• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 17
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 71
  • 35
  • 24
  • 22
  • 20
  • 19
  • 14
  • 14
  • 13
  • 12
  • 12
  • 11
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Etudes multi-longueurs d’onde de l’endommagement laser à la surface de composants optiques en silice en régime nanoseconde / Study of laser-induced damage on the exit surface of silica components in the nanosecond regime in a multiple wavelengths configuration

Chambonneau, Maxime 12 November 2014 (has links)
Cette thèse porte sur l'endommagement laser à la surface de composants optiques en silice amorphe en régime nanoseconde. Ce phénomène est une modification irréversible du matériau. Dans le régime nanoseconde, l'endommagement laser de la silice est étroitement corrélé à la présence de défauts précurseurs qui sont une conséquence de la synthèse et du polissage des composants. Cette thèse propose des investigations sur l'endommagement laser par plusieurs longueurs d'onde simultanément. Afin de mieux appréhender ce phénomène dans ces conditions d'irradiation, trois études sont conduites. La première porte sur la phase d'amorçage des dommages. Les résultats expérimentaux obtenus dans les cas mono-longueur d'onde permettent de mettre en avant un couplage dans le cas multi-longueurs d'onde. Une comparaison de ces résultats avec un modèle théorique développé au cours de cette thèse permet d'améliorer la compréhension des processus fondamentaux liés à cette phase d'endommagement. Puis, des caractérisations morphologiques post mortem couplées à une métrologie précise des faisceaux laser permettent d'établir la nature ainsi que la chronologie des mécanismes conduisant à la formation des dommages. Le scénario théorique proposé est validé à travers différentes expériences. En dernier lieu, nous étudions la phase de croissance des dommages dans les cas mono et multi-longueurs d'onde. Une fois de plus, cette dernière configuration met en lumière un couplage entre les longueurs d'onde. Nous montrons la nécessité de prendre en compte les caractéristiques spatiales des faisceaux laser lors d'une session de croissance des dommages. / In this thesis, laser-induced damage phenomenon on the surface of fused silica components is investigated in the nanosecond regime. This phenomenon consists in an irreversible modification of the material. In the nanosecond regime, laser damage is tightly correlated to the presence of non-detectable precursor defects which are a consequence of the synthesis and the polishing of the components. In this thesis, we investigate laser damage in a multiple wavelengths configuration. In order to better understand this phenomenon in these conditions of irradiation, three studies are conducted. The first one focuses on damage initiation. The results obtained in the single wavelength configurations highlight a coupling in the multiple wavelengths one. A comparison between the experiments and a model developed during this thesis enables us to improve the knowledge of the fundamental processes involved during this damage phase. Then, we show that post mortem characterizations of damage morphology coupled to an accurate metrology allow us to understand both the nature and also the chronology of the physical mechanisms involved during damage formation. The proposed theoretical scenario is confirmed through various experiments. Finally, we study damage growth in both the single and the multiple wavelengths cases. Once again, this last configuration highlights a coupling between the wavelengths. We show the necessity to account for the spatial characteristics of the laser beams during a growth session.
62

Evaluation expérimentale et modélisation de la contamination induite par laser sur les optiques spatiales / Experimental evaluation and modeling of laser-induced contamination on space optics

