• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 1
  • Tagged with
  • 19
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Micro-nano scale pore structure and fractal dimension of ultra-high performance cementitious composites modified with nanofillers

Wang, J., Wang, X., Ding, S., Ashour, Ashraf, Yu, F., Xinjun, L., Han, B. 16 March 2023 (has links)
Yes / The development of ultra-high performance cementitious composite (UHPCC) represents a significant advancement in the field of concrete science and technology, but insufficient hydration and high autogenous shrinkage relatively increase the pores inside UHPCC, in turn, affecting the macro-performance of UHPCC. This paper, initially, optimized the pore structure of UHPCC using different types and dimensions of nanofillers. Subsequently, the pore structure characteristics of nano-modified UHPCC were investigated by the mercury intrusion porosimeter method and fractal theory. Finally, the fluid permeability of nano-modified UHPCC was estimated by applying the Katz-Thompson equation. Experimental results showed that all incorporated nanofillers can refine the pore structure of UHPCC, but nanofillers with different types and dimensions have various effects on the pore structure of UHPCC. Specifically, CNTs, especially the thin-short one, can significantly reduce the porosity of UHPCC, whereas nanoparticles, especially nano-SiO2, are more conducive to refine the pore size. Among all nanofillers, nano-SiO2 has the most obvious effect on pore structure, reducing the porosity, specific pore volume and most probable pore radius of UHPCC by 31.9%, 35.1% and 40.9%, respectively. Additionally, the pore size distribution of nano-modified UHPCC ranges from 10-1nm to 105nm, and the gel pores and fine capillary pores in the range of 3-50nm account for more than 70% of the total pore content, confirming nanofillers incorporation can effectively weaken pore connectivity and induce pore distribution to concentrate at nanoscale. Fractal results indicated the provision of nanofillers reduces the structural heterogeneity of gel pores and fine capillary pores, and induces homogenization and densification of UHPCC matrix, in turn, decreasing the UHPCC fluid permeability by 15.7%-79.2%. / National Science Foundation of China (51978127, 52178188 and 51908103), the China Postdoctoral Science Foundation (2022M720648 and 2022M710973) and the Fundamental Research Funds for the Central Universities (DUT21RC(3)039).
12

Novel considerations for lightning strike damage mitigation of Carbon Fiber Reinforced Polymer Matrix (CFRP) composite laminates

Yousefpour, Kamran 06 August 2021 (has links)
Lightning current with high amplitude disseminates through the body of aircraft and causes physical damages including the delamination and puncture of materials. Also , such high-amplitude and high-frequency current could interfere with electronic devices through electromagnetic coupling with the conductive interfaces of an airplane. Hence, robust protection against lighting strike is essential in the aerospace industry. Carbon Fiber Reinforced Polymer (CFRP) Matrix Composites have become significant alternatives to conventional metal-base materials. Despite the superior physical and structural properties of CFRP composites, these materials are vulnerable to lightning strikes due to the low electrical conductivity compared to the metal counterpart. Many researchers have been working on the lightning strike damage mitigation of CFRP composites by increasing the electrical conductivity of materials. Conventional methods are adding conductive layers such as metal foil and copper mesh to the composite structures. These layers are added to the composite structure during the manufacturing process and are placed at the top layer for the effective bypassing of lightning current to the ground. While adding the conductive layers reduces the lightning strike damage significantly, the industry is more interested in using conductive nanofillers to prevent the corrosion of metal layers in contact with carbon fibers and to avoid the higher weight of conductive layers than nanofillers. The lightning damage mitigation methods are studied by applying lightning strike current to the CFRP composites using an impulse current generator. Conventional lightning strike damage tolerance of CFRP composites are prone to misinterpretation. The risk of misinterpretation originates from the lack of standards clearly defining testbed design requirements including electrode size and ground electrode edge configuration. In this dissertation, the effects of testbed configuration including discharge and ground electrode on lightning strike damage evaluation studies are demonstrated. Finite element analysis is applied to perform the simulations through the COMSOL Multiphysics to validate the experimental test results. Furthermore, after improving the testbed design, carbon black was added to the CFRP composites as a cost-effective additive for lightning strike damage mitigation performance. Correlations between lightning strike damage intensity and the added carbon black fillers as well as with other additive nanofillers are reported.
13

