Spelling suggestions: "subject:"nanoclusters""
21 |
Formation of Si Nanocrystals for Single Electron Transistors by Ion Beam Mixing and Self-Organization – Modeling and SimulationPrüfer, Thomas 16 June 2020 (has links)
The replacement of the conventional field effect transistor (FET) by single electron transistors (SET) would lead to high energy savings and to devices with significantly longer battery life. There are many production approaches, but mostly for specimens in the laboratory. Most of them suffer from the fact that they either only work at cryogenic temperatures, have a low production yield or are not reproducible and each unit works in a unique way. A room temperature (RT) operating SET can be configured by inserting a small (few nm diameters) Si-Nanocrystal (NC) into a thin (<10 nm) SiO2 interlayer in Si. Industrial production has so far been excluded due to a lack of manufacturing processes. Classical technologies such as lithography fail to produce structures in this small scale. Even electron beam lithography or extreme ultraviolet lithography are far from being able to realize these structures in mass production.
However, self-organization processes enable structures to be produced in any order of magnitude down to atomic sizes. Earlier studies realized similar systems using a layer of Si-NCs to fabricate a non-volatile memory by using the charge of the NCs for data storage. Based on this, it is very promising to use it for the realization of the SET. The self-organization depends only on the start configuration of the system and the boundary conditions during the process. These macroscopic conditions control the self-formed structures. In this work, ion beam irradiation is used to form the initial configuration, and thermal annealing is used to drive self-organization. A Si/SiO2/Si stack is irradiated and transforms the stack into Si/SiOx/Si by ion beam mixing (IBM) of the two Si/SiO2 interfaces. The oxide becomes metastable and the subsequent thermal treatment induces selforganization, which might leave a single Si-NC in the SiO2 layer for a sufficiently small mixing volume. The transformation of the planar SiOx layer (restriction only in one dimension) into a small SiOx volume (restriction in all three dimensions) is done by etching nanopillars with a diameter of less than 10nm. This forms a small SiOx plate embedded between two Si layers. The challenge is to control the self-organization process. In this work, simulation was used to investigate dependencies and parameter optimization.
The ion mixing simulations were performed using binary collision approximation (BCA), followed by kinetic Monte Carlo (KMC) simulations of the decomposition process, which gave good qualitative agreement with the structures observed in related experiments. Quantitatively, however, the BCA simulation seemed to overestimate the mixing effect. This is due to the neglect of the positive entropy of the Si-SiO2 system mixing, i.e. the immiscibility counteracts the collisional mixing. The influence of this mechanism increases with increasing ion fluence. Compared to the combined BCA and KMC simulations, a larger ion mixing fluence has to be applied experimentally to obtain the predicted nanocluster morphology. To model the ion beam mixing of the Si/SiO2 interface, phase field methods have been applied to describe the influence of chemical effects during the irradiation of buried SiO2 layers by 60 keV Si+ ions at RT and thermal annealing at 1050°C. The ballistic collisional mixing was modeled by an approach using Fick’s diffusion equation, and the chemical effects and the annealing were described by the Cahn Hilliard equation. By that, it is now possible to predict composition profiles of Si/SiO2 interfaces during irradiation. The results are in good agreement with the experiment and are used for the predictions of the NCs formation in the nanopillar.
For the thermal treatment model extensions were also necessary. The KMC simulations of Si-SiO2 systems in the past were based on normed time and temperature, so that the diffusion velocity of the components was not considered. However, the diffusion of Si in SiO2 and SiO2 in Si differs by several orders of magnitude. This cannot be neglected in the thermal treatment of the Si/SiO2 interface, because the processes that differ in speed in this order of magnitude are only a few nanometers apart. The KMC method was extended to include the different diffusion coefficients of the Si-SiO2 system. This allows to extensively investigate the influence of the diffusion. The phase diagram over temperature and composition was examined regarding decomposition (nucleation as well as spinodal decomposition) and growing of NCs.
