• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 1
  • Tagged with
  • 21
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analysis and Optimization of Colorimetric Nanosensors for Rapid Detection of Microbes in Water

Lang, Ruby A 01 June 2020 (has links) (PDF)
Access to safe water is a basic human right recognized by the United Nations General Assembly in 2010 (WHO, 2020). However, a least 2.2 billion people globally still are without safely managed water services meaning they use a drinking water source that can be contaminated with faeces (WHO, 2020). With such a pressing global health issue, it is clear that improvement to water systems is important and required in the Agenda 2030 Sustainable Development Goals (SDGs). However, to improve water systems and prove they are safe water sources, water quality testing must occur. A solution to this issue is the development of rapid detection sensors for pathogens in water. The first chapter of this thesis aims to create an informed list of rapid detection sensors that should be focused on for future development. This is achieved by using multicriteria decision analysis techniques based on using two consecutive processes. The first is the Analytic Hierarchy Process (AHP), which was used to develop weightings for criteria being measured for different sensor alternatives. The second process is the Technique of Order Preference Similarity to the Ideal Solution (TOPSIS), which was used to perform the ranking of the sensors being reviewed based on the weighted criteria. The outcome of the multicriteria decision analysis was identifying the top 5 rapid detection nanosensors for future development. They can be further improved to include field scale applications while also achieving lower detection limits and shorter detection times. The cost for these sensors could possibly be reduced by changing the nanoparticles that the sensor is composed of. Through improved methods, the goal of creating a cost effective, rapid-detection nanosensor for bacteria (e.g., Shiga-toxin producing E. coli) in drinking water can be achieved by prioritization of research on these promising nanosensors. The second chapter of the thesis focuses on optimizing a gold nanosensor developed in 2015 by Raweewab T. and Rawiwan L, hereafter called the “Original Method.” The goal was to reduce the cost and improve the reusability of their indirect colorimetric gold nanosensor without compromising the simplicity of the detection platform. With a reusable and more cost-effective sensor, field applications for water quality testing in water system projects in impoverished areas can be more obtainable. The nanoparticle itself was the target of optimization in this study. The hypothesis was that the polyethylenimine (PEI) coating on the gold nanoparticle surface is the governing factor of how the sensor functions, meaning the core nanomaterial does not affect the function of the sensor. In this study, the results showed that sensor still maintained its function after replacing the PEI coated gold nanoparticle used in the Original Method with PEI coated silver nanoparticles. These findings indicated that with further development and future research, it will be possible to use less expensive nanoparticles for making the nanosensor. It will also be possible to make this sensor reusable through the development of PEI coated magnetite nanoparticles. Their magnetic quality could allow for recovering the nanosensors from the test media, then re-conditioned and used again.
12

Patterns of Low Density Lipoprotein are Determinants in the Induction of Nitroxidative Stress in Cardiovascular System

