• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 401
  • 259
  • 141
  • 73
  • 16
  • 10
  • 9
  • 7
  • 5
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 1098
  • 310
  • 235
  • 190
  • 140
  • 134
  • 122
  • 122
  • 120
  • 108
  • 105
  • 99
  • 99
  • 83
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
691

Characterization of Hydrophobically Modified Titanium Dioxide Polylactic Acid Nanocomposite Films for Food Packaging Applications

Baek, Naerin 12 August 2016 (has links)
Titanium dioxide (TiO2) polymer nanocomposites improve barrier properties to gas and moisture and mechanical strength as well as providing active packaging functions. However, low compatibility between hydrophilic TiO2 nanoparticles and hydrophobic polymers such as polylactic acid (PLA) causes problems due to the tendency of TiO2 nanoparticles (TiO2) to agglomerate and form large clusters. A surface modification of TiO2 with long chain fatty acid may improve the compatibility between PLA and TiO2. The goal of this study was to enhance barrier properties of oxygen and water vapor, mechanical strength and add light protecting function to PLA composites by incorporation of oleic acid modified TiO2 nanoparticles (OA_TiO2). The objectives of this study were: 1) synthesize TiO2 and modify surface of TiO2 with oleic acid, 2) investigate dispersion stability of TiO2 and OA_TiO2 in hydrophobic media, 3) incorporate TiO2 and OA_TiO2 into a PLA matrix and to characterize properties of TiO2PLA (T-PLA) and OA_TiO2 PLA nanocomposite films (OT-PLA), and 4) to determine stability of green tea infusion in T-PLA and OT-PLA packaging model systems during refrigerated storage at 4 °C under florescent lightening. TiO2 was synthesized by using a sol-gel method and the surface of TiO2 was modified by oleic acid using a one-step method. T-PLA and OT-PLA were prepared by solvent casting. TiO2 and OA_TiO2 were analyzed by X-ray diffraction, Fourier transform infrared spectroscopy, thermal analysis and dynamic light scattering. The barrier properties to oxygen and water vapor, morphology, mechanical properties, thermal stability and light absorption properties of T-PLA and OT-PLA were characterized. Dispersion of TiO2 was improved in PLA matrix by the surface modification method with oleic acid. OT-PLA had more effective improvements in the barrier properties and flexibility than T-PLA and PLA, but toughness of the films based on Young's modules of OT-PLA was lower than the T-PLA and the PLA. The OT-PLA may have a potential to be used as transparent, functional and sustainable packaging films, but limited use for complete visible and UV-light protection for photosensitized foods. / Ph. D.
692

Piezoresistivity Characterization of Polymer Bonded Energetic Nanocomposites under Cyclic Load Cases for Structural Health Monitoring Applications