Using the methods and the knowledge gained about the system, basic simulations for the individual NC formation in the nanopillar were carried out. The influence of temperature, diameter, and radiation fluence was discussed in detail on the basis of simulation results.
|
22 |
Self-Organization of Nanocluster delta-Layers at Ion-Beam-Mixied Si-SiO2 InterfacesRöntzsch, Lars January 2003 (has links)
This diploma thesis presents experimental evidence of a theoretical concept which predicts the self-organization of delta-layers of silicon nanoclusters in the buried oxide of a MOS-like structure. This approach of "bottom-up" structuring might be of eminent importance in view of future semiconductor memory devices. Unconventionally, a 15nm thin SiO2 layer, which is enclosed by a 50nm poly-Si capping layer and the Si substrate, is irradiated with Si+ ions. Ion impact drives the system to a state far from thermodynamic equilibrium, i.e. the local composition of the target is modified to a degree unattainable in common processes. A region of SiOx (x<2) - where x is a function of depth - is formed which is not stable. During annealing, the system relaxes towards equilibrium, i.e. phase separation (via spinodal decomposition and nucleation) sets in. Within a certain time window of annealing, the structure of the system matches with a structure similar to the multidot non-volatile memory device, the principal character of which is a 2D layer of Si nanoclusters of ~3nm in diameter which is embedded in a 3D SiO2 matrix at a distance of ~3nm from the Si substrate. The physical mechanisms of ion mixing of the two Si-SiOx interfaces and subsequent phase separation, which result in the desired sample structure, are elucidated from the viewpoint of computer simulation. In addition, experimental evidence is presented based on various methods, including TEM, RBS, and SIMS. Of particular importance is a novel method of Si nanocluster decoration which applies Ge as contrast enhancing element in TEM studies of tiny Si nanoclusters.
|
23 |
Catalyst Design and Mechanism Study with Computational Method for Small Molecule ActivationLiu, Muqiong 01 January 2018 (has links)
Computational chemistry is a branch of modern chemistry that utilizes the computers to solve chemical problems. The fundamental of computational chemistry is Schrödinger equation. To solve the equation, researchers developed many methods based on BornOppenheimer Approximation, such as Hartree-Fock method and DFT method, etc. Computational chemistry is now widely used on reaction mechanism study and new chemical designing. In the first project described in Chapter 3, we designed phosphine oxide modified Ag3, Au3 and Cu3 nanocluster catalysts with DFT method. We found that these catalysts were able to catalyze the activation of H2 by cleaving the H-H bond asymmetrically. The activated catalyst-2H complex can be further used as reducing agent to hydrogenate CO molecule to afford HCHO. The mechanism study of these catalysts showed that the electron transfer from electron-rich metal clusters to O atom on the phosphine oxide ligand is the major driving force for H2 activation. In addition, different substituent groups on phosphine oxide ligand were tested. Both H affinity of metal and the substituent groups on ligand can both affect the activation energy. Another project described in Chapter 4 is the modelling of catalyst with DFT. We chose borane/NHC frustrated Lewis pair (FLP) catalyzed methane activation reaction as example to establish a relationship between activation energy and catalysts’ physical properties. After performing simulation, we further proved the well-accepted theory that the electron transfer is the main driving force of catalysis. Furthermore, we were able to establish a linear relationship for each borane between activation energy and the geometrical mean value of HOMO/LUMO energy gap (ΔEMO). Based on that, we introduced the formation energy of borane/NHC complex (ΔEF) and successfully established a generalized relationship between Ea and geometrical mean value of ΔEMO and ΔEF. This model can be used to predict reactivity of catalysts.