Hua, Jiangzhou January 2015 (has links)
No description available.
13

Electrochemical Control for Nanoelectromechanical Device Production

Moghimian, Nima 24 April 2015 (has links)
Electrochemical synthesis of straight, separable, cylindrical nanowires for use as cantilevered mechanical resonators is the main focus of this dissertation. These types of nanowires are significant for many applications, but particularly so for chip-based sensor arrays made for ultrasensitive mass detection. Directed-assembly of nanowire-based devices has enabled the development of large-area fabrication of sensor devices with new functions such as cancer detection at early stage. Chemically stable noble metals gold and rhodium are interesting materials for making nanowire resonators. Gold makes a well-known, stable and strong bond with the thiol group, which enables a range of surface functionalization chemistries. Rhodium nanowires have desirable mechanical properties for resonant mass sensing as they can retain high quality factor (Q-factor) from high vacuum to near atmospheric pressures. As a versatile and inexpensive tool, electrodeposition provides the most suitable synthesis path for gold and rhodium resonator-grade nanowires in nanoporous templates. In this work, the structural characteristics of nanoporous membranes anodized aluminium oxide and track-etched polycarbonate was explored for use as electrodeposition template. New chemistries for making gold and rhodium nanowires are introduced. Although gold cyanide-based solutions work well for the electrochemical synthesis of separable nanowires, the toxicity of cyanide solutions makes non-cyanide alternatives desirable. However, electrochemical synthesis of gold nanowires in templates from non-cyanide solutions suffers from serious drawbacks. These include growth-arresting pellet formation, poor length control and defects such as inclusions. In this dissertation, the first electrochemical synthesis of straight, cylindrical, separable gold nanowires from a sulfite-based solution is presented. This work demonstrates a scheme that suppresses electroless particle growth in the weakly-complexed gold in solution by proper use of additives. The electrochemical nucleation and growth of rhodium nanowires from a sulphate-based solution is also discussed. The effect of pH on the length uniformity as well as the effect of EDTA and polyethylenimine as additives on the development of the wire nanostructure was studied. This study has shown that the control over hydrogen co-reduction on the electrode surface and its bubble transport rate allowed for tailoring the nanostructure of the grown nanowires. The control over electrochemical nucleation and growth of noble metal films for nanowire clamping has also been investigated in this work for making reliable defect-free clamps for nanoresonator measurements. Silver was introduced as a reliable replacement for gold for nanowire clamping. Resonance measurements of rhodium nanowires clamped with silver, confirmed a reliable and repeatable clamp with very small scatter in the plot of resonance frequency variation with appropriate geometric terms. In addition, we found that the elastic modulus of a set of rhodium nanowires synthesized and measured in this work, was 14% larger than in previous studies. / Graduate / 0794 / 0548 / mascotella@gmail.com
14

Towards nanoscale interconnect for system-on-chip / Approches de mise en oeuvre des nanocommunication pour les réseaux nanocapteurs sans fil et les systèmes sur puce.

Yalgashev, Olimjon 29 October 2015 (has links)
La nanocommunication est un nouveau paradigme qui permet de communiquer à l'échelle nanométrique, via des mécanismes moléculaires, électromagnétiques, acoustiques, ou nano-mécaniques. Le cadre général de cette thèse concerne les réseaux de nanocapteurs sans fil et les nanoréseaux sur puce. Plus précisément, il s'agit des architectures d'interconnexion et des protocoles de communication dans la bande de fréquence des Térahertz. En effet, les architectures réseaux et les protocoles de communication existants doivent être repensés en tenant compte des mécanismes de communication à l'échelle nanométrique.En premier lieu, nous nous sommes focalisés sur la nécessité de développer des approches de diffusion efficaces dans le contexte des réseaux de nanocapteurs sans fil. Une approche de diffusion efficace, issue d'une adaptation d'un protocole de la famille des protocoles d'inondation probabilistes, est présenté et son efficacité et validée par simulations à l'aide de Nano-Sim et NS3.En second lieu, une étude approfondie de l'impact des portées de transmission sur les performances du mécanisme de diffusion basé sur les ondes électromagnétiques à l'échelle nanométrique a été effectuée. Les résultats des simulations montrent que l'adaptation des portées des nano-noeuds permet de contrôler le mécanisme d'inondation et de réduire les redondances des paquets tout en augmentant les débits. Une approche adaptative de sélection de portées de transmission contrôlée au niveau des nano-noeuds est proposée. En dernier lieu, nous nous sommes attaqués à un troisième défi en examinant ce nouveau paradigme de nanocommunication dans le contexte de la conception des nanoréseaux sur puce (Network on Chip, NoC). / Nanocommunication is a new paradigm that enables connectivity at the nanoscale through molecular, electromagnetic, acoustic, or nanomechanical mechanisms. The general context of this thesis concerns wireless nanosensor networks and nanonetworks on chips. More precisely, the thesis deals with interconnection architectures and communication protocols in the terahertz band. The existing network architectures and communication protocols should be revisited taking into account the communication mechanisms at the nanoscale.First, dissemination approaches in the context of wireless nanosensor networks are addressed. An efficient broadcasting approach is presented and the simulation performance results with Nano-Sim and NS3 show that the proposed scheme is superior to flooding, especially in the cases of excessive broadcasts.Second, we investigated the impact of transmission ranges on the performance of broadcast mechanisms based on electromagnetic waves at the nanoscale. Adaptive transmission range of electromagnetic-based communication approaches are proposed. Simulations are conducted with fixed and adaptive transmission ranges to show the efficiency of the proposed approaches in terms of throughput and latency according to the network density.The third part addresses the hypothesis of using EM-based nanonetwok as an on-chip interconnect for SoCs.
15