Friction and Wear Behavior of Graphene Reinforced Epoxy

Daloia, Debora 26 August 2014 (has links)
No description available.
14

Intrinsic Self-Sensing of Pulsed Laser Ablation in Carbon Nanofiber-Modified Glass Fiber/Epoxy Laminates

Rajan Nitish Jain (10725372) 29 April 2021 (has links)
<div>Laser-to-composite interactions are becoming increasingly common in diverse applications such as diagnostics, fabrication and machining, and weapons systems. Lasers are capable of not only performing non-contact diagnostics, but also inducing seemingly imperceptible structural damage to materials. In safety-critical venues like aerospace, automotive, and civil infrastructure where composites are playing an increasingly prominent role, it is desirable to have means of sensing laser exposure on a composite material. Self-sensing materials may be a powerful method of addressing this need. Herein, we present an exploratory study on the potential of using changes in electrical measurements as a way of detecting laser exposure to a carbon nanofiber (CNF)-modified glass fiber/epoxy laminate. CNFs were dispersed in liquid epoxy resin prior to laminate fabrication via hand layup. The dispersed CNFs form a three-dimensional conductive network which allows for electrical measurements to be taken from the traditionally insulating glass fiber/epoxy material system. It is expected that damage to the network will disrupt the electrical pathways, thereby causing the material to exhibit slightly higher resistance. To test laser sensing capabilities, a resistance baseline of the CNF-modified glass fiber/epoxy specimens was first established before laser exposure. These specimens were then exposed to an infra-red laser operating at 1064 nm, 35 kHz, and pulse duration of 8 ns. The specimens were irradiated for a total of 20 seconds (4 exposures each at 5 seconds). The resistances of the specimens were then measured again post-ablation. In this study, it was found that for 1.0 wt.% CNF by weight the average resistance increased by about 18 percent. However, this values varied for specimens with different weight fractions. This established that the laser was indeed causing damage to the specimen sufficient to evoke a change in electrical properties. In order to expand on this result, electrical impedance tomography (EIT) was employed for localization of laser exposures of 1, 3, and 5 seconds on a larger specimen, a 3.25” square plate. EIT was used to measure the changes in conductivity after each exposure. EIT was not only successful in detecting damage that was virtually imperceptible to the human-eye, but it also accurately localized the exposure sites. The post-ablation conductivity of the exposure sites decreased in a manner that was comparable to the resistance increase obtained during prior testing. Based on this preliminary study, this research could lead to the development of a real-time exposure detection and tracking system for the measurement, fabrication, and defense industries.</div>
15

Contrôle des mécanismes d’interactions nanocharge/polymère en milieu solvant : application aux revêtements à base de PVC et de PAI / Control of the nanofiller/polymer interactions mecanisms in solvent medium : application to PVC- and PAI-based coatings