Rocker, Samantha Nicole 11 July 2019 (has links)
The strain and damage sensing abilities of randomly oriented multi-walled carbon nanotubes (MWCNTs) dispersed in the polymer binder of energetic composites were experimentally investigated. Ammonium perchlorate (AP) crystals served as the inert energetic and atomized aluminum as the metallic fuel, both of which were combined to create a representative fuel-oxidizer filler often used for aerospace propulsive applications. MWCNTs were dispersed within an elastomer binder of polydimethylsiloxane (PDMS), and hybrid energetics were fabricated from it, with matrix material comprised of the identified fillers. The nanocomposites were characterized based on their stress-strain response under monotonic uniaxial compression to failure, allowing for the assessment of effects of MWCNTs and aluminum powder on average compressive elastic modulus, peak stress, and strain to failure. The piezoresistive response was measured as the change in impedance with applied monotonic strain in both the mesoscopic and microscopic strain regimes of mechanical loading for each material system, as well as under ten cycles of applied compressive loading within those same strain regimes. Gauge factors were calculated to quantify the magnitude of strain and damage sensing in MWCNT-enhanced material systems. Electrical response of single-cycle thermal loading was explored with epoxy in place of the elastomer binder of the previously discussed studies. Piezoresistive response due to microscale damage from thermal expansion was observed exclusively in material systems enhanced by MWCNTs. The results discussed herein validate structural health monitoring (SHM) applications for embedded carbon nanotube sensing networks in polymer-based energetics under unprecedented cyclic loads. / Master of Science / The ability to characterize both deformation and damage in real time within materials of high energetic content, such as solid rocket propellant, is of great interest in experimental mechanics. Common energetic ammonium perchlorate, in the fonn of crystal particles, was embedded in polymer binders (ie PDMS and epoxy) and investigated under a variety of me­chanical and thermal loads. Carbon nanotubes, conductive tube-shaped molecular structures of carbon atoms, have been demonstrated in prior proofs of concept to induce substantial electrical response change when dispersed in composites which are experiencing strain. With the introduction of carbon nanotubes in the energetic composites investigated herein, the electrical response of the material systems was measured as a change in impedance with applied strain. Elastomer-bonded energel.ks were t.esl.ed under monotonic compression and cyclic compression, and expanded exploration was done on these material systems with the additional particulate of aluminum powder, allowing for varied particulate sizes and conductivity enhancement of the overall composite. The magnitude of the resulting piezoresistive change due to strain and microscale damage was observed to increase dramatically in material systems enhanced by MWCNT networks. Local heating was used to explore thermal loading on epoxy-bonded energetic material systems, and sensing of permanent damage to the­ material through its CNT network was proven through a permanent change in the electrical response which was exclusive to the CNT-enhanced material systems. These results demon­strate valid structural health monitoring (SHM) applications for embedded carbon nanotube sensing networks in particulate energetic composites, under a variety of load cases.
693

Electrochemical Deposition of Nickel Nanocomposites in Acidic Solution for Increased Corrosion Resistance

Daugherty, Ryan E. 08 1900 (has links)
The optimal conditions for deposition of nickel coating and Ni-layered double hydroxide metal matrix composite coatings onto stainless steel discs in a modified all-sulfate solutions have been examined. Nickel films provide good general corrosion resistance and mechanical properties as a protective layer on many metallic substrates. In recent years, there has been interest in incorporation nano-dimensional ceramic materials, such as montemorillonite, into the metal matrices to improve upon the corrosion and mechanical properties. Layered double hydroxides have been used as corrosion enhancer in polymer coatings by increasing mechanical strength and lowering the corrosion rate but until now, have not been incorporated in a metal matrix by any means. Layered double hydroxides can be easily synthesized in a variety of elemental compositions and sizes but typically require the use of non-polar solvents to delaminate into nanodimensional colloidal suspensions. The synthesis of a Zn-Al LDH has been studied and characterized. The effects of the non-polar solvents dimethylformamide and n-butanol on the deposition and corrosion resistance of nickel coatings from a borate electrolyte bath have been studied, a nickel-LDH nanocomposite coating has been synthesized by electrochemical deposition and the corrosion resistance has been studied. Results indicate an improvement in corrosion resistance for the coatings with minimal change in the nickel matrix's internal strain and crystallite size.
694

Nanoparticle Encapsulation and Aggregation Control in Anti-reflection Coatings and Organic Photovoltaics

