status that ultimately induces obesity phenotypes with reduced lifespan.
|
503 |
Plant UDP-glucose Pyrophosphorylase : Function and RegulationMeng, Meng January 2008 (has links)
UDP-glucose pyrophosphorylase (UGPase) is an important enzyme of carbohydrate metabolism in all living organisms. The main aim of this thesis was to investigate the function and regulation of plant UGP genes as well as the UGPase proteins. Both in vivo and in vitro approaches were used, including the use of transgenic plants deficient in UGPase activity, and using purified proteins and their mutants to elucidate the structure/ function properties of UGPase. In both Arabidopsis and aspen, there are two highly similar UGP genes being actively transcribed, but not to the same extent. For both species, the UGP genes could be classified into two categories: a “house-keeping” gene and a subsidiary gene, with the former functioning universally in all the tissues to support the normal growth, whereas the latter usually expressed at a lower level in most of the organs/tissues tested. Besides, the two UGP genes were also found being differentially regulated under abiotic stress conditions, e.g. low temperature. By investigating the Arabidopsis T-DNA insertion mutants, which respectively have one or both of the UGP genes knocked out, we noticed that as little as 10% of the remaining UGPase activity could still support normal growth and development under controlled conditions, with little or no changes in carbohydrate contents, including soluble sugars (e.g. sucrose), starch and cell wall polysaccharides. Those plants, however, had a significantly decreased fitness under field conditions, i.e. the plants most deficient in UGPase activity produced up to 50% less seeds than in wt. Therefore, we concluded that UGPase is not a rate-limiting enzyme in carbohydrate synthesis pathways, but still is essential in viability of Arabidopsis plants. In order to characterize two Arabidopsis UGPase isozymes, both proteins were heterologously overexpressed in prokaryotic cells and purified by affinity chromatography. The two isozymes showed little differences in physical and biochemical properties, including substrate specificity, Km values with substrates in both directions of the reaction, molecular masses, isoelectric point (pI), and equilibrium constant. On the other hand, possibilities of distinct post-translational regulatory mechanisms were indicated, based on amino acid (aa) motif analyses, and on 3D analyses of derived crystal structures of the two proteins. We used the heterologous bacterial system also to overexpress barley UGPase and several of its mutants, both single mutants and those with whole domains/ exons deleted. As a result, we have identified several aa residues/ protein domains that may be essential for structural integrity and catalytic/ substrate-binding properties of the protein. For instance, we found that the last exon of UGPase (8 aa at the end of C-terminus) was important for the protein ability to oligomerize and that Lys-260 and the second-to-last exon were essential for pyrophosphate (but not UDP-glucose) binding. The data emphasized the critical role of central part of the active site (so called NB-loop) in catalysis, but also pointed out to the role of N-terminus in catalysis and oligomerization, but not substrate binding, and that of C-terminus in both catalysis/substrate binding and oligomerization.
|
504 |
MUTAGENESI IN RICINO (Ricinus communis L.)PER LA SELEZIONE DI LINEE PIU' ADATTE ALLA VALORIZZAZIONE AGRONOMICA / Castor Bean Mutagenesis (Ricinus Communis L.) in order to obtain lines for economic valorizationROSSI, DARIO 23 February 2012 (has links)
Il ricino (Ricinus communis L.) è una tra le dieci principali colture oleaginose a livello mondiale. La ricina, eliminata nei processi industriali per la produzione di olio di ricino, costituisce un rischio sia per lo sfruttamento della pianta come biomassa per la generazione di biocarburanti vegetali di seconda generazione, sia per la possibilità di ottenere scorie tossiche dalla lavorazione del materiale. L’utilizzo di tecniche di mutagenesi chimica, associata ad AFLP e metodiche di sequenziamento bersaglio specifiche (TILLING) hanno dimostrato la possibilità di ottenere e riconoscere, in tempi relativamente brevi e in modo specifico, mutazioni nel genoma d’interesse. A partire da una popolazione monovarietale di ricino, sono stati messi a punto diversi trattamenti (basati su EMS ed MNU), al fine di ottenere una popolazione mutagenizzata chimicamente al cui interno ricercare piante prive, o con un contenuto ridotto, di ricina nel seme e di conseguenza caratterizzate da un maggior valore agronomico ed economico. In seguito all’autoimpollinazione delle piante sopravvissute, analisi AFLP e di sequenziamento sulle generazioni successive hanno mostrato come le piante tendano ad accumulare variazioni nel loro genoma rispetto alla generazione precedente. Dall’analisi di sequenza di circa 1 Mb del gene per la ricina nella popolazione mutagenizzata non è emerso nessun cambiamento nella sequenza nucleotidica, in accordo con i risultati di altri studi in cui si è visto come la frequenza di mutagenesi possa variare con la specie considerata. / Castor (Ricinus communis L.) is one of the ten major