Augry, Ludivine 24 March 2011 (has links)
Ce travail de thèse a consisté à améliorer certaines propriétés de revêtements fonctionnels à base de polychlorure de vinyle (PVC) plastifié et de polyamide-imide (PAI) par incorporation de nanocharges inorganiques préformées, lamellaires ou divisées. La compatibilisation des nanocharges avec la matrice dans laquelle elles ont été incorporées s’est avérée indispensable pour obtenir des films nanocomposites avec une distribution homogène et un état de dispersion le plus fin possible. Différentes stratégies de compatibilisation ont été étudiées, comme la physisorption, la chimisorption, l’intercalation ou encore la chélation d’agents compatibilisants judicieusement choisis et adaptés à chacun des systèmes. Les nouvelles nanocharges ainsi modifiées ont été caractérisées en vue de leur introduction dans la matrice. Les films nanocomposites « compatibilisés » ont été élaborés en voie solvant et/ou par polymérisation in-situ, suivie d’une gélification physique pour le PVC ou d’une réticulation chimique pour le PAI. La caractérisation morphologique des films, réalisée par DRX et MEB/MET, ainsi que les propriétés thermiques et thermomécaniques des films, évaluées par ATG, DSC et DMA, mettent en évidence l’importance de deux paramètres : la chimie de surface des nanocharges, à l’origine des interactions interfaciales nanocharge/polymère, et le procédé d’élaboration du nanocomposite. / This study aims at improving some properties of functional PVC- and PAI- based coatings by adding preformed inorganic lamellar or spherical nanofillers. The compatibilization of nanofiller with the polymer matrix in which they are introduced, is required in order to obtain nanocomposite films with an homogeneous distribution and a dispersion state as fine as possible. Different compatibilization strategies, well-suited for each system, have been studied: compatibilizer physisorption, chemisorption, intercalation or chelation. The new modified nanofillers have been characterized before their introduction into the matrix. Various strategies have been considered to obtain the “compatibilized” nanocomposite films such as the solution mixing and/or the in-situ polymerization, followed by a physical gelation or curing step for PVC- or PAI-based nanocomposites, respectively. The morphological characterization of the films, through XRD and SEM/TEM analysis, and the thermal and thermomecanical properties, evaluated by TGA, DSC and DMA, underlined the importance of two parameters: the nanofiller surface chemistry, responsible for the nanofiller/polymer interfacial interactions, and the elaboration process of the nanocomposite.
16

Nanocomposites à matrice élastomère à base de charges lamellaires synthétiques alpha-ZrP : influence de la modification des charges sur les propriétés mécaniques et barrière aux gaz / Synthetic lamellar nanofillers alpha-ZrP based elastomeric nanocomposites : influence of the fillers modification on the mechanical and gas barrier properties

Dal Pont, Kévin 06 June 2011 (has links)
Ce travail concerne l'étude des modifications de nanocharges lamellaires synthétiques (α-ZrP) et de leur influence sur les propriétés mécaniques et barrière aux gaz de nanocomposites à matrice élastomère (SBR). Cette étude s'inscrit dans le cadre de l'amélioration de l'étanchéité des pneumatiques. L'une des originalités de ce travail a résidé dans l'introduction des nanocharges hydrophiles par le biais d'une dispersion aqueuse (slurry), dans la matrice SBR hydrophobe. La première phase de ce travail a consisté à entreprendre plusieurs types de modification des nanocharges afin d'étudier les mécanismes d'intercalation et/ou d'exfoliation des ces dernières dans le slurry. Ces différentes familles de charges modifiées ont été utilisées pour réaliser des nanocomposites selon différentes voies de mise en oeuvre : principalement solvant et latex. Nous avons ensuite étudié l'influence, (i) de la nature des intercalants, (ii) des distances interfoliaires initiales des nanocharges et (iii) des procédés de mise en oeuvre des nanocomposites, sur la morphologie et les propriétés finales des matériaux. Cette étude a montré la synergie de ces trois paramètres et mis en évidence l'importance du contrôle des interactions charges modifiées/matrice sur les propriétés de transport de gaz. Parmi l'ensemble des matériaux synthétisés, nous avons pu mettre en avant une formulation, permettant d'atteindre des propriétés mécaniques et barrière intéressantes. Cette formulation, en voie latex, est basée sur l'utilisation de la charge modifiée aminosilane et de l'agent de couplage Si69 / This work concerns the study of the modification of synthetic lamellar nanofillers (α-ZrP) and their influence on mechanical and gas barrier properties of elastomeric nanocomposites (SBR). This study is part of improving the tire tightness. One of the originalities of this work is the introduction of hydrophilic nanofillers through an aqueous dispersion (slurry) in the hydrophobic SBR matrix. The first step of this work was to undertake several types of nanofiller modifications state in order to study their intercalation/exfoliation mechanisms in a slurry. These different families of modified fillers were then used to make nanocomposites with different ways of implementations: mainly solvent and latex ones. The influence of, (i) the nature of the intercalating agent, (ii) the initial nanofiller interlayer distance and (iii) the nanocomposite implementation processes, on the morphology and final properties of materials were studied. The synergy of these three parameters was demonstrated and the importance of controlling the modified filler/matrix interactions on the gas transport and mechanical properties was also proved. Among all the synthesized materials, a formulation was put forward which allowed to achieve interesting mechanical and barrier properties. This formulation, processed by the latex route, is based on the use of aminosilane modified nanofillers and the Si69 coupling agent
17