Metzman, Jonathan Seth 29 October 2018 (has links)
Nanoparticles present a myriad of physical, optical, electrical, and chemical properties that provide valuable functionality to thin-film technologies. In order to successfully exploit these aspects of nanoparticles, appropriate dispersion and stability measures must be implemented. In this dissertation, different types of nanoparticles are coated with polymer and metallic layers to enable their effectiveness in both anti-reflection coatings (ARCs) and organic photovoltaics (OPVs). Ionic self-assembled multilayers (ISAMs) fabrication of poly(allylamine hydrochloride) (PAH) and silica nanoparticles (SiO2 NPs) results in highly-transparent, porous ARCs. However, the ionic bonding and low contact area between the film constituents lack sufficient mechanical and chemical stability necessary for commercial application. Chemical stability was established in the film by the encapsulation of SiO2 NPs by a photo-crosslinkable polyelectrolyte, diazo-resin (DAR) to make modified silica nanoparticles (MSNPs). UV-irradiation induced decomposition of the diazonium group and the development of covalent bonds with polyanions. Crosslinked MSNP/poly(styrene sulfonate) (PSS) ISAMs exhibited excellent anti-reflectivity (transmittance >98%, reflectance <0.2% in the visible range) and chemical stability against dissolution in a ternary solvent. Mechanical stability was also achieved by the incorporation of two additional PAH and poly(acrylic acid) (PAA) layers to create PAH/PAA/PAH/SiO2 NP interlayer ISAM ARCs. Thermal crosslinking of PAH and PAA facilitates the formation of covalent amide bonds between the two polyelectrolytes, as confirmed by FTIR. Since PAH and PAA are both weak polyelectrolytes, adjustment of the solution pH causes significant variations in the polymer chain charge densities. At low PAA pH, the decreased chain charge densities caused large SiO2 NP encapsulation thicknesses in the film with great mechanical stability, but poor anti-reflection (≤97% transmittance). At high PAA pH, the high chain charge densities induced thin encapsulation layers, insufficient mechanical stability, but excellent anti-reflection. At trade-off between the two extremes was founded at a PAA pH of 5.2 with excellent anti-reflection (less than 99% transmittance) and sufficient mechanical stability. The normal force required for scratch initiation was increased by a factor of seven for films made from a pH of 5.2 compared to those made from a pH of 6.0. Organic photovoltaics (OPVs) are an attractive area of solar cell research due to their inexpensive nature, ease of large-scale fabrication, flexibility, and low-weight. The introduction of the bulk heterojunction greatly improved charge transport and OPV performance by the blending of the active layer electron donor and acceptor materials, poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), into an interpenetrating network with high interfacial area between adjacent nanodomains. However, constrained active layer thicknesses restrict the total optical absorption and device performance. The localized surface plasmon resonance (LSPR) of plasmonic nanoparticles, such as anisotropic silver nanoplates (AgNPs), provides large local field enhancements and in coupling with the active layer, substantial optical absorption improvements can be realized. AgNPs were first integrated into the hole-transport layer (PEDOT:PSS) by ISAM deposition. Here, PEDOT:PSS was used as a negatively-charged ISAM layer. Encapsulation of the AgNPs by PAH (ENPs) provided a positive surface charge and allowed for the creation of ENP/PEDOT:PSS ISAMs. Stability against acidic etching by PEDOT:PSS was imparted to the AgNPs by coating the edges with gold (AuAgNPs). The AuAgNP ISAMs substantially improved the optical absorption, but were ineffective at increasing the device performance. The dispersion effects of functionalized polymer coatings on AgNPs were also deeply investigated. Functionalized AgNPs were dispersed in methanol and spin-coated onto the active layer. When the AgNPs possessed hydrophilic properties, such as unfunctionalized or functionalized by poly(ethylene glycol) methyl ether thiol (PEG-SH), they formed large aggregates due to unfavorable interactions with the hydrophobic P3HT:PCBM layer. However, the hydrophobic functionalization of AgNPs with thiol-terminated polystyrene (PS-SH) (PS-AgNPs) resulted in excellent dispersion, optical absorption enhancements, and device performance improvements. At a PS-AgNP concentration of 0.57 nM, the device efficiency was increased by 32% over the reference devices. / Ph. D. / Investigations are presented on the quality of distribution or dispersion of functional inorganic (composed of silicon dioxide or silver) particles that have dimensions of less than 100 nanometers, called