oil crops worldwide. Ricin, eliminated in industrial processes for the production of castor oil, constitutes a risk to both the exploitation of the plant as a biomass to generate second-generation biofuels, both for getting toxic waste from the processing of the material. The use of chemical mutagenesis techniques, AFLP and methods associated with specific target sequences (TILLING) have demonstrated the ability to obtain and recognize, in a relatively short time, and specifically, mutations in the genome of interest. Starting from a population of castor-variety, have been developed different treatments (based on EMS and MNU), in order to obtain a chemically mutagenized population of plants with a reduced content of ricin in the seed and therefore characterized by a greater agronomic and economic value. After self-pollination of the survived plants, AFLP analysis and sequencing showed how plants tend to accumulate changes in their genome than the previous generation. A sequence analysis of about 1 Mb of the gene for ricin in mutagenized populations has revealed no change in the nucleotide sequence, in agreement with results of other studies in which we have seen that the frequency of mutation may vary with the species under consideration.
|
505 |
Modeling of transient protein-protein interactions: a structural study of the thioredoxin systemObiero, Josiah Maina 25 February 2011
ABSTRACT
Protein-protein interactions play a central role in most biological processes. One such biological process is the maintenance of a reducing environment inside the cell. To maintain an internal reducing environment, living cells have evolved two enzymatic systems (glutathione and thioredoxin (Trx) systems). The Trx system is composed of the enzyme TrxR and its substrate Trx. The two proteins constitute an important thiol-dependent redox system that catalyzes the reduction of many proteins that are responsible for a variety of cellular functions. The system relies on transient protein-protein interactions between Trx and TrxR for its function.
Cross-reactivity of components of the Trx system between species has been shown to be medically relevant. For example, Helicobacter pylori Trx (HP Trx) is thought to mediate catalytic reduction of human immunoglobulins and thus facilitate immune evasion. It has also been proposed that Helicobacter pylori gains access to the impenetrable gastric mucous layer by using secreted HP Trx to reduce the disulfide bonds present in the cysteine-rich mucin regions that are responsible for cross-linking mucin monomers. Therefore, disruption of secreted HP Trx-host protein interaction may result in restoration of the viscoelastic and hydrophobic protective properties of mucus. Previous studies aimed at understanding the nature of cross-reactivity of Trx system components among various species have shown that Trxs have higher affinity for cognate TrxRs (same species), than for TrxRs from different species. However, the basis for this specificity is not known. A growing body of evidence suggests that most protein-protein interactions are mediated by a small number of protein-protein interface residues, referred to as hot spot residues or binding epitopes. Therefore, understanding the biochemical basis of the affinity of proteins for their partners usually begins by identifying the hot spot residues responsible for the protein complex interactions.
In this study, the crystal structures of Deinococcus radiodurans thioredoxin reductase (DR TrxR) and Helicobacter pylori TrxR (HP TrxR) were determined at 1.9 Å and 2.4 Å respectively. Analysis of the Trx-binding sites of both structures suggests that the basis of affinity and specificity of Trx for TrxR is primarily due to the shape rather than the charge of the surface. In addition, the complex between Escherichia coli thioredoxin reductase (EC TrxR) and its substrate thioredoxin (EC Trx) was used to identify residues that are responsible for TrxR-Trx interface stability. Using computational alanine scanning mutagenesis and visual inspection of the EC TrxR-Trx interface, 22 EC TrxR side chains were shown to make contact across the TrxR-Trx interface. Although more than 20 EC TrxR side chains make contact across the TrxR-Trx interface, our results suggest that only 4 residues (F81, R130, F141, and F142) account for the majority of the EC TrxR-Trx interface stability. Individual replacement of equivalent DR TrxR residues (M84, K137, F148, F149) with alanine resulted in drastic changes in binding affinity, confirming that the four residues account for most of TrxR-Trx interface stability. These hot spot residues are surrounded by less important residues (hydrophobic and hydrophilic) that are also predicted to contribute to interface stability. F148 and F149 are invariant across bacterial TrxRs, however other residues that contact Trx are less conserved including M84 and K137. When M84 and K137 were changed to match equivalent E. coli TrxR residues (K137R, M84F); D. radiodurans TrxR substrate specificity was altered from its own Trx to that of E. coli Trx. The results suggest that a small subset of the TrxR-Trx interface residues are responsible for the majority of Trx binding affinity and specificity, a property that has been shown to general to protein-protein interfaces.