Towards Development of Smart Nanosensor System To Detect of Hypoglycemia From Breath

Thakur, Sanskar S. 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The link between volatile organic compounds (VOCs) from breath and various diseases and specific conditions has been identified since long by the researchers. Canine studies and breath sample analysis on Gas chromatography/ Mass Spectroscopy has proven that there are VOCs in the breath that can detect and potentially predict hypoglycemia. This project aims at developing a smart nanosensor system to detect hypoglycemia from human breath. The sensor system comprises of 1-Mercapto-(triethylene glycol) methyl ether functionalized goldnanoparticle (EGNPs) sensors coated with polyetherimide (PEI) and poly(vinylidene fluoride -hexafluoropropylene) (PVDF-HFP) and polymer composite sensor made from PVDF-HFP-Carbon Black (PVDF-HFP/CB), an interface circuit that performs signal conditioning and amplification, and a microcontroller with Bluetooth Low Energy (BLE) to control the interface circuit and communicate with an external personal digital assistant. The sensors were fabricated and tested with 5 VOCs in dry air and simulated breath (a mixture of air, small portion of acetone, ethanol at high humidity) to investigate sensitivity and selectivity. The name of the VOCs is not disclosed herein but these VOCs have been identified in-breath and are identified as potential biomarkers for other diseases as well. The sensor hydrophobicity has been studied using contact angle measurement. The GNPs size was verified using Ultra-Violent-Visible (UV-VIS) Spectroscopy. Field Emission Scanning Electron Microscope (FESEM) image is used to show GNPs embedded in the polymer film. The sensors sensitivity increases by more than 400\% in an environment with relative humidity (RH) of 93\% and the sensors show selectivity towards VOCs of interest. The interface circuit was designed on Eagle PCB and was fabricated using a two-layer PCB. The fabricated interface circuit was simulated with variable resistance and was verified with experiments. The system is also tested at different power source voltages and it was found that the system performance is optimum at more than 5 volts. The sensor fabrication, testing methods, and results are presented and discussed along with interface circuit design, fabrication, and characterization. / 2022-05-8
16

Développement de réseaux multiplexés de biocapteurs électrochimiques

Deiss, Frédérique 20 November 2009 (has links)
Ce travail de thèse a porté sur le développement de réseaux de micro- et nanocapteurs opto-électrochimiques pour la bioanalyse. Ils répondent à la demande grandissante dans le domaine de la recherche et du diagnostic pour des outils permettant de réaliser de multiples analyses simultanément avec des échantillons de faibles volumes. Ces nouvelles biopuces de haute densité sont fabriquées à partir de faisceaux cohérents de fibres optiques. Une des deux faces est micro- ou nanostructurée par une attaque chimique, puis fonctionnalisée avec une sonde biologique. La première biopuce est un réseau de nanocapteurs fluorescents à ADN où les sondes ont été immobilisées grâce aux propriétés d’électropolymérisation du pyrrole. La lecture est réalisée à distance au travers du faisceau d’imagerie. En combinant la technique d’immobilisation avec des microleviers électrochimiques, plusieurs sondes différentes ont pu être adressées sur le même réseau nanostructuré. La seconde biopuce permet d’effectuer des immunodosages multiplexés en utilisant l’imagerie électrochimiluminescente résolue à l’échelle d’une microsphère. Le développement de cette technique permet de combiner les avantages de l’électrochimiluminescence avec des immunodosages multiplexés. L’élaboration de ces réseaux allie différentes techniques physico-chimiques, notamment électrochimiques, pour obtenir des biopuces avec un fort potentiel, grâce à une densité et un degré de multiplexage importants. / This work presents the development of optoelectrochemical micro- and nanosensor arrays for bioanalytical applications. These platforms respond to the growing need in research and diagnostic for tools allowing multiple and simultaneous analysis in small-volume samples. These new high density biochips are made from coherent optical fiber bundles: one face is micro- or nanostructured by chemical etching and then functionnalized with biological probes. The first biochip is a fluorescent DNA nanosensor array where probes have been immobilized by electrodeposition of a polypyrrole thin film. The detection of the hybridization is remotely performed through the imaging fiber. Different probes were succesfully addressed onto the same nanostructured array thanks to electrochemical cantilevers. The second biochip allows multiplexed sandwich immunoassays using electrochimiluminescent imaging resolved at the single bead level. In particular, the development of this new readout mechanism allows extending electrochemiluminescent detection for multiplexed immunoassays. Design and implementations of both platforms take advantages of different physical and chemical techniques, especially electrochemical, to obtain biochips with a great potential through high density and high multiplexing level.
17