|
24 |
Nano and Nanostructured Materials for Optical ApplicationsChantharasupawong, Panit 01 January 2015 (has links)
Nano and nanostructured materials offer unique physical and chemical properties that differ considerably from their bulk counterparts. For decades, due to their fascinating properties, they have been extensively explored and found to be beneficial in numerous applications. These materials are key components in many cutting-edge optic and photonic technologies, including photovoltaics, waveguides and sensors. In this dissertation, the uses of nano and nanostructured materials for optical applications are investigated in the context of optical limiting, three dimensional displays, and optical sensing. Nanomaterials with nonlinear optical responses are promising candidates for self-activating optical limiters. In the first part of this study, optical limiting properties of unexplored nanomaterials are investigated. A photoacoustic detection technique is developed as an alternative characterization method for studying optical nonlinearities. This was done with an indigenously developed setup for measuring the photoacoustic signals generated from samples excited with a pulse laser. A theoretical model for understanding the experimental observations is presented. In addition, the advantages of this newly developed technique over the existing methods are demonstrated. Blending optical sensitizers with photoconducting polymers and chromophores results in a polymer composite that is able to record a light grating. This composite can be used as recording media in 3D holographic display technology. Here, 2D nano materials, like graphenes, are used as optical sensitizers to improve the response time of a photorefractive polymer. The addition of graphenes to a PATPD/ECZ/7-DCST composite results in a three-fold enhancement in response time and therefore faster recording speed of the medium. The faster build-up time is attributed to better charge generation and mobility due to the presence of graphenes in the composite. Lastly, a facile nanofabrication technique is developed to produce metallic nanostructures with a tunable plasmonic response. The enhancement of the light-matter interactions due to these nanostructures in sensing an analyte is demonstrated.
|
25 |
COMPUTATIONAL STUDIES ON THE EXCITONIC ENERGY SPLITTING IN OLIGOACENE MOLECULAR SOLIDTestoff, Thomas 01 December 2023 (has links) (PDF)
Electronic band structure in the solid and its relation to the energy gap of the monomer is all about studying how intermolecular interactions change electronic structure. In experimental studies this results in broader absorption bands and by extension a lowering of the LUMO and raising of HOMO energy to the conduction and valence band edges respectively. This electronic change involves splitting of the molecular energy levels into bands of non-degenerate energies and can be calculated either quantum mechanically (QM) or by classical force field models through the change in ionization potential (IP) and electron affinity (EA), called the apparent polarization energy, and its relation to HOMO and LUMO through Koopman’s and Janak’s theorem. The study of the formation of a ‘band’ like structure is important in regimes and systems where conventional quantum mechanical (QM) methods become infeasible. Specifically, when systems are non-periodic and plane wave approximations fail, such as in amorphous structures, or in regimes between where the plane wave bulk approximation and the gas phase single molecule QM methods where the scaling of conventional gas phase atomic orbital methods becomes exorbitantly costly and the plane wave approximation fails for open systems. Therefore, the objective of this work is to highlight the changing optoelectronic properties of molecular solids within this regime using both density functional theory and molecular mechanics. The scalability of DFT limits it to multimer systems, leaving the larger nanoscale materials to be studied using molecular mechanics. Here we have utilized a variety of dispersion sensitive functionals in order to characterize the intermolecular interactions and splitting energies in small multimers of some of the smallest oligoacene species, benzene and anthracene. Benzene and anthracene nanoclusters from 0.8 to 5.0 nm in radius have had their changes in electronic band energy calculated due to polarization using the AMOEBA force field and bulk values have also been extrapolated. AMOEBA’s explicit polarization terms allow for direct handling of the polarization energy, control of nanocluster size and shape in a regime that QM methods cannot probe efficiently, and the ability to specify the position of charge carriers in order to examine specific electronic surface behavior. Using differing DFT methods the change in the HOMO and LUMO energy from the single molecule state to multimers of the size of 10 and 12 units for anthracene and benzene respectively. The HOMO band of benzene was raised by ~0.3 eV and LUMO lowered by 0.35 eV. In anthracene the HOMO was lowered by ~0.1 eV and the LUMO by ~0.15 eV. These values remain within 0.1 eV across all dispersion functionals. Using Ren’s parameterization procedure and MP2 for the AMOEBA force field he apparent polarization was calculated. The extrapolated values for the change in the HOMO and LUMO of benzene from single molecule to bulk were 1.42 eV and 0.49 eV respectively. For anthracene the crystalline bulk changes the HOMO and LUMO by 1.34 eV and 1.16 eV respectively. The regression for bulk extrapolation also predicts that benzene clusters of 12 units will be 0.77 eV for HOMO and -0.41 eV for LUMO. Similarly for an anthracene cluster made up of 10 molecular units the apparent polarization is predicted through linear regression to be 0.58 eV for HOMO and 0.53 eV for LUMO.