|
506 |
Investigation of the interactions between the bacterial homologue to actin, and the chaperone GroEL/ES through a combination of protein engineering and spectroscopy / Undersökning av interaktionerna mellan MreB, den bakteriella homologen till aktin, och chaperonet GroEL/ES genom en kombination av protein engineering och spektroskopiBlom, Lillemor January 2008 (has links)
Molecular chaperones help many proteins in the cell reach their native conformation. The mechanism with which they do this has been studied extensively, but has not been entirely elucidated. This work is a continuation of the study done by Laila Villebeck et al. (2007) on the conformational rearrangements in the eukaryotic protein actin in interaction with the eukaryotic chaperone TRiC. In this study the intentions were to analyze the protein MreB, a prokaryotic homologue to actin, when interacting with the prokaryotic chaperone GroEL. The purpose was to investigate if the mechanisms of GroEL and TRiC are similar. The analysis of the conformation of MreB was to be made through calculations of fluorescence resonance energy transfer (FRET) between two positions in MreB labeled with fluorescein. A MreB mutant was made through site-specific mutagenesis to enable labeling at a specific position. Another single mutant and a corresponding double mutant needed for these measurements were avaliable from earlier studies. The results from fluorescence measurements on these mutants indicated that the degree of labeling was insufficient for accurate determination of FRET. Suggestions are made on improvements of the experimental approach for future studies.
|
507 |
Modeling of transient protein-protein interactions: a structural study of the thioredoxin systemObiero, Josiah Maina 25 February 2011 (has links)
ABSTRACT
Protein-protein interactions play a central role in most biological processes. One such biological process is the maintenance of a reducing environment inside the cell. To maintain an internal reducing environment, living cells have evolved two enzymatic systems (glutathione and thioredoxin (Trx) systems). The Trx system is composed of the enzyme TrxR and its substrate Trx. The two proteins constitute an important thiol-dependent redox system that catalyzes the reduction of many proteins that are responsible for a variety of cellular functions. The system relies on transient protein-protein interactions between Trx and TrxR for its function.
Cross-reactivity of components of the Trx system between species has been shown to be medically relevant. For example, Helicobacter pylori Trx (HP Trx) is thought to mediate catalytic reduction of human immunoglobulins and thus facilitate immune evasion. It has also been proposed that Helicobacter pylori gains access to the impenetrable gastric mucous layer by using secreted HP Trx to reduce the disulfide bonds present in the cysteine-rich mucin regions that are responsible for cross-linking mucin monomers. Therefore, disruption of secreted HP Trx-host protein interaction may result in restoration of the viscoelastic and hydrophobic protective properties of mucus. Previous studies aimed at understanding the nature of cross-reactivity of Trx system components among various species have shown that Trxs have higher affinity for cognate TrxRs (same species), than for TrxRs from different species. However, the basis for this specificity is not known. A growing body of evidence suggests that most protein-protein interactions are mediated by a small number of protein-protein interface residues, referred to as hot spot residues or binding epitopes. Therefore, understanding the biochemical basis of the affinity of proteins for their partners usually begins by identifying the hot spot residues responsible for the protein complex interactions.