Gebrayel El Reaidy, Georges 06 December 2018 (has links)
Dans le domaine du spatial, des sources laser à forte puissance sont déjà employées dans le cadre d’activités scientifiques. On peut citer par exemple l’analyse à distance de la composition chimique des roches sur Mars par LIBS (Laser Induced Breakdown Spectroscopy) et le sondage atmosphérique par Lidar (Light Detection And Ranging) pour l’amélioration des prédictions météorologiques. Cependant l’endommagement laser (LID) et la contamination induite par laser (LIC) sur les composants optiques des systèmes demeurent des risques difficiles à anticiper. En ce qui concerne la LIC, l’interaction du flux laser avec les optiques de l’instrument en orbite peut provoquer des dégradations irréversibles, liées à la création de dépôts organiques absorbants qui peuvent induire des endommagements laser dans le temps. L’effet LIC reste donc aujourd’hui un obstacle au développement de sources laser de puissance pour les applications sans maintenance possible et possédant des durées de vie raisonnables. Une étude paramétrique de l’effet LIC est proposée dans cette thèse afin de progresser dans la compréhension des mécanismes mis en jeu / Since their first implementation in satellite systems, lasers have proven to be very versatile devices in space applications. They are key components of a variety of space-based instruments performing altimetry, light detection and ranging, laser sensing, and laser communication. However, laser induced damage (LID) and laser-induced contamination (LIC) of optical surfaces are a major failure risk for space-bound laser instruments. Regarding the LIC effect, the interaction of the laser with slight traces of organic compounds on the optical surface leads to the formation of a highly absorbing nanometric deposit on the laser footprint. Under certain conditions, this deposit may cause laser induced damage. Today, mainly the LIC effect remains an obstacle for the development of reliable and long-living spaceborne lasers. A parametric study concerning this effect was carried out in this work in order to enhance our understanding of the various mechanisms involved
63

Development of a method to overcome the power threshold during supercontinuum generation based on an Yb-doped photonic crystal fiber

Baselt, Tobias, Taudt, Christopher, Nelsen, Bryan, Lasagni, Andrés Fabián, Hartmann, Peter 16 September 2019 (has links)
Optical coherence tomography benefits from the high brightness and bandwidth, as well as the spatial coherence of supercontinuum (SC) sources. The increase of spectral power density (SPD) over conventional light sources leads to shorter measuring times and higher resolutions. For some applications, only a portion of the broad spectral range can be used. Therefore, an increase of the SPD in specific limited spectral regions would provide a clear advantage over spectral filtering. This study describes a method to increase the SPD of SC sources by amplifying the excitation wavelength inside of a nonlinear photonic crystal fiber (PCF). An ytterbium-doped PCF was manufactured by a nanopowder process and used in a fiber amplifier setup as the nonlinear fiber medium. The performance of the fiber was compared with a conventional PCF that possesses comparable parameters. Finally, the system as a whole was characterized in reference to common solid-state laser-based photonic SC light sources. An order-of-magnitude improvement of the power density was observed between the wavelengths from 1100 to 1350 nm.
64

Décharge électrique à l'interface de deux liquides : application à la synthèse de nanoparticules