|
26 |
S-Schichtproteine als molekulare Bausteine zur Funktionalisierung mikroelektronischer Sensorstrukturen / S-layer proteins as molecular building blocks for functionalisation of microelectronic sensor structuresBlüher, Anja 28 November 2008 (has links) (PDF)
Bakterielle Zellhüllenproteine (S-Schichten) können als molekulare Bausteine zur Funktionalisierung technischer Oberflächen verwendet werden. Die Proteine fungieren dabei als formgebende Muster (Template) oder vermitteln Bindungsstellen für eine nanostrukturierte Materialsynthese. In der vorliegenden Arbeit werden drei S-Schicht-Varianten elektronenmikroskopisch und kraftmikroskopisch charakterisiert und deren Templateigenschaften für die nasschemische Platin- und Goldclusterabscheidung vorgestellt. Für die Metallisierbarkeit der S-Schichten werden unterschiedliche Wege beschrieben. So wird unter anderem eine neue Methode zur Negativkontrastierung der kristallinen S Schichten für die Transmissionselektronenmikroskopie vorgestellt. Dabei werden adsorbierte und mit Metallkomplexen aktivierte S-Schichten kurzzeitig einer UV-Strahlung ausgesetzt. Verschiedene Methoden für die Beschichtung von technischen Oberflächen mit S Schichtproteinen werden aufgezeigt, insbesondere die Entwicklung einer neuen Technik für die Beschichtung von vorstrukturierten Sensoroberflächen, für die mikrofluidische Reaktionsräume geschaffen werden. Durch optimierte Reaktionsbedingungen wird unter Nutzung des Selbstorganisationsvermögens der Proteinmonomere eine großflächige Beschichtung von Substratoberflächen erreicht. Dies führt bei Anwendung der direkten Rekristallisation des Proteins an der Substratoberfläche zur Ausbildung von Monolagen. Untersuchungen zur Stabilisierung der S-Schichten am Substrat zeigen, dass diese durch den Einsatz von proteinvernetzenden Substanzen, wie Glutaraldehyd, erhöht werden kann. Weiterhin wird eine bionanotechnologische Funktionalisierung von mikroelektronischen Sensorstrukturen durch Integration metallisierter S-Schichtproteine ausführlich beschrieben. Erste Messergebnisse mit einem funktionalisierten Pyrosensor zeigen eine bessere Sensitivität durch die Erhöhung der katalytischen Aktivität an der Oberfläche der Nanocluster. Die Beschichtung und Vermessung neu entwickelter Piezosensoren der Siemens AG zeigt die hohe Sensitivität dieser Sensoren. Die dynamischen Messungen der Massenänderung während des Rekristallisationsprozesses werden durch ein theoretisches Modell zur Proteindeposition aus einer Monomerlösung interpretiert. Abstract* Bacterial surface layer proteins (S-layer proteins) can be used as molecular building blocks for the functionalisation of technically-used surfaces. For example, the proteins serve as templates for the production of well-defined patterns or provide binding sites for material synthesis at nanoscale. In this thesis, three different S-layer proteins are characterised by electron and atomic force microscopy. The properties of these proteins for being templates for the deposition of platinum and gold clusters are introduced. Different ways for the metallisation of S-layers are described. One example for this is a new method of negative staining of crystallised S-layers for the transmission electron microscopy, where the S-layers, adsorbed and activated with metal complexes, are exposed to UV for a short time. Different methods for coating technically-used surfaces are presented, especially a new technique for coating structured sensors' surfaces, which uses microfluidic reaction areas. The coating of large substrate surfaces with protein monomers is achieved by controlling the reaction conditions of the self-assembly process. If discrete recrystallisation takes place on the surface, the process leads to the formation of protein monolayers. Investigations showed that the stabilisation of the S-layers on a substrate can be increased by adding protein-linking reagents (e.g. glutaraldehyde). Furthermore, a bionanotechnological functionalisation of microelectronic sensors' surfaces by integrating metalised S-layer proteins is described in detail. First results show an increased catalytic activity on the surfaces of the nanoclusters. The coating of sensor surfaces with S-layers has recently been used to develop a piezoelectric sensor by the Siemens AG. This novel sensor has shown high sensitivity. Dynamic measurements of mass change during the recrystallisation process are described by a theoretical model for protein deposition out of a monomer solution.