nanoparticles. The nanoparticle surfaces were covered with polymer layers, where polymers are organic materials with repeating molecular structures. The study of these nanoparticle distribution effects were first examined in anti-reflection coatings (ARCs). ARCs induce transparency of windows or glasses through a reduction in the reflection of light. Here, the ARCs were fabricated as self-assembled thin-films (films with thicknesses ranging from 1 to 2000 nanometers). The self-assembly process here was carried out by immersing a charged substrate (microscope slide) into a solution with an oppositely-charged material. The attraction of the material to the substrate leads to thin-film growth. The process can continue by sequentially immersing the thin-film into oppositely-charged solutions for a desired number of thin-film layers. This technique is called ionic self-assembled multilayers (ISAMs). ARCs created by ISAM with charged polymers (polyelectrolytes) and silicon dioxide nanoparticles (SiO2 NPs) can lead to highly-transparent films, but unfortunately, they lack the stability and scratch-resistance necessary for commercial applications. In this dissertation, we address the lack of stability in the ISAM ARCs by adding additional polyelectrolyte layers that can develop strong, covalent bonds, while also examining nanoparticle dispersive properties. First, SiO2 NP surfaces were coated in solution with a polyelectrolyte called diazo-resin, which can form covalent bonds by UV-light exposure of the film. After tuning the concentration for the added diazo-resin, the coated SiO2 NPs were used to make ARCs ISAM films. The ARCs had excellent nanoparticle dispersion, high levels of transparency, and chemical stability. Chemically stability entails that the integrity of the film was unaffected by exposure to polar organic solvents or strong polyelectrolytes. In a second method, two additional v polyelectrolyte layers were added into the original polyelectrolyte/SiO2 NP design. Here, heating of the film to 200 oC temperatures induced strong covalent bonding between the polyelectrolytes. Variation of the solution pH dramatically changed the polyelectrolyte thickness, the nanoparticle dispersion, the scratch-resistance, and the anti-reflection. An optimum trade-off was discovered at a pH of 5.2, where the anti-reflection was excellent (amount of transmitted light over 99%), along with a substantially improved scratch-resistance. A change of pH from 6.0 (highest tested pH) to 5.2 (optimal) caused a difference in the scratch-resistance by a factor of seven. In these findings, we introduce stability enhancing properties from films composed purely of polyelectrolytes into nanoparticle-containing ISAM films. We also show that a simple adjustment of solution parameters, such as the pH value, can cause substantial differences in the film properties. Nanoparticle dispersion properties were next investigated in organic photovoltaics (OPVs) OPVs use semiconducting polymers to convert sunlight into usable electricity. They have many advantages over traditional solar cells, including their simple processing, low-cost, flexibility, and lightweight. However, OPVs are limited by their total optical absorption or the amount of light that can potentially be converted to electricity. The addition of plasmonic nanoparticles into an OPV device is a suitable way to increase optical absorption without changing the other device properties. Plasmonic nanoparticles, which are composed of noble metals (such as silver or gold), act as “light antennas” that concentrate incoming light and radiate it around the particle. In this dissertation, we investigate the dispersion and stability effects of polymer or metallic layers on silver nanoplates (AgNPs). The stability of the AgNPs was found to be greatly enhanced by coating the nanoparticle edges with a thin gold layer (AuAgNPs). AuAgNPs could then be introduced into a conductive, acidic layer of the OPVs (PEDOT:PSS) to increase the overall light absorption, which otherwise would be impossible with uncoated AgNPs. Next, the AgNPs were distributed on top of the photoactive layer or the layer that is responsible for absorbing light. Coating the AgNPs with a polystyrene polymer layer (PS-AgNPs) allowed for excellent dispersion on this layer and contrastingly, dispersion of the uncoated AgNPs was poor. An increased amount PS-AgNPs added on top of the photoactive layer progressively increased the optical absorption of the OPV devices. However, trends were quite different for the power conversion efficiency or the ratio of electricity power to sunlight power in the OPV device. The greatest PCE enhancements (27 – 32%) were found at a relatively low coverage level (using a solution concentration of 0.29 to 0.57 nM) of the PS-AgNPs on the photoactive layer.
695