Mohammadi, Kyana 09 1900 (has links)
Les procédés plasma-liquide sont considérablement étudiés en raison de leur potentiel élevé dans la production de divers nanomatériaux, parmi d’autres applications technologiques. En plus d'un rendement relativement élevé (mg/min) et d'une infrastructure simplifiée, les mécanismes de synthèse sont directs. Le fait que les produits restent confinés dans la solution, la manipulation de nanomatériaux ne présente un danger ni aux vivants ni à l’environnement. Dans ce mémoire de maitrise, les méthodes les plus courantes pour la synthèse de nanomatériaux, en particulier les systèmes plasma-liquide, sont discutées. La formation de différents régimes de plasma dans des liquides, dont chacun a des caractéristiques et des applications différentes, est présentée. Ensuite, le système multi-liquide et ses caractéristiques, telles que les caractéristiques électriques et la dynamique de l’émission des décharges dans différentes conditions, sont exposés. Pour la synthèse de nanoparticules, on traite les décharges Sparks (étincelles) avec une attention particulière. Au lieu de les produire entre deux électrodes immergées dans un liquide diélectrique, les décharges sont produites dans un hydrocarbure liquide entre une électrode et une solution conductrice. Cette dernière est produite via l’ajout de nitrate d’argent dans l’eau. Le plasma, via ses espèces réactives, réduit les ions Ag+ en Ag0 qui forment ensuite les nanoparticules. La décomposition de l’hydrocarbure produit aussi des espèces carbonées qui se recombinent sous forme d’une matrice hydrocarbonée. En se basant sur différentes méthodes de caractérisations (FTIR, MEB, MET, UV-vis, etc.), nous identifions deux zones de réactions : dans le plasma dans l’heptane et à l’interface plasma-solution. Les produits dans la première zone sont majoritairement des nanoparticules (< 10 nm) d’Ag enrobées dans une matrice de carbone hydrogénée. Cependant, les produits dans la solution sont des nanoparticules d’Ag (sans matrice) ayant une distribution de taille de quelques dizaines de nanomètres. / Plasma-liquid systems are significantly investigated due to their high potential in the production of various nanomaterials, among other technological applications. In addition to relatively high efficiency in production (mg/min) and simplified infrastructure, the mechanisms of synthesis are rather direct. Also, because the products are confined in solution, the handling of the nanomaterials do not present risks to the living or to the environment. In this master thesis, the most common methods for nanomaterial synthesis, in particular plasma-liquid systems, are discussed. Formation of different plasma regimes in liquids, which each of them has different features and application, are explained. Then, the multiple liquid system and their feature such as electrical characteristics and emission dynamic of the discharges at different conditions, are investigated. To produce nanoparticles, we present the Spark discharges with special attention. Instead of their production between two electrodes immersed in a liquid dielectric, the discharges are produced in a liquid hydrocarbon between one electrode and a conductive solution. This latter is prepared by adding silver nitrate to water. The plasma, through its reactive species, reduces the ions Ag+ to Ag0 that produces nanoparticles. The decomposition of the hydrocarbon produces carbonaceous species that recombine as hydrocarbon matrix. Based on the different characterisation techniques (FTIR, SEM. TEM. UV-vis, etc.), we identified two zones of reactions: in plasma in heptane and at the interface plasma-solution. The products in the former zone are majority 10 nm-particles of Ag embedded in a hydrocarbon matrix, while the products in solution are Ag nanoparticles (without matrix) with size of several tens of nanometers.
65

Application of the mesh-free smoothed particle hydrodynamics method in the modelling of direct laser interference patterning