|
27 |
U(VI) bioaccumulation by Paenibacillus sp. JG-TB8 and Sulfolobus acidocaldariusReitz, Thomas 01 February 2012 (has links) (PDF)
In this thesis, the interactions of U(VI) with one representative each of the domains Bacteria (Paenibacillus sp. JG TB8) and Archaea (Sulfolobus acidocaldarius) are compared. We demonstrate that at highly acidic conditions (pH ≤ 3), U(VI) is bound to cells of the both strains exclusively via organic phosphate groups. In contrast to this, the U(VI) complexation modes differ between the studied strains at moderate acidic conditions. These differences are assigned to the different cell wall structures of both strains as well as to their different physiological characteristics. We also demonstrate that the aeration conditions can strongly influence the uranium accumulation of facultative anaerobic microorganisms at moderate acidic pH conditions. This finding could clearly be assigned to the dependency of the intrinsic phosphatase activity on the aeration conditions.
The second part of this thesis deals with the outermost surface layer (SlaA-layer) of S. acidocaldarius. It was shown that this surface protein is not involved in the U(VI) complexation at highly acidic conditions, covering the physiological pH optimum of S. acidocaldarius. Hence the SlaA layer does not provide a protective function against U(VI) to the cells of this acidophilic archaeon. However, we demonstrated that purified SlaA-layer ghosts (i.e. empty cell sacculi) efficiently interact with gold ions and are a good macromolecular template for the formation of magnetic gold nanoparticles. / In dieser Doktorarbeit werden die Wechselwirkungen von U(VI) mit je einem Vertreter der Bakterien (Paenibacillus sp. JG TB8) und Archeen (Sulfolobus acidocaldarius) verglichen. Wir konnten zeigen, dass U(VI) im sehr sauren Milieu (pH ≤ 3) ausschließlich durch organische Phosphatgruppen an die Zellen beider Stämme gebunden ist. Im Gegensatz dazu unterscheiden sich die Mechanismen der U(VI)-Komplexierung beider untersuchter Stämme bei mäßig sauren Bedingungen voneinander. Diese Unterschiede basieren auf den unterschiedlichen Zellwandstrukturen und physiologischen Eigenschaften beider Stämme. Wir konnten außerdem zeigen, dass die atmosphärischen Bedingungen die Urankomplexierung durch fakultativ anaerobe Mikroorganismen bei mäßig sauren Bedingungen stark beeinflussen kann. Dieses Ergebnis konnte eindeutig auf die von den atmosphärischen Bedingungen-abhängige, enzymatische Aktivität der zelleigenen Phosphatase zurückgeführt werden.