Polymer Nanocomposite Membranes for Selective Ion Transport Applications

Tekell, Marshall Clark January 2024 (has links)
Soft materials are indispensable components of energy storage and conversion technologies necessary for the renewable energy transition. Two key examples are electrolytes used in solid-state batteries and ion-exchange membranes used in electrolysis and electrodialysis. The figures of merit for these applications are often summarized using upper-bound relationships, which define the best possible combination of performance metrics for a given material. A promising route to break the upper-bound and to improve upon the state-of-the-art is engineering materials at the nanoscale. Two commonly employed strategies are the use of block copolymers and polymer nanocomposites. In the former, the sequence of different monomers along the backbone of the polymer chain is varied; in the latter, ceramic nanoparticles are mixed with polymers and processed to achieve different dispersion states. In both of these classes of materials, the self-assembly of molecular and colloidal components controls the structure and function of the resulting material. This dissertation investigates these structure-property relationships in model soft nanomaterials, namely colloids, polymer nanocomposites, and ion-exchange membranes, using experiments, molecular dynamics simulations, and theory. The dissertation can be divided into three parts. The first, Chapters 2 and 3, investigates polymer and polymer nanocomposite electrolytes for applications in solid-state Li batteries. Chapter 2 investigates the coarse-graining and force field parameterization of polymer electrolytes for molecular dynamics simulations. Chapter 3 reports the experimental characterization of polymer nanocomposite electrolytes, with a key focus on understanding how the particle dispersion state affects the ionic conductivity and mechanical reinforcement of the composite. The second part, Chapters 4 and 5, studies fundamental structure-property relationships in two types of polymer nanocomposites. In Chapter 4, the surface chemistry of hydrophilic silica nanoparticles is altered to promote miscibility in organic solvents and in semicrystalline polymers. In these "bare" nanocomposites, the particles are stabilized against aggregation via the adsorption of a polymer bound layer, which is quantitatively studied via small angle X-ray scattering. In Chapter 5, the surface-modified particles are densely grafted with polymer chains via surface-initiated polymerization to obtain matrix-free polymer grafted nanoparticle films. The collective dynamics of the nanoparticle cores in these self-supporting films, where all of the polymer is grafted to the particle surface, is then measured using X-ray photocorrelation spectroscopy at a variety of temperatures. In Chapters 6 and 7, random copolymer chemistries are used to create cation- and anion-exchange membranes, respectively, with controlled ion-exchange capacity and swelling behavior. The key finding of Chapter 6 is that water-lean cation-exchange membranes selectively transport ions with low free energies of hydration, allowing the design of specific-ion selective electrodialysis stacks for Li+ recovery applications. The analogous properties of anion-exchange membranes are suggested as an avenue for future research.
696

Processing melt blended polymer nanocomposites using a novel laboratory mini-mixer. Development of polymer nanocomposites in the melt phase using a novel mini-mixer.

Khan, Atif H. January 2012 (has links)
Research into the processing conditions and parameters of polymeric nanocomposites has always been challenging to scientists and engineers alike. Many have developed tools and procedures to allow materials to be exploited and their properties improved with the addition of nanofillers to achieve the desired end material for various applications. Initial trials are mostly conducted using conventional small scale experiments using specialised equipment within the laboratory that can replicate the larger industrial equipment. This is a logical approach as it could save time and costs as many nanocomposites are relatively expensive to produce. Experiments have previously been done using the likes of the Haake twin screw extruder to manufacture nanocomposites within the laboratory but this research project has used a novel minimixer specifically developed to replicate mixing like large twin screw extrusion machines. The minimixer uses a twin paddle system for high shear mixing in conjunction with a single screw thus theoretically allowing an infinitely long recirculation. It is this ability to mix intensely whilst allowing for as long as desired recirculation which enables the replication in this very small mixer (10-30g capacity) of the mixing conditions in a large twin screw extruder. An added feature of the minimixer is that it can undertake inline data analysis in real time. The main experiments were conducted using a comprehensive DOE approach with several different factors being used including the temperature, screw speed, residence time, clay and compatibiliser loading and two polymer MFI¿s. The materials used included PP, Cloisite 20A, Polybond 3200, PET, Somasif MTE, Polyurethane 80A and Single / Multi-walled Carbon nanotubes. Detailed experimental results highlighted that rheological analysis of the nanocomposite materials as an initial testing tool were accurate in determining the Elastic and Loss modulus values together with the Creep and Recovery, Viscosity and Phase Angle properties in the molten state. This approach was also used in an additional set of experiments whereby the temperature, speed, residence time and compatibiliser were kept constant but the clay loading was increased in 1% wt. increments. These results showed that the G¿ & G¿¿ values increased with clay loading. Another important finding was the bi-axial stretching step introduced after the processing stage of the nanocomposite materials which highlighted a further improvement in the modulus values using rheological testing. Other tests included using inline monitoring to look into both the viscosity and ultrasound measurements in real time of the molten polymer nanocomposite through a slit die attachment to the minimixer. / EPSRC
697