Demuth, Cornelius 23 March 2022 (has links)
In this work, the mesh-free smoothed particle hydrodynamics (SPH) method is applied in the modelling of the direct laser interference patterning (DLIP) of metal surfaces. The DLIP technique allows the fabrication of periodic microstructures on technical surfaces using nanosecond laser pulses. Here, the interference of two coherent partial beams with a sinusoidal energy density distribution of the interference pattern is concerned, which is employed to generate line-like surface structures. However, the mechanisms effective during nanosecond pulsed DLIP of metals are not yet fully understood. The physical phenomena occurring due to the interaction of laser radiation with metallic materials are first considered and the governing differential equations are stated. The fundamentals of the SPH method and the approaches to the numerical treatment of the conservation equations are presented. Physical processes relevant to the modelling of laser material processing are solved by suitable SPH techniques, i.e. the approximations are verified with respect to test problems with analytical or known numerical solutions. Consequently, the SPH method is used to devise a thermal model of the DLIP process, considering the absorption of the laser radiation, the heat conduction into the workpiece and the latent heat of involved phase changes. This model is extended to compute the melt pool convection during DLIP, which is driven by surface tension gradients due to temperature gradients. For this purpose, an incompressible SPH (ISPH) method is used, representing a novel approach to the modelling of the laser-induced melt pool flow. The numerical model is employed to perform simulations of DLIP on metal substrates. Firstly, the thermal simulation of the single pulse patterning of stainless steel is in good agreement with experimental results. The application of DLIP to stainless steel and aluminium is then simulated by the comprehensive model including the melt pool flow. Moreover, this model is further extended to consider the non-linear temperature dependence of surface tension, as in liquid steel in the presence of a surface active element. The simulation results reveal a distinct behaviour of stainless steel and aluminium substrates. A markedly deeper melt pool and considerable velocity magnitudes of the thermocapillary convection at the melt surface are computed for DLIP of aluminium. In contrast, the melt pool flow is less pronounced during DLIP of stainless steel, whereas higher surface temperatures are predicted. Hence the Marangoni convection is a conceivable effective mechanism during the structuring of aluminium at moderate energy density. The different character of the melt pool convection during DLIP of stainless steel and aluminium is corroborated by experimental observations. Furthermore, the simulations for stainless steel with different sulphur content indicate distinct melt pool flow patterns and support the explanation of the microstructures found after DLIP experiments. The role of vapourisation and the induced recoil pressure in the microstructure evolution due to DLIP on metal substrates at elevated fluences could be prospectively investigated. In this regard, the consideration of the melt pool surface deformation in the ISPH algorithm, and particularly a suitable pressure boundary condition, is required.:I The research problem 1 Motivation 2 Modelling of laser material processing 2.1 Interaction of laser radiation with materials 2.1.1 Absorption of laser radiation 2.1.2 Heat conduction and phase change 2.1.3 Molten pool convection 2.1.4 Vapourisation regime 2.2 Mathematical modelling of laser material interaction 2.2.1 Conservation equations in Lagrangian formulation 2.2.2 Influence of surface tension 3 State of the art in laser microprocessing and the SPH method 3.1 Laser microprocessing 3.2 Simulation of direct laser interference patterning 3.3 The mesh-free smoothed particle hydrodynamics method 3.3.1 Fundamental approximations and kernel function 3.3.2 Particle distribution and interaction length 3.3.3 Approximation of derivatives 3.3.4 Treatment of boundaries 