In this study, the crystal structures of Deinococcus radiodurans thioredoxin reductase (DR TrxR) and Helicobacter pylori TrxR (HP TrxR) were determined at 1.9 Å and 2.4 Å respectively. Analysis of the Trx-binding sites of both structures suggests that the basis of affinity and specificity of Trx for TrxR is primarily due to the shape rather than the charge of the surface. In addition, the complex between Escherichia coli thioredoxin reductase (EC TrxR) and its substrate thioredoxin (EC Trx) was used to identify residues that are responsible for TrxR-Trx interface stability. Using computational alanine scanning mutagenesis and visual inspection of the EC TrxR-Trx interface, 22 EC TrxR side chains were shown to make contact across the TrxR-Trx interface. Although more than 20 EC TrxR side chains make contact across the TrxR-Trx interface, our results suggest that only 4 residues (F81, R130, F141, and F142) account for the majority of the EC TrxR-Trx interface stability. Individual replacement of equivalent DR TrxR residues (M84, K137, F148, F149) with alanine resulted in drastic changes in binding affinity, confirming that the four residues account for most of TrxR-Trx interface stability. These hot spot residues are surrounded by less important residues (hydrophobic and hydrophilic) that are also predicted to contribute to interface stability. F148 and F149 are invariant across bacterial TrxRs, however other residues that contact Trx are less conserved including M84 and K137. When M84 and K137 were changed to match equivalent E. coli TrxR residues (K137R, M84F); D. radiodurans TrxR substrate specificity was altered from its own Trx to that of E. coli Trx. The results suggest that a small subset of the TrxR-Trx interface residues are responsible for the majority of Trx binding affinity and specificity, a property that has been shown to general to protein-protein interfaces.
|
508 |
Cephamycin C Production By Streptomyces Clavuligerus Mutants Impaired In Regulation Of AspartokinaseZeyniyev, Araz 01 September 2006 (has links) (PDF)
Aspartokinase is the first enzyme of the aspartate family amino acids biosynthetic pathway. Cephamycin C is a & / #946 / -lactam antibiotic produced as a secondary metabolite via the enzymatic reactions in the lysine branch of this pathway in Streptomyces clavuligerus. The aspartokinase activity of S. clavuligerus is under concerted feedback inhibition by two of the end product amino acids, lysine plus threonine. It is also known that carbon flow through the lysine branch of the aspartate pathway is rate limiting step in the formation of cephamycin C. Therefore, genetic alterations in the regulatory regions of the aspartokinase enzyme are expected to lead to an increased cephamycin C production.
The aim of this study was to obtain S. clavuligerus mutants that possess aspartokinase enzyme insensitive to feedback inhibition by lysine and threonine, identification of the mutation(s) accounting for the resistance being the ultimate goal. For this aim, chemical mutagenesis was employed to increase random mutation rate and a population of lysine anti-metabolite resistant S. clavuligerus mutants that can grow in the presence of S-(2-aminoethyl)-L-cysteine was obtained. The mutants were screened for their aspartokinase insensitivity via enzyme assays and one mutant exhibiting the highest level of deregulation was assessed for its cephamycin C production. The results revealed a 2-fold increase in specific production of the antibiotic.
As a member of & / #946 / -lactam class antibiotics, cephamycin C has an importance in medicine. Therefore, the mutant strain obtained might be a candidate for industrial production of the compound.
|
509 |
Development of a novel dehydrogenase and a stable cofactor regeneration systemVázquez-Figueroa, Eduardo 20 August 2008 (has links)
The first goal of this work focused on the development of an amine dehydrogenase (AmDH) from a leucine dehydrogenase using site-directed mutagenesis. We aimed at reductively aminating a prochiral ketone to a chiral amine by using leucine dehydrogenase (LeuDH) as a starting template. This initial work was divided into two stages. The first focused mutagenesis to a specific residue (K68) that we know is key to developing the target functionality. Subsequently, mutagenesis focused on residues known to be in close proximity to a key region of the substrate (M65 and K68). This approach allowed for reduced library size while at the same time increased chances of generating alternate substrate specificity. An NAD+-dependent high throughput assay was optimized and will be discussed. The best variants showed specific activity in mU/mg range towards deaminating the target substrate.
The second goal of this work was the development of a thermostable glucose dehydrogenase (GDH) starting with the wild-type gene from Bacillus subtilis. GDH is able to carry out the regeneration of both NADH and NADPH cofactors using glucose as a substrate. We applied the structure-guided consensus method to identify 24 mutations that were introduced using overlap extension. 11 of the tested variants had increased thermal stability, and when combined a GDH variant with a half-life ~3.5 days at 65℃ was generated--a ~10⁶increase in stability when compared to the wild-type.