Der zweite Teil dieser Arbeit beschäftigt sich mit der äußeren Oberflächenschicht (SlaA-layer) von S. acidocaldarius. Es konnte gezeigt werden, dass dieses Oberflächenprotein nicht an der U(VI)-Komplexierung bei stark sauren pH, welcher dem physiologischen pH Optimum von S. acidocaldarius entspricht, beteiligt ist. Damit stellt der SlaA-layer keinen Schutz gegen Uran für die Zellen dieses azidothermophilen Archaeons dar. Allerdings konnten wir zeigen, dass isolierte „SlaA-layer ghosts“ (d.h. leere Zellhüllen) mit Goldionen interagieren und sich daher als makromolekulares Template für die Herstellung magnetischer Gold Nanopartikel eignen.
|
28 |
U(VI) bioaccumulation by Paenibacillus sp. JG-TB8 and Sulfolobus acidocaldarius: U(VI) bioaccumulation by Paenibacillus sp. JG-TB8 and Sulfolobus acidocaldarius: Au(0) nanoclusters formation on the S-layer of S. acidocaldariusReitz, Thomas 13 December 2011 (has links)
In this thesis, the interactions of U(VI) with one representative each of the domains Bacteria (Paenibacillus sp. JG TB8) and Archaea (Sulfolobus acidocaldarius) are compared. We demonstrate that at highly acidic conditions (pH ≤ 3), U(VI) is bound to cells of the both strains exclusively via organic phosphate groups. In contrast to this, the U(VI) complexation modes differ between the studied strains at moderate acidic conditions. These differences are assigned to the different cell wall structures of both strains as well as to their different physiological characteristics. We also demonstrate that the aeration conditions can strongly influence the uranium accumulation of facultative anaerobic microorganisms at moderate acidic pH conditions. This finding could clearly be assigned to the dependency of the intrinsic phosphatase activity on the aeration conditions.
The second part of this thesis deals with the outermost surface layer (SlaA-layer) of S. acidocaldarius. It was shown that this surface protein is not involved in the U(VI) complexation at highly acidic conditions, covering the physiological pH optimum of S. acidocaldarius. Hence the SlaA layer does not provide a protective function against U(VI) to the cells of this acidophilic archaeon. However, we demonstrated that purified SlaA-layer ghosts (i.e. empty cell sacculi) efficiently interact with gold ions and are a good macromolecular template for the formation of magnetic gold nanoparticles. / In dieser Doktorarbeit werden die Wechselwirkungen von U(VI) mit je einem Vertreter der Bakterien (Paenibacillus sp. JG TB8) und Archeen (Sulfolobus acidocaldarius) verglichen. Wir konnten zeigen, dass U(VI) im sehr sauren Milieu (pH ≤ 3) ausschließlich durch organische Phosphatgruppen an die Zellen beider Stämme gebunden ist. Im Gegensatz dazu unterscheiden sich die Mechanismen der U(VI)-Komplexierung beider untersuchter Stämme bei mäßig sauren Bedingungen voneinander. Diese Unterschiede basieren auf den unterschiedlichen Zellwandstrukturen und physiologischen Eigenschaften beider Stämme. Wir konnten außerdem zeigen, dass die atmosphärischen Bedingungen die Urankomplexierung durch fakultativ anaerobe Mikroorganismen bei mäßig sauren Bedingungen stark beeinflussen kann. Dieses Ergebnis konnte eindeutig auf die von den atmosphärischen Bedingungen-abhängige, enzymatische Aktivität der zelleigenen Phosphatase zurückgeführt werden.
Der zweite Teil dieser Arbeit beschäftigt sich mit der äußeren Oberflächenschicht (SlaA-layer) von S. acidocaldarius. Es konnte gezeigt werden, dass dieses Oberflächenprotein nicht an der U(VI)-Komplexierung bei stark sauren pH, welcher dem physiologischen pH Optimum von S. acidocaldarius entspricht, beteiligt ist. Damit stellt der SlaA-layer keinen Schutz gegen Uran für die Zellen dieses azidothermophilen Archaeons dar. Allerdings konnten wir zeigen, dass isolierte „SlaA-layer ghosts“ (d.h. leere Zellhüllen) mit Goldionen interagieren und sich daher als makromolekulares Template für die Herstellung magnetischer Gold Nanopartikel eignen.