3.3.5 Neighbourhood search 3.4 Numerical modelling of laser material processing by SPH II SPH model development for direct laser interference patterning 4 SPH modelling of heat transfer and fluid flow 4.1 Solution of the heat diffusion equation 4.2 Formulation of equations governing fluid flow 4.2.1 Equation of continuity 4.2.2 Approximation of pressure gradient term 4.2.3 Treatment of viscosity 4.3 Weakly compressible SPH method for solving fluid flow 4.3.1 Particle motion 4.3.2 Time integration 4.3.3 Time step criteria 4.4 Incompressible SPH method for solving fluid flow 4.4.1 Time integration 4.4.2 Discrete incompressible SPH algorithm 4.4.3 Time step criteria 4.5 Simulation of thermal fluid flow using ISPH 4.5.1 Semi-implicit time integration 4.5.2 Solution of the pressure Poisson equation 5 Verification of the SPH implementation 5.1 Transient heat conduction in laser-irradiated plate 5.1.1 Problem description 5.1.2 Dimensionless formulation 5.1.3 Numerical solution and results 5.2 Viscous flow 5.2.1 Couette flow 5.2.2 Poiseuille flow 5.3 Thermal convection 5.3.1 Natural convection in a square cavity 5.3.2 Rayleigh--Marangoni--Bénard convection in liquid aluminium 6 SPH model of direct laser interference patterning 6.1 Characteristics of the process 6.2 Thermal model 6.2.1 Non-dimensionalisation 6.2.2 Numerical solution of governing equation 6.2.3 Verification of the computation 6.2.4 Numerical test 6.3 Thermofluiddynamic model 6.3.1 Non-dimensionalisation 6.3.2 Numerical solution of governing equations 6.3.3 Discretisation 6.3.4 Resolution independence study 7 SPH simulation of direct laser interference patterning 7.1 Thermal model 7.1.1 DLIP experiments on stainless steel substrates 7.1.2 Thermal simulation of DLIP on steel substrate 7.2 Thermofluiddynamic model 7.2.1 Material properties and simulation parameters 7.2.2 Numerical results for steel substrate 7.2.3 Numerical results for aluminium substrate 7.2.4 Discussion and comparison with experiments 7.3 Extended thermofluiddynamic model 7.3.1 Model parameters 7.3.2 Influence of sulphur content on DLIP of stainless steel 8 Conclusions and outlook Bibliography / In dieser Arbeit wird die direkte Laserinterferenzstrukturierung (Direct Laser Interference Patterning, DLIP) von Metallen mit der netzfreien Smoothed Particle Hydrodynamics (SPH) Methode modelliert. Das DLIP-Verfahren ermöglicht die Fertigung periodischer Mikrostrukturen auf technischen Oberflächen mit Nanosekunden-Laserpulsen. Hier wird die Zweistrahlinterferenz mit einer sinusförmigen Energiedichteverteilung des Interferenzmusters behandelt, die linienförmige Oberflächenstrukturen erzeugt. Die bei der direkten Interferenzstrukturierung von Metallen mit Nanosekunden-Laserpuls wirksamen Mechanismen sind jedoch noch nicht verstanden. Die aufgrund der Wechselwirkung von Laserstrahlung mit metallischen Werkstoffen auftretenden physikalischen Phänomene werden zuerst betrachtet und die sie bestimmenden Differentialgleichungen angegeben. Die Grundlagen der SPH-Methode sowie deren Herangehensweisen an die numerische Behandlung der Erhaltungsgleichungen werden vorgestellt. Für die Modellierung der Lasermaterialbearbeitung relevante physikalische Vorgänge werden mittels geeigneter SPH-Ansätze gelöst, d. h. anhand von Testproblemen mit bekannter Lösung verifiziert. Das mit SPH zunächst erstellte thermische Modell des DLIP-Prozesses berücksichtigt die Absorption der Laserstrahlung, die Wärmeleitung im Werkstück und die Enthalpien der Phasenübergänge. Das Modell wird zur Berechnung der Schmelzbadströmung bei der DLIP-Anwendung, angetrieben von Oberflächenspannungsgradienten verursacht durch Temperaturgradienten, erweitert. Hierbei wird eine inkompressible SPH (ISPH) Methode eingesetzt, in der Simulation laserinduzierter Schmelzbäder ein neuartiger Ansatz. Mit dem numerischen Modell werden Simulationen des DLIP-Verfahrens für metallische Substrate durchgeführt. Die thermische Simulation der Strukturierung von Edelstahl stimmt gut mit einem Experiment überein. Weiterhin wird die Anwendung von DLIP auf Edelstahl und Aluminium mit dem thermofluiddynamischen Modell simuliert. Außerdem wird das Modell um