Phosphonium ionic liquids : Versatile nanostructuration and interfacial agents for poly(vinylidene fluoride-chlorotrifluoroethylene) / Liquides ioniques au phosphonium : Nanostructuration polyvalente et agents interfaciaux pour le poly (fluorure de vinylidène-chlorotrifluoroéthylène)

Yang, Jing 20 July 2016 (has links)
Ce travail de thèse porte sur la compréhension du rôle polyvalent des liquides ioniques (LIs) phosphonium comme agents de nanostructuration et interfaciaux pour la matrice polymère fluorée poly(fluorure de vinylidène-chlorotrifluoroéthylène) (P(VDF-CTFE)). Dans un premier temps, deux LIs phosphonium avec des fonctionnalités différentes générant un encombrement stérique et des fonctions dipolaire additionnelles sont tout d'abord incorporés dans la matrice P(VDF-CTFE) pour préparer des films de polymère additives. La structure de la phase cristalline, la morphologie issue de la dispersion et le comportement de cristallisation sont finement caractérisés dans le but de fournir une compréhension fuie et complète du rôle joué par le LI sur la nanostructuration. Dans un second temps, le rôle d’agent interfacial du LI est étudié avec un LI phosphonium fluoré comprenant un cation combinant trois phényles et une chaîne fluorée courte.Ce LI est utilise pour modifier la surface de l'oxyde de graphène (GO) et de l'oxyde de graphène réduit (rGO) afin de rendre ces nanocharges fonctionnelles et les incorporer dans la matrice P(VDF-CTFE). Ainsi, des films composites de P(VDF-CTFE)/graphène avec différentes teneurs en nanocharges sont préparés et une caractérisation fuie de la structure et des propriétés est entreprise afin de mieux comprendre les mécanisme d’interaction interfaciale et leurs influences sur les films composites, tels que la structure de la phase cristalline, le comportement de cristallisation, la relaxation des chaînes, la morphologie et les propriétés diélectriques finales. / This thesis work deals with an understanding of the versatile roles of phosphonium ionic liquids (ILs) as nanostructuration and interfacial agents for the fluorinated polymer matrix, i.e.,poly(vinylidene fluoride-chlorotrifluoroethylene) (P(VDF-CTFE)). In this context, two phosphonium ILs with different functionalities in steric hindrance and extra dipolar groups are firstly incorporated in P(VDF-CTFE) matrix to prepare polymer films. The crystalline phase structure, dispersion morphology and crystallization behavior are finely characterized with the goal of providing a full and deep understanding of the versatile and tunable nanostructuration effect of phosphonium ILs. Subsequently, in order to elucidate the mechanism of interfacial influence of IL, a fluorinated phosphonium IL with a cation structure combining three phenyls and a short fluorinated chain is added on the surface of graphene oxide (GO) and reduced graphene oxide (rGO), making them as functional nanofillers to be incorporated into P(VDF-CTFE) matrix. Thus,P(VDF-CTFE)/graphene composite films with different filler contents are prepared in order to investigate the mechanism of interfacial interaction and its influence on the composite films, such as crystalline phase structure, crystallization behavior, chain segmental relaxation behavior, dispersion morphology and the final dielectric properties.
18

‘Tri-3D’ electron microscopy tomography by FIB, SEM and TEM : Application to polymer nanocomposites / Tomographie électronique ‘Tri-3D’ en FIB, SEM et TEM : Application aux nanocomposites polymère