|
29 |
S-Schichtproteine als molekulare Bausteine zur Funktionalisierung mikroelektronischer SensorstrukturenBlüher, Anja 18 November 2008 (has links)
Bakterielle Zellhüllenproteine (S-Schichten) können als molekulare Bausteine zur Funktionalisierung technischer Oberflächen verwendet werden. Die Proteine fungieren dabei als formgebende Muster (Template) oder vermitteln Bindungsstellen für eine nanostrukturierte Materialsynthese. In der vorliegenden Arbeit werden drei S-Schicht-Varianten elektronenmikroskopisch und kraftmikroskopisch charakterisiert und deren Templateigenschaften für die nasschemische Platin- und Goldclusterabscheidung vorgestellt. Für die Metallisierbarkeit der S-Schichten werden unterschiedliche Wege beschrieben. So wird unter anderem eine neue Methode zur Negativkontrastierung der kristallinen S Schichten für die Transmissionselektronenmikroskopie vorgestellt. Dabei werden adsorbierte und mit Metallkomplexen aktivierte S-Schichten kurzzeitig einer UV-Strahlung ausgesetzt. Verschiedene Methoden für die Beschichtung von technischen Oberflächen mit S Schichtproteinen werden aufgezeigt, insbesondere die Entwicklung einer neuen Technik für die Beschichtung von vorstrukturierten Sensoroberflächen, für die mikrofluidische Reaktionsräume geschaffen werden. Durch optimierte Reaktionsbedingungen wird unter Nutzung des Selbstorganisationsvermögens der Proteinmonomere eine großflächige Beschichtung von Substratoberflächen erreicht. Dies führt bei Anwendung der direkten Rekristallisation des Proteins an der Substratoberfläche zur Ausbildung von Monolagen. Untersuchungen zur Stabilisierung der S-Schichten am Substrat zeigen, dass diese durch den Einsatz von proteinvernetzenden Substanzen, wie Glutaraldehyd, erhöht werden kann. Weiterhin wird eine bionanotechnologische Funktionalisierung von mikroelektronischen Sensorstrukturen durch Integration metallisierter S-Schichtproteine ausführlich beschrieben. Erste Messergebnisse mit einem funktionalisierten Pyrosensor zeigen eine bessere Sensitivität durch die Erhöhung der katalytischen Aktivität an der Oberfläche der Nanocluster. Die Beschichtung und Vermessung neu entwickelter Piezosensoren der Siemens AG zeigt die hohe Sensitivität dieser Sensoren. Die dynamischen Messungen der Massenänderung während des Rekristallisationsprozesses werden durch ein theoretisches Modell zur Proteindeposition aus einer Monomerlösung interpretiert. Abstract* Bacterial surface layer proteins (S-layer proteins) can be used as molecular building blocks for the functionalisation of technically-used surfaces. For example, the proteins serve as templates for the production of well-defined patterns or provide binding sites for material synthesis at nanoscale. In this thesis, three different S-layer proteins are characterised by electron and atomic force microscopy. The properties of these proteins for being templates for the deposition of platinum and gold clusters are introduced. Different ways for the metallisation of S-layers are described. One example for this is a new method of negative staining of crystallised S-layers for the transmission electron microscopy, where the S-layers, adsorbed and activated with metal complexes, are exposed to UV for a short time. Different methods for coating technically-used surfaces are presented, especially a new technique for coating structured sensors' surfaces, which uses microfluidic reaction areas. The coating of large substrate surfaces with protein monomers is achieved by controlling the reaction conditions of the self-assembly process. If discrete recrystallisation takes place on the surface, the process leads to the formation of protein monolayers. Investigations showed that the stabilisation of the S-layers on a substrate can be increased by adding protein-linking reagents (e.g. glutaraldehyde). Furthermore, a bionanotechnological functionalisation of microelectronic sensors' surfaces by integrating metalised S-layer proteins is described in detail. First results show an increased catalytic activity on the surfaces of the nanoclusters. The coating of sensor surfaces with S-layers has recently been used to develop a piezoelectric sensor by the Siemens AG. This novel sensor has shown high sensitivity. Dynamic measurements of mass change during the recrystallisation process are described by a theoretical model for protein deposition out of a monomer solution.