Tough bio-based elastomer nanocomposites with high performance for engineering applications

Wei, T., Lei, L., Kang, H., Qiao, B., Wang, Z., Zhang, L., Coates, Philip D., Hua, K-C., Kulig, J. January 2012 (has links)
No / Biomass feedstock is a viable alternative to finite fossil fuel resources to provide many of the same—plus others that petrochemicals cannot—chemical building blocks required to fabricate durable and high-performance materials. We demonstrate here for the first time a new generation of synthesized elastomers, namely bio-based engineering elastomers (BEE). These are of particular significance because they are synthesized from monomers derived from biomass, by routes which are suitable for large scale production, and they exhibit thermo-mechanical properties at least equivalent to current commercial petrochemical-derived elastomers. Bio-based monomers in large scale production, such as sebacic acid, itaconic acid, succinate acid, 1,3-propanediol, and 1,4 butanediol are chosen to generate the first synthetic BEE matrix through melting polycondensation—a comparatively simple reaction scheme offering good control and the potential for low cost, large-scale production. A novel linear BEE, an almost non-crystalline copolyester elastomer with low glass transition temperature (Tg) containing double bonds is designed and synthesized using multiple monomers (to help suppress crystallization). Silica nanoparticles are then introduced into the BEE matrix to achieve significant strengthening and improved environmental stability. Chemical crosslinks formed by peroxide and the pendant double bonds in the copolyester macromolecules endow the BEE with both the necessary high elasticity and required environmental stability. The BEE nanocomposites obtained exhibit excellent thermomechanical properties, such as an ultimate tensile strength of 20 MPa.
698

Modelling of polymer clay nanocomposites for a multiscale approach.

Spencer, Paul, Sweeney, John January 2008 (has links)
Yes / The mechanical property enhancement of polymer reinforced with nano-thin clay platelets (of high aspect ratio) is associated with a high polymer-filler interfacial area per unit volume. The ideal case of fully separated (exfoliated) platelets is generally difficult to achieve in practice: a typical nanocomposite also contains multilayer stacks of intercalated platelets. Here we use numerical modelling to investigate how the platelet properties affect the overall mechanical properties. The configuration of platelets is modelled using a statistical interpretation of the Representative Volume Element (RVE) approach, in which an ensemble of "sample" heterogeneous material is generated (with periodic boundary conditions). A simple Monte Carlo algorithm is used to place non-intersecting platelets in the RVE according to a specified set of statistical distributions. The effective stiffness of the platelet-matrix system is determined by measuring the stress (using standard Finite Element analysis) produced as a result of applying a small deformation to the boundaries, and averaging over the entire statistical ensemble. In this work we determine the way in which the platelet properties (curvature, filling fraction, stiffness, aspect ratio) and the number of layers in the stack affect the overall stiffness enhancement of the nanocomposite. Thus, we bridge the gap between behaviour on the macroscopic scale with that on the scale of the nano-reinforcement, forming part of a multi-scale modelling framework.
699

Compression-induced electrical percolation and enhanced mechanical properties of polydimethylsiloxane-based nanocomposites

