• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 326
  • 111
  • 58
  • 41
  • 12
  • 12
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 5
  • 4
  • Tagged with
  • 735
  • 155
  • 150
  • 105
  • 101
  • 76
  • 69
  • 68
  • 58
  • 57
  • 51
  • 42
  • 40
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
651

Identification Of Genes Involved In The Production Of Novel Antimicrobial Products Capable Of Inhibiting Multi-Drug Resistant Pathogens

Harris, Ryan A. 12 August 2019 (has links)
No description available.
652

Identification of a putative two-component gold-sensor histidine kinase regulator in Stenotrophomonas maltophilia OR02

Zack, Andrew M. 11 May 2020 (has links)
No description available.
653

Veratridine Can Bind to a Site at the Mouth of the Channel Pore at Human Cardiac Sodium Channel NaV1.5

Gulsevin, Alican, Glazer, Andrew M., Shields, Tiffany, Kroncke, Brett M., Roden, Dan M., Meiler, Jens 20 January 2024 (has links)
The cardiac sodium ion channel (NaV1.5) is a protein with four domains (DI-DIV), each with six transmembrane segments. Its opening and subsequent inactivation results in the brief rapid influx of Na+ ions resulting in the depolarization of cardiomyocytes. The neurotoxin veratridine (VTD) inhibits NaV1.5 inactivation resulting in longer channel opening times, and potentially fatal action potential prolongation. VTD is predicted to bind at the channel pore, but alternative binding sites have not been ruled out. To determine the binding site of VTD on NaV1.5, we perform docking calculations and high-throughput electrophysiology experiments in the present study. The docking calculations identified two distinct binding regions. The first site was in the pore, close to the binding site of NaV1.4 and NaV1.5 blocking drugs in experimental structures. The second site was at the “mouth” of the pore at the cytosolic side, partly solvent-exposed. Mutations at this site (L409, E417, and I1466) had large effects on VTD binding, while residues deeper in the pore had no effect, consistent with VTD binding at the mouth site. Overall, our results suggest a VTD binding site close to the cytoplasmic mouth of the channel pore. Binding at this alternative site might indicate an allosteric inactivation mechanism for VTD at NaV1.5
654

The Inactivation Mechanisms of Shaker IR and Kv2.1 Potassium Channels: Lessons from Pore Mutation

Jamieson, Quentin 11 June 2014 (has links)
No description available.
655

Investigating the Role of Subunit III in the Structure and Function of Rhodobacter Sphaeroides Cytochrome C Oxidase

Geyer, R. Ryan 31 July 2007 (has links)
No description available.
656

Structural and biochemical insights into catalytic mechanisms of carotenoid cleavage oxygenases

Sui, Xuewu 08 February 2017 (has links)
No description available.
657

Discovery Of Intracellular Growth Requirements of the Fungal Pathogen <i>Histoplasma capsulatum</i>

Zemska, Olga 28 August 2012 (has links)
No description available.
658

MAS NMR on a Red/Far-Red Photochromic Cyanobacteriochrome All2699 from Nostoc

Xu, Qian-Zhao, Bielytskyi, Pavlo, Otis, James, Lang, Christina, Hughes, Jon, Zhao, Kai-Hong, Losi, Aba, Gärtner, Wolfgang, Song, Chen 10 January 2024 (has links)
Unlike canonical phytochromes, the GAF domain of cyanobacteriochromes (CBCRs) can bind bilins autonomously and is sufficient for functional photocycles. Despite the astonishing spectral diversity of CBCRs, the GAF1 domain of the three-GAF-domain photoreceptor all2699 from the cyanobacterium Nostoc 7120 is the only CBCR-GAF known that converts from a red-absorbing (Pr) dark state to a far-red-absorbing (Pfr) photoproduct, analogous to the more conservative phytochromes. Here we report a solid-state NMR spectroscopic study of all2699g1 in its Pr state. Conclusive NMR evidence unveils a particular stereochemical heterogeneity at the tetrahedral C31 atom, whereas the crystal structure shows exclusively the R-stereochemistry at this chiral center. Additional NMR experiments were performed on a construct comprising the GAF1 and GAF2 domains of all2699, showing a greater precision in the chromophore–protein interactions in the GAF1-2 construct. A 3D Pr structural model of the all2699g1-2 construct predicts a tongue-like region extending from the GAF2 domain (akin to canonical phytochromes) in the direction of the chromophore, shielding it from the solvent. In addition, this stabilizing element allows exclusively the R-stereochemistry for the chromophore-protein linkage. Site-directed mutagenesis performed on three conserved motifs in the hairpin-like tip confirms the interaction of the tongue region with the GAF1-bound chromophor
659

I. Etablierung eines induzierbaren Suizidsystems zur Identifizierung von Mutanten der salizylsäureabhängigen Signaltransduktion II. Expression von tierischen Signaltransduktionskomponenten in Tabak zur Herstellung eines induzierbaren Expressionssystems / I. Construction of an inducible suicide system to identify mutants of the salicylic acid dependent signal transduction chain II. Expression of animal signal transduction components in tobacco to produce an inducible expression system

Brenner, Wolfram 20 June 2002 (has links)
No description available.
660

Gezielte Modifikation sowie Analyse der Bindungseigenschaften des Histidin Bindeproteins aus Escherichia coli und des GCN4 Leucinzippers aus Saccharomyces cerevisiae / Modification and analysis of the binding properties of the histidine-binding protein from Escherichia coli and the GCN4-Leucine zipper from Saccharomyces cerevisiae

Wittmann, Julia 31 October 2002 (has links)
No description available.

Page generated in 0.0908 seconds