eine nichtlinear temperaturabhängige Oberflächenspannung, wie sie für Stahlschmelze in Anwesenheit eines oberflächenaktiven Elements vorliegt, ergänzt. Die Simulationen zeigen ein verschiedenes Verhalten von Edelstahl und Aluminium. Bei der Strukturierung von Aluminium treten ein deutlich tieferes Schmelzbad und erhebliche Geschwindigkeitsbeträge der thermokapillaren Konvektion an der Schmelzeoberfläche auf. Hingegen ist die Strömung bei der DLIP-Anwendung auf Edelstahl schwächer ausgeprägt und höhere Oberflächentemperaturen werden erreicht. Die Marangoni-Konvektion ist daher ein wirksamer Schmelzeverdrängungsmechanismus bei der Strukturierung von Aluminium mit moderater Energiedichte. Die unterschiedliche Schmelzbadströmung für die beiden Werkstoffe wird durch experimentelle Beobachtungen bestätigt. In Abhängigkeit des Schwefelgehalts von Edelstahl zeigen Simulationen verschiedene Strömungsmuster im Schmelzbad und unterstützen die Erklärung experimentell festgestellter Mikrostrukturen. Die Untersuchung der Wirkung der Verdampfung und des induzierten Rückstoßdruckes auf die Strukturausbildung bei höheren Fluenzen erfordert die Berücksichtigung der Oberflächendeformation sowie eine geeignete Druckrandbedingung im ISPH-Algorithmus.:I The research problem 1 Motivation 2 Modelling of laser material processing 2.1 Interaction of laser radiation with materials 2.1.1 Absorption of laser radiation 2.1.2 Heat conduction and phase change 2.1.3 Molten pool convection 2.1.4 Vapourisation regime 2.2 Mathematical modelling of laser material interaction 2.2.1 Conservation equations in Lagrangian formulation 2.2.2 Influence of surface tension 3 State of the art in laser microprocessing and the SPH method 3.1 Laser microprocessing 3.2 Simulation of direct laser interference patterning 3.3 The mesh-free smoothed particle hydrodynamics method 3.3.1 Fundamental approximations and kernel function 3.3.2 Particle distribution and interaction length 3.3.3 Approximation of derivatives 3.3.4 Treatment of boundaries 3.3.5 Neighbourhood search 3.4 Numerical modelling of laser material processing by SPH II SPH model development for direct laser interference patterning 4 SPH modelling of heat transfer and fluid flow 4.1 Solution of the heat diffusion equation 4.2 Formulation of equations governing fluid flow 4.2.1 Equation of continuity 4.2.2 Approximation of pressure gradient term 4.2.3 Treatment of viscosity 4.3 Weakly compressible SPH method for solving fluid flow 4.3.1 Particle motion 4.3.2 Time integration 4.3.3 Time step criteria 4.4 Incompressible SPH method for solving fluid flow 4.4.1 Time integration 4.4.2 Discrete incompressible SPH algorithm 4.4.3 Time step criteria 4.5 Simulation of thermal fluid flow using ISPH 4.5.1 Semi-implicit time integration 4.5.2 Solution of the pressure Poisson equation 5 Verification of the SPH implementation 5.1 Transient heat conduction in laser-irradiated plate 5.1.1 Problem description 5.1.2 Dimensionless formulation 5.1.3 Numerical solution and results 5.2 Viscous flow 5.2.1 Couette flow 5.2.2 Poiseuille flow 5.3 Thermal convection 5.3.1 Natural convection in a square cavity 5.3.2 Rayleigh--Marangoni--Bénard convection in liquid aluminium 6 SPH model of direct laser interference patterning 6.1 Characteristics of the process 6.2 Thermal model 6.2.1 Non-dimensionalisation 6.2.2 Numerical solution of governing equation 6.2.3 Verification of the computation 6.2.4 Numerical test 6.3 Thermofluiddynamic model 6.3.1 Non-dimensionalisation 6.3.2 Numerical solution of governing equations 6.3.3 Discretisation 6.3.4 Resolution independence study 7 SPH simulation of direct laser interference patterning 7.1 Thermal model 7.1.1 DLIP experiments on stainless steel substrates 7.1.2 Thermal simulation of DLIP on steel substrate 7.2 Thermofluiddynamic model 7.2.1 Material properties and simulation parameters 7.2.2 Numerical results for steel substrate 7.2.3 Numerical results for aluminium substrate 7.2.4 Discussion and comparison with experiments 7.3 Extended thermofluiddynamic model 7.3.1 Model parameters 7.3.2 Influence of sulphur content on DLIP of stainless steel 8 Conclusions and outlook Bibliography
66