Liu, Yang 25 July 2013 (has links)
Ce travail a porté sur la caractérisation et la quantification en 3D de la répartition de charges de différents types (nanoparticules, nanotubes, etc.) dans des matrices polymères. Nous nous focalisons sur les techniques de tomographie en microscopie électronique. Une approche multiple en tomographie électronique a été réalisée : la tomographie en FIB/MEB (faisceau d’ions focalisé/microscope électronique à balayage), la tomographie en MEB et la tomographie en MET (microscope électronique en transmission). Les nanocomposites polymère sont généralement élaborés aux fins d’améliorer les propriétés physiques (mécanique, électrique, etc.) du matériau polymère constituant la matrice, grâce à une addition contrôlée de charges nanométriques. La caractérisation de tels matériaux, et l’établissement de corrélations précises entre la microstructure et les propriétés d’usage, requièrent une approche tri-dimensionnelle. En raison de la taille nanométrique des charges, la microscopie électronique est incontournable. Deux systèmes de nanocomposite polymère ont été étudiés par une approche multiple de tomographie électronique : P(BuA-stat-S)/MWNTs (copolymère statistique poly (styrène-co-acrylate de butyl) renforcé par des nanotubes de carbone multi-parois), et P(BuA-stat-MMA)/SiO2 (copolymère statistique poly(butyl acrylate-co-methyl methacrylate) renforcé par des nanoparticules de silice). Par combinaison de divers techniques, la caractérisation et la quantification des nanocharges ont été possibles. En particulier, la taille, la fraction volumique et la distribution des charges ont été mesurées. Cette étude a ainsi fourni des informations en 3D qui contribuent à mieux comprendre les propriétés des nanocomposites. Une attention particulière a été portée aux artefacts et causes d’erreur possibles durant l’étape de traitement 3D. Nous avons également essayé de comparer les différentes techniques utilisées du point de vue de leurs avantages et inconvénients respectifs, en dégageant des possibilités d’amélioration future. / This work is focused on the characterization and quantification of the 3D distribution of different types of fillers (nanoparticles, nanotubes, etc.) in polymer matrices. We have essentially used tomography techniques in electron microscopy. Multiple approaches to electron tomography were performed: FIB-SEM (focused ion beam/scanning electron microscope) tomography, SEM tomography and TEM (transmission electron microscope) tomography. Polymer nanocomposites are basically synthesized in order to improve the physical properties (mechanical, electric, etc.) of the pure polymer constituting the matrix, by a controlled addition of fillers at the nanoscale. The characterization of such materials and the establishment of accurate correlations between the microstructure and the modified properties require a three-dimensional approach. According to the nanometric size of the fillers, electron microscopy techniques are needed. Two systems of polymer nanocomposites have been studied by multiple electron tomography approaches: P(BuA-stat-S)/MWNTs (statistical copolymer poly(styrene-co-butyl acrylate) reinforced by multi-walled carbon nanotubes) and P(BuA-stat-MMA)/SiO2 (statistical copolymer poly(butyl acrylate-co-methyl methacrylate) reinforced by silica nanoparticles). By combining various techniques, the characterization and the quantification of nanofillers were possible. In particular, statistics about size, distribution and volume fraction of the fillers were measured. This study has then provided 3D information, which contributes to a better understanding of properties of the nanocomposites. Attention has been paid to analyze carefully original data, and artifacts and causes of errors or inaccuracy were considered in the 3D treatments. We also attempted to compare benefits and drawbacks of all techniques employed in this study, and perspectives for future improvements have been proposed.
19

Relations structure-propriétés et résistance à l’endommagement de vernis acrylate photo-polymérisables pour substrats thermoplastiques : évaluation de monomères bio-sourcés et de nano-charges / Structure-properties relationships and damage resistance of photo-polymerizable acrylate coatings for thermoplastic substrates : evaluation of bio-based monomers and of nano-fillers