The final goal of this work was the characterization of GDH in homogeneous organic-aqueous solvent systems and salt solutions. Engineered GDH variants showed increased stability in all salts and organic solvents tested. Thermal stability had a positive correlation with organic solvent and salt stability. This allowed the demonstration that consensus-based methods can be used towards engineering enzyme stability in uncommon media. This is of significant value since protein deactivation in salts and organic solvents is not well understood, making a priori design of protein stability in these environments difficult.
|
510 |
Mutational analysis and engineering of the human vitamin D receptor to bind and activate in response to a novel small molecule ligandCastillo, Hilda S. 22 January 2011 (has links)
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate the expression of genes involved in all physiological activities. Disruption in NR function (e.g. mutations) can lead to a variety of diseases; making these receptors important targets for drug discovery. The ability to bind a broad range of 'drug-like' molecules also make these receptors attractive candidates for protein engineering, such that they can be engineered to bind novel small molecule ligands, for several applications. One application is the creation of potential molecular switches, tools that can be used for controlling gene expression.
Gaining knowledge of specific molecular interactions that occur between a receptor and
its ligand is of interest, as they contribute towards the activation or repression of target genes. The focus of this work has been to investigate the structural and functional relationships between the human vitamin D receptor (hVDR) and its ligands. To date, mutational assessments of the hVDR have focused on alanine scanning and residues typically lining the ligand binding pocket (LBP)that are involved in direct interactions with the ligand. A comprehensive analysis of the tolerance of these residues in the binding and activation of the receptor by its ligands has not been performed. Furthermore, residues not in contact with the ligand or that do not line the LBP may also play an important role in determining the activation profiles observed for NRs, and therefore need to be explored further.
In order to engineer and use the hVDR in chemical complementation, a genetic selection
system in which the survival of yeast is linked to the activation of a NR by an agonist, the hVDR
gene was isolated from cDNA. To gain insight into how chemical and physical changes within the ligand binding domain (LBD) affect receptor-ligand interactions, libraries of hVDR variants exploring the role and tolerance of hVDR residues were created. To develop a comprehensive mutational analysis while also engineering the hVDR to bind a novel small molecule ligand, a rational and a random mutagenic approach were used to create the libraries. A variant, hVDRC410Y, that displayed enhanced activity with lithocholic acid (LCA), a known hVDR ligand, and novel activation with cholecalciferol (chole), a precursor of the hVDR's natural ligand known not to activate the wild-type hVDR, was discovered.
The presence of a tyrosine at the C410 position resulting in novel activation profiles with both LCA and chole, and the fact that this residue does not line the hVDR's LBP led to interest in determining whether a physical or chemical property of the residue was responsible for the observed activity. When residue C410 was further assessed for its tolerance to varying amino acids, the results indicated that bulkiness at this end of the pocket is important for activation with these ligands. Both LCA and chole have reduced molecular volumes compared to the natural ligand, 1alpha, 25(OH)2D3. As a result, increased bulkiness at the C410 position may contribute additional molecular interactions between the receptor and ligands.
Results obtained throughout this work suggest that the end of the hVDR's LBP consisting
of two ligand anchoring residues, H305 and H397, and residue C410 tolerates structural variations, as numerous variants with mutations at these positions displayed enhanced activity. The receptor contains two tyrosines, Y143 and Y147, which were targeted for mutagenesis in one
of the rationally designed libraries, located at the exact opposite end of the pocket. In an effort to gain further insight into the role of these residues at the other end of the LBP, mutagenesis
assessing the tolerance of tyrosines 143 and 147 was performed. Overall, most changes at these
positions proved to be detrimental to the function of the receptor supporting the hypothesis that
this end of the LBP is less tolerant of structural changes, compared to the opposite end consisting
of residues H305, H397 and C410.
Overall, a better understanding of the structural and functional relationships between the human vitamin D receptor (hVDR) and its ligands was achieved. The effects of residue C410 on specificity and activation with the different ligands studied were unforeseen, as this residue does not line the receptor's ligand binding pocket (LBP). However, they serve as an example of the
significant impact distant residues can have on receptor activation and also emphasize the
important role physical properties of residues, such as volume, can play for specific ends of the
LBP compared to chemical properties.
|
Page generated in 0.0677 seconds