Heat Release Studies by pure Rotational Coherent Anti-Stokes Raman Scattering Spectroscopy in Plasma Assisted Combustion Systems excited by nanosecond Discharges

Sheehe, Suzanne Marie Lanier 14 November 2014 (has links)
No description available.
67

Ultrashort Two-Photon-Absorption Laser-Induced Fluorescence in Nanosecond-Duration, Repetitively Pulsed Discharges

Schmidt, Jacob Brian 01 October 2015 (has links)
No description available.
68

Ultrafast Emission Spectroscopy and Nonlinear Laser Diagnostics for Nanosecond Pulsed Plasmas

Karna S Patel (9380432) 24 April 2024 (has links)
<p dir="ltr">In recent years, nanosecond repetitively pulsed (NRP) plasma discharges have garnered significant interest due to their rapid generation of reactive excited-state species, reactive radicals, and localized heat release within nanosecond (ns) timescale. To effectively harness these plasmas for altering system-level thermal and chemical behavior, a thorough understanding of their governing physics is crucial. This knowledge enables the development of predictive plasma kinetic models for tailoring NRP plasmas to specific applications. However, achieving this requires high-fidelity experimental data to validate models and deepen our understanding of fundamental plasma physics. Advancing experimental spectroscopy and laser diagnostics methods is essential for probing such temporally highly dynamic and optically complex nonequilibrium environments. This includes developing novel <i>test platforms</i>, conducting <i>fundamental research</i> to address existing knowledge gaps, and constructing custom <i>ultrafast laser architectures</i> for probing plasma properties. </p><p dir="ltr">The pioneering development of Streak-based <i>test platform</i> in the diagnostics field of nanosecond pulsed plasmas and its successful application towards inferring the underlying ultrafast spatio-temporal evolution of nanosecond pulsed plasma discharges with an unprecedented time-resolution as short as ~25 ps is presented for the first time. Spectrally filtered, 1D line-imaging of nanosecond pulsed plasma discharges in a single-shot, jitter-free, continuously sweeping manner is obtained, and differences in discharge dynamics of air and N2 plasma environments are studied. Successive <i>test platform</i> advancement includes spectrally resolved Streak-spectroscopy measurements of thermal regime-transition evolution from early-nonequilibrium to local-thermal-equilibrium (LTE) to attain time-resolved quantitative insights into N2(C) state rotational/vibrational nonequilibrium temperatures, electron temperature/density, and spectral lifetime dynamics. </p><p dir="ltr">Ultrafast laser-based progression includes detailed <i>fundamental</i> investigation of higher-order optical nonlinearity perturbations of fs-EFISH by considering of – self-phase modulation induced spectral characteristic of fs-EFISH signal, calibration mapping during-below-and-beyond optical breakdown regime, optical Kerr effect consequences, impact of femtosecond (fs) laser seeding on the noninvasiveness of fs-EFISH, and spectral emission characteristics of fs laser filaments. To infer N2(X) state nonequilibrium of NRP pulsed plasmas, two hybrid fs/ps ro-vibrational coherent anti-Stokes Raman scattering (CARS) <i>ultrafast laser architectures</i> are developed. First architecture, single-laser-solution, reduces system’s energy budget by ~3 mJ/pulse for generating narrowband (~21 ps), high-energy (~420 μJ/pulse), 532 nm probe pulses through incorporation of custom built visible fs optical parametric amplifier (OPA) coupled with an Nd:YAG power amplifier module. The second architecture, two-laser-solution, improves system’s robustness through the development of a 1 kHz, 532 nm, high-energy (~600 μJ/pulse), low-jitter (<1 ps), narrowband (~27 ps), master-oscillator-power-amplification (MOPA) based picosecond probe pulse laser time-synchronized with fs master-oscillator. Single-shot, hybrid fs/ps narrowband ro-vibrational CARS demonstration in a combusting flame up to temperatures of ~2400 K is demonstrated. Experimental ro-vibrational CARS investigation includes polarization based nonresonant background suppression and demonstration of preferential Raman coherence excitation shift, a temperature sensitivity enhancing strategy for vibrationally hot mediums like nanosecond pulsed plasmas. Lastly, an ultrafast pulse-friendly optically accessible vacuum cell is designed and fabricated for controlled experiments of NRP fs/ps CARS. Special care is taken to prevent self-focusing and spectral-temporal chirp of fs CARS beams while maintaining Gaussian focusing beam caustic.</p>
69

Mikrostimulátor / Microstimulator

Tobolová, Marie January 2012 (has links)
The theoretical part of the thesis deals with the explanation of the actions that occur during the stimulation of tissues with the electric current. A significant analogy with electrical circuits is used to describe the phenomena at the molecular and cellular level. The models of membrane and cell are necessary for understanding the behaviour of more complex structures, such as tissues and organs. A considerable attention is paid to the conditions of electrical stimulation which bring about response in the stimulated area. Next, the cumulative effect of the subthreshold stimulation is analysed. The mechanisms of common treatment effects of the electrotherapeutic methods are outlined. The research results in the practical part of the thesis – the design for a microstimulator. Properties of the microstimulator and compliance with standard requirements are verified by testing the electromagnetic compatibility and electrical safety, conducted by the Institute for testing and certification, JSC. The effects of microstimulation on living organisms are experimentally investigated on horses, in collaboration with the Veterinary and Pharmaceutical University. For the first time, thermodynamic sensors are used for the objective assessment of the microstimulation therapeutic effect. These miniature sensors are placed on the horse´s front legs and monitor the changes in thermal activity while only one limb is really stimulated and the other is just considered as a reference. Comparison and statistical evaluation of the measured signals could provide a more detailed view of the thermal changes within the stimulated area, which is significantly related to blood circulation in limbs, and with the support of the reduction of edema. The course of the experiment which deals with the effect of microstimulation on edema of the horse´s legs caused by minor injuries (tendinitis, sprains, etc.), is documented in photographs or videos that are significant for possible evaluation of the effectiveness of the stimulation in this application.
70