Wu, D., Li, Z., Du, Y., Zhang, L., Huang, Y., Sun, J., Coates, Philip D., Gao, X. 13 January 2021 (has links)
Yes / In this work, a compression-induced percolation threshold was found when the thickness of polydimethylsiloxane (PDMS) nanocomposite samples was reduced via a spatial confining forced network assembly (SCFNA) process from 1.0 mm to 0.1 mm. Such as for PDMS/2 wt% short carbon fiber/4 wt% carbon nanotube (CNT) composite, its conductivity was more than 8 times enhanced to 487 S/m from 59.5 S/m, and the mechanical properties of composites have been improved by more than 15% accordingly. Comparatively, when increased the concentration of CNT or Gr from 1 to 4 wt%, the electrical conductivity of PDMS nanocomposites at 1 mm thickness was barely changed as it generally reached saturation and became independent of filler loading. Compared with the traditional blending method, it indicates that the SCFNA process can further promote the maximum electrical conductivity of polymer nanocomposites when the filler concentration has little effect on the conductivity. Especially under the condition of relatively high filler concentration, the electrical conductivity enhancement effect becomes more significant that is contrary to the classical percolation theory. Moreover, the mechanical properties of the nanocomposites can be slightly improved by the mechanical compression, which makes it more suitable for flexible electronic devices' applications.
700

Développement et caractérisation de nouveaux nanocomposites polymères électriquement conductueurs pour plaques bipolaires de piles à combustible à membrane échangeuse de protons, PEMFC