|
30 |
Thiolate Protected Atomically Precise Gold-Silver Nanoclusters for Solar Energy ConversionLiu, Ye 08 August 2024 (has links)
Diese Arbeit zielt darauf ab, Struktur-Aktivitäts-Korrelationen zu untersuchen, indem die Zusammensetzungen von Au25-Nanoclustern auf atomarer Ebene manipuliert werden. Die Liganden der Au25-Nanocluster wurden zunächst so konstruiert, dass geeignete Liganden für Anwendungen in der Lichtumwandlung gefunden werden konnten, wobei vier verschiedene Au25-Nanocluster mit ähnlichen Metallkernstrukturen synthetisiert wurden. Photoelektrochemische Messungen wurden durchgeführt, um die Sensibilisierungsfähigkeiten dieser Nanocluster durch Abscheidung auf anatas TiO2-Substraten zu vergleichen. Quantenchemische Berechnungen wurden durchgeführt, um den Einfluss der schützenden Liganden auf die Photoaktivitäten zu untersuchen. Danach wurden die Nanocluster mit optimalen Photoaktivitäten weiterhin zur Erforschung der photocatalytischen Eigenschaften verwendet. Da Metallsites im Allgemeinen als aktive Zentren für heterogene Katalyse betrachtet wurden, wurden die Legierungseffekte des Metallkerns untersucht, indem Ag-Atome darin eingebaut wurden. Die Und die photokatalytische Wasserstoffentwicklung wurde als Referenzreaktion für die Erforschung des Metallkerns verwendet. Eine graduelle Einstellung der Metallzusammensetzung des Metallkerns wurde erreicht, die einen vulkanartigen Trend zur Wasserstoffentwicklung zeigte. Ab-initio-Berechnungen wurden verwendet, um die Beziehung zwischen der Metallzusammensetzung und den katalytischen Aktivitäten zu korrelieren. Darüber hinaus wurden die zentral, mono-dotierten Ag25-Nanocluster mit Heteroatomen der Gruppe VIII ebenfalls untersucht. Obwohl die gestaffelten Energieniveaus zwischen den Nanoclustern und dem Substrat die Wasserstoffproduktionsraten des gesamten Photokatalysesystems erheblich förderten, verschlechterten die Dotierung von Heteroatomen in den innersten Kern die photokatalytischen Aktivitäten der Nanocluster. / This work aims at studying structure-activity correlations by engineering the compositions of Au25 nanoclusters at atomic level. The ligands of Au25 nanoclusters were first engineered to determine suitable ligands for light conversion, where four different Au25 nanoclusters with similar core metal structures were synthesized. Photoelectrochemical measurements were employed to compare the sensitization capabilities of these nanoclusters by depositing them onto anatase TiO2 substrates. Quantum chemical calculations were carried out to investigate the impact of protecting ligands on photoactivities. After that, the nanoclusters with optimum photoactivities were further used to explore the photocatalytic properties. Since metal sites were generally considered active centers for heterogeneous catalysis, the alloying effects of the metal core were studied by incorporating Ag atoms into it. And photocatalytic hydrogen evolution was used as a touch stone reaction for exploring the metal core. Gradient tuning of metal composition of the metal core had been achieved, which exhibited a volcanic-like trend toward hydrogen evolution. Ab initio calculations were employed to correlate the relationship between the metal composition and catalytic activities. In addition, the centrally, mono-doped Ag25 nanoclusters with group-VIII heteroatoms were also studied. Although the staggered energy levels between the nanoclusters and the substrate greatly promoted the hydrogen production rates of the whole photocatalysis system, the heteroatoms doping into the innermost core deteriorated the photocatalytic activities of the nanoclusters.
|
Page generated in 0.1005 seconds