Large Eddy Simulations of the interactions between flames and thermal phenomena : application to wall heat transfer and combustion control / Simulations aux grandes échelles des interactions entre les flammes et les phénomènes thermiques : application au transfert de chaleur à la parois et au contrôle de la combustion

Maestro, Dario 27 September 2018 (has links)
Les interactions entre les flammes et les phénomènes thermiques sont le fil conducteur de ce travail. En effet, les flammes produisent de la chaleur, mais peuvent aussi être affectées par des transferts ou des sources de chaleur. La Simulation aux Grandes Echelles (SGE) est utilisée ici pour étudier ces interactions, en mettant l’accent sur deux sujets principaux: le transfert de chaleur aux parois et le contrôle de la combustion. Dans un premier temps, on étudie le transfert de chaleur aux parois dans un modèle de brûleur CH4/O2 de moteur-fusée. Dans un contexte deréutilisabilité et de réduction des coûts des lanceurs, qui constituent des enjeux majeurs, de nouveaux couples de propergols sont envisagés et les flux thermiques à la paroi doivent êtreprécisément prédits. Le but de ce travail est d’évaluer les besoins et les performances des SGEpour simuler ce type de configuration et de proposer une méthodologie de calcul permettant desimuler différentes configurations. Les résultats numériques sont comparés aux donnéesexpérimentales fournies par la Technische Universität München (Allemagne). Dans un deuxième temps, le contrôle de la combustion au moyen de décharges de plasma de type NRP (en anglaisNanosecond Repetitively Pulsed) est étudié. Les systèmes de turbines à gaz modernes utilisent en effet une combustion pauvre dans le but de réduire la consommation de carburant et les émissions de polluants. Les flammes pauvres sont connues pour être sujettes à des instabilités et le contrôle de la combustion peut jouer un rôle majeur dans ce domaine. Un modèle phénoménologique qui considère les décharges de plasma comme une source de chaleur est développé et appliqué à un brûleur pauvre avec prémélange CH4/Air stabilisé par un swirler. LesSGE sont réalisées afin d’évaluer les effets des décharges NRP sur la flamme. Les résultats numériques sont comparés aux observations expérimentales faites à la King Abdulla University ofScience and Technology (Arabie Saoudite) / Interactions between flames and thermal phenomena are the guiding thread of this work. Flamesproduce heat indeed, but can also be affected by it. Large Eddy Simulations (LES) are used hereto investigate these interactions, with a focus on two main topics: wall heat transfer andcombustion control. In a first part, wall heat transfer in a rocket engine sub-scale CH4/O2 burner isstudied. In the context of launchers re-usability and cost reduction, which are major challenges,new propellant combinations are considered and wall heat fluxes have to be precisely predicted.The aim of this work is to evaluate LES needs and performances to simulate this kind ofconfiguration and provide a computational methodology permitting to simulate variousconfigurations. Numerical results are compared to experimental data provided by the TechnischeUniversität München (Germany). In a second part, combustion control by means of NanosecondRepetitively Pulsed (NRP) plasma discharges is studied. Modern gas turbine systems use indeedlean combustion with the aim of reducing fuel consumption and pollutant emissions. Lean flamesare however known to be prone to instabilities and combustion control can play a major role in thisdomain. A phenomenological model which considers the plasma discharges as a heat source isdeveloped and applied to a swirl-stabilized CH4/Air premixed lean burner. LES are performed inorder to evaluate the effects of the NRP discharges on the flame. Numerical results are comparedwith experimental observations made at the King Abdulla University of Science and Technology(Saudi Arabia).

Page generated in 0.0779 seconds