Athmouni, Nafaa 24 April 2018 (has links)
Face à la diminution des ressources énergétiques et à l’augmentation de la pollution des énergies fossiles, de très nombreuses recherches sont actuellement menées pour produire de l’énergie propre et durable et pour réduire l’utilisation des sources d’énergies fossiles caractérisées par leur production intrinsèque des gaz à effet de serre. La pile à combustible à membrane échangeuse de protons (PEMFC) est une technologie qui prend de plus en plus d’ampleur pour produire l’énergie qui s’inscrit dans un contexte de développement durable. La PEMFC est un dispositif électrochimique qui fonctionne selon le principe inverse de l’électrolyse de l’eau. Elle convertit l’énergie de la réaction chimique entre l’hydrogène et l’oxygène (ou l’air) en puissance électrique, chaleur et eau; son seul rejet dans l’atmosphère est de la vapeur d’eau. Une pile de type PEMFC est constituée d’un empilement Électrode-Membrane-Électrode (EME) où la membrane consiste en un électrolyte polymère solide séparant les deux électrodes (l’anode et la cathode). Cet ensemble est intégré entre deux plaques bipolaires (BP) qui permettent de collecter le courant électrique et de distribuer les gaz grâce à des chemins de circulation gravés sur chacune de ses deux faces. La plupart des recherches focalisent sur la PEMFC afin d’améliorer ses performances électriques et sa durabilité et aussi de réduire son coût de production. Ces recherches portent sur le développement et la caractérisation des divers éléments de ce type de pile; y compris les éléments les plus coûteux et les plus massifs, tels que les plaques bipolaires. La conception de ces plaques doit tenir compte de plusieurs paramètres : elles doivent posséder une bonne perméabilité aux gaz et doivent combiner les propriétés de résistance mécanique, de stabilité chimique et thermique ainsi qu’une conductivité électrique élevée. Elles doivent aussi permettre d’évacuer adéquatement la chaleur générée dans le cœur de la cellule. Les plaques bipolaires métalliques sont pénalisées par leur faible résistance à la corrosion et celles en graphite sont fragiles et leur coût de fabrication est élevé (dû aux phases d’usinage des canaux de cheminement des gaz). C’est pourquoi de nombreuses recherches sont orientées vers le développement d’un nouveau concept de plaques bipolaires. La voie la plus prometteuse est de remplacer les matériaux métalliques et le graphite par des composites à matrice polymère. Les plaques bipolaires composites apparaissent attrayantes en raison de leur facilité de mise en œuvre et leur faible coût de production mais nécessitent une amélioration de leurs propriétés électriques et mécaniques, d’où l’objectif principal de cette thèse dans laquelle on propose: i) un matériau nanocomposite développé par extrusion bi-vis qui est à base de polymères chargés d’additifs solides conducteurs, incluant des nanotubes de carbone. ii) fabriquer un prototype de plaque bipolaire à partir de ces matériaux en utilisant le procédé de compression à chaud avec un refroidissement contrôlé. Dans ce projet, deux polymères thermoplastiques ont été utilisés, le polyfluorure de vinylidène (PVDF) et le polyéthylène téréphtalate (PET). Les charges électriquement conductrices sélectionnées sont: le noir de carbone, le graphite et les nanotubes de carbones. La combinaison de ces charges conductrices a été aussi étudiée visant à obtenir des formulations optimisées. La conductivité électrique à travers l’épaisseur des échantillons développés ainsi que leurs propriétés mécaniques ont été soigneusement caractérisées. Les résultats ont montré que non seulement la combinaison entre les charges conductrices influence les propriétés électriques et mécaniques des prototypes développés, mais aussi la distribution de ces charges (qui de son côté dépend de leur nature, leur taille et leurs propriétés de surface), avait aidé à améliorer les propriétés visées. Il a été observé que le traitement de surface des nanotubes de carbone avait aidé à l’amélioration de la conductivité électrique et la résistance mécanique des prototypes. Le taux de cristallinité généré durant le procédé de moulage par compression des prototypes de plaques bipolaires ainsi que la cinétique de cristallisation jouent un rôle important pour l’optimisation des propriétés électriques et mécaniques visées. / Faced to the declining of energy resources and the increase of energy pollution, many researches are focused on the production of clean and sustainable energy in order to reduce the use of fossil sources energy since they are the main source of greenhouse gases production. The Proton Exchange Membrane Fuel Cell (PEMFC) is a technology that is becoming increasingly important for clean and sustainable energy production. The PEMFC is an electrochemical device that operates according to the principle of inverse electrolysis of water. A PEMFC converts the chemical reaction between hydrogen and oxygen (or air) into electrical power, heat and water, while releasing only water steam into the atmosphere. A PEMFC consists of a bended multilayer Electrode-Membrane-Electrode (EME), where the membrane is a solid polymer electrolyte separating the anode and the cathode. This set is built between two bipolar plates used for collecting the electrical current and distributing the gas (hydrogen or oxygen) through gas flow paths etched on each face of the bipolar plates. Most of the recent research focused on the improvement of PEMFC performances, their durability and the reduction of their production cost. A lot of work was done on the development and characterization of the different elements of PEMFCs, including the bipolar plates, considered as one of the most expensive and most massive parts. The design of the bipolar plates must consider several parameters. They should combine good mechanical strength, good chemical and thermal stability, sufficient electrical conductivity and good ability to remove heat generated in the heart of the cell. Metal bipolar plates are penalized by their corrosion resistance, which causes a reduction of the cell life. Those obtained from graphite are brittle and their manufacturing cost is high (mainly due to channels machining cost). Therefore, much research is focused on the development of new concepts of bipolar plates in order to replace metals and graphite by new polymer based composites. The latter appear to be more attractive because of their good processing ability that could help reducing the production cost of PEMFCs. However, much more research has to be done on the improvement of their electrical and mechanical properties, which is the main objective of the present thesis in which we propose: i) To develop by twin-screw extrusion process an optimized polymer nanocomposite material in which conductive solid additives are incorporated, including carbon nanotubes. ii) Fabricate a bipolar plate prototype from theses optimized nanocomposites by using the compression molding process under controlled cooling. In this project, two thermoplastic polymers have been used as the matrix: polyvinylidene fluoride (PVDF) and polyethylene terephthalate (PET). Three electrically conductive fillers were also used: carbon black, graphite and carbon nanotubes. Various combinations of these conductive additives were also studied in order to develop optimized nanocomposite formulations. Through-plane electrical conductivity of the developed nanocomposites as well as their mechanical properties have been carefully characterized. The obtained results showed that not only the combination of the conductive additives influences the nanocomposites through-plane conductivity and their mechanical properties, but also the distribution of these solid additives (which in turn depends on their nature, their size and their surface properties) helped to improve these properties. It has been observed that the surface treatment of the carbon nanotubes used in this study helped to increase both through-plane conductivity and mechanical strength of the developed bipolar plate prototypes. It was also observed that the crystallinity generated during bipolar plate cooling inside the compression mold as well as the crystallization rate play an important role in the optimization of the through-plane electrical conductivity and mechanical properties.

Page generated in 0.0647 seconds