Prandato, Emeline 08 October 2013 (has links)
L’objectif de ces travaux a été de développer des vernis acrylate photo-polymérisables à 100% d’extrait sec, destinés à protéger des pièces thermoplastiques en polycarbonate contre les endommagements mécaniques, en particulier contre la rayure. Les relations entre la composition, la structure et les propriétés de ces revêtements ont été explorées. Pour ce faire ont été étudiées la morphologie, les propriétés thermomécaniques ainsi que la résistance à la rayure des matériaux. Cette dernière a été évaluée par des tests de micro-scratch. La cinétique de formation des réseaux polymères a elle aussi été étudiée, par photo-DSC. Tous les matériaux étudiés présentent, en analyse thermomécanique dynamique, un module élevé à l’état caoutchoutique ainsi qu’une large relaxation mécanique. Un vernis pétro-sourcé à 100% d’extrait sec, qualifié de standard, a servi de point de départ à ces travaux. Il a tout d’abord été comparé à un vernis commercial solvanté photo-polymérisable, spécialement conçu pour la protection de pièces thermoplastiques. Celui-ci s’est avéré être plus efficace en termes de résistance à la rayure. Dans un deuxième temps, a été étudiée l’influence sur les propriétés du vernis standard pétro-sourcé d’un monomère multicyclique entrant dans sa composition. La modification de son pourcentage n’a permis d’apporter aucun bénéfice en termes de résistance à la rayure. Des nanoparticules de silice, d’alumine ou de zircone, disponibles sous forme de dispersion dans un monomère acrylate, ont ensuite été incorporées dans le vernis standard pétro-sourcé. Une organisation particulière de la nano-silice et de la nano-alumine au sein des matériaux étudiés a pu être observée par microscopie électronique en transmission. Il a été constaté que le taux de charge doit être élevé pour observer une augmentation du module élastique et une amélioration de la résistance à la rayure du vernis (≥15% massique dans le cas de la nano-silice). Par ailleurs, l’ajout de 5% massique de nano-silice dans le vernis n’a conduit à aucune modification de sa cinétique de photo-polymérisation. Enfin, une partie des composés acrylate pétro-sourcés du vernis standard a été substituée par des acrylates bio-sourcés disponibles industriellement. La cinétique de photo-polymérisation des deux types de vernis est similaire. Les conclusions de la comparaison entre les vernis bio-sourcés et le vernis standard pétro-sourcé en termes de résistance à la rayure dépendent de l’épaisseur des revêtements étudiés. L’ajout d’un composé monoacrylate bio-sourcé à la formulation des vernis tend à améliorer la recouvrance élastique des revêtements de faible épaisseur. L’acrylate d’isobornyle est en particulier intéressant, car il a aussi tendance à retarder l’apparition des craquelures au cours de la rayure. / The aim of this work was to develop 100% solids photo-polymerizable acrylate coatings, intended to protect thermoplastic pieces made of polycarbonate against mechanical damage, in particular scratches. The relationships between the composition, the structure and the properties of these coatings were examined. For this purpose the morphology, the thermomechanical properties and the scratch resistance of the materials, assessed by micro-scratch tests, were studied. The kinetics of the polymer network formation was also studied by photo-DSC experiments. All the materials feature a high elastic modulus and a broad mechanical relaxation in dynamic thermomechanical analysis. A 100% solids petro-based coating (standard) constituted the starting point of this work. First it was compared to a commercial photo-polymerizable coating containing solvents, specially designed to protect thermoplastic pieces. This commercial coating turned out to be more efficient against scratches. In a second time was studied the influence of the percentage of a multicyclic monomer, taking part in the composition of the standard petro-based coating, on the properties of the latter. The modification of its proportion does not bring any advantage concerning the scratch resistance. Silica, alumina and zirconia nanoparticles, dispersed in an acrylate monomer, were then incorporated in the standard petro-based coating. A particular organization of the silica or alumina nanoparticles in the materials could be observed by transmission electron microscopy. A high filler content is required to observe an increase in the elastic modulus and an enhancement of the scratch resistance of the coating (≥15% by weight for the nano-silica). Moreover, no change of the photo-polymerization kinetics was noticed through the addition of 5% by weight of nano-silica in the coating. Finally, some of the petro-based acrylate compounds of the standard coating were substituted by commercially available bio-based acrylate monomers. Both types of coatings feature similar polymerization kinetics. The conclusions concerning the comparison of the scratch resistance of the bio-based and standard petro-based coatings depend on their thickness. The incorporation of a bio-based monoacrylate compound in low thickness coatings tends to improve the elastic recovery. Isobornyl acrylate is particularly interesting since it also tends to delay the apparition of cracks along the scratch.

Page generated in 0.0767 seconds