Optophysiologie SERS : analyse in vitro d’environnement cellulaire en Raman exalté par les surfaces

Lussier, Félix 03 1900 (has links)
No description available.
18

Towards Development of Smart Nanosensor System To Detect Hypoglycemia From Breath

Sanskar S Thakur (8816885) 08 May 2020 (has links)
<div>The link between volatile organic compounds (VOCs) from breath and various diseases and specific conditions has been identified since long by the researchers. Canine studies and breath sample analysis on Gas chromatography/ Mass Spectroscopy has proven that there are VOCs in the breath that can detect and potentially predict hypoglycemia. This project aims at developing a smart nanosensor system to detect hypoglycemia from human breath. The sensor system comprises of 1-Mercapto-(triethylene glycol) methyl ether functionalized goldnanoparticle (EGNPs) sensors coated with polyetherimide (PEI) and poly(vinylidene fluoride -hexafluoropropylene) (PVDF-HFP) and polymer composite sensor made from PVDF-HFP-Carbon Black (PVDF-HFP/CB), an interface circuit that performs signal conditioning and amplification, and a microcontroller with Bluetooth Low Energy (BLE) to control the interface circuit and communicate with an external personal digital assistant. The sensors were fabricated and tested with 5 VOCs in dry air and simulated breath (mixture of air, small portion of acetone, ethanol at high humidity) to investigate sensitivity and selectivity. The name of the VOCs is not disclosed herein but these VOCs have been identified in breath and are identified as potential biomarkers for other diseases as well. </div><div> </div><div> The sensor hydrophobicity has been studied using contact angle measurement. The GNPs size was verified using Ultra-Violent-Visible (UV-VIS) Spectroscopy. Field Emission Scanning Electron Microscope (FESEM) image is used to show GNPs embedded in the polymer film. The sensors sensitivity increases by more than 400% in an environment with relative humidity (RH) of 93% and the sensors show selectivity towards VOCs of interest. The interface circuit was designed on Eagle PCB and was fabricated using a two-layer PCB. The fabricated interface circuit was simulated with variable resistance and was verified with experiments. The system is also tested at different power source voltages and it was found that the system performance is optimum at more than 5 volts. The sensor fabrication, testing methods, and results are presented and discussed along with interface circuit design, fabrication, and characterization.</div>
19

Points quantiques : caractérisation et applications en sciences pharmaceutiques

Moquin, Alexandre 03 1900 (has links)
L’imagerie médicale a longtemps été limitée à cause des performances médiocres des fluorophores organiques. Récemment la recherche sur les nanocristaux semi-conducteurs a grandement contribué à l’élargissement de la gamme d’applications de la luminescence dans les domaines de l’imagerie et du diagnostic. Les points quantiques (QDs) sont des nanocristaux de taille similaire aux protéines (2-10 nm) dont la longueur d’onde d’émission dépend de leur taille et de leur composition. Le fait que leur surface peut être fonctionnalisée facilement avec des biomolécules rend leur application particulièrement attrayante dans le milieu biologique. Des QDs de structure « coeur-coquille » ont été synthétisés selon nos besoins en longueur d’onde d’émission. Dans un premier article nous avons modifié la surface des QDs avec des petites molécules bi-fonctionnelles portant des groupes amines, carboxyles ou zwitterions. L’effet de la charge a été analysé sur le mode d’entrée des QDs dans deux types cellulaires. À l’aide d’inhibiteurs pharmacologiques spécifiques à certains modes d’internalisation, nous avons déterminé le mode d’internalisation prédominant. L’endocytose par les radeaux lipidiques représente le mode d’entrée le plus employé pour ces QDs de tailles similaires. D’autres modes participent également, mais à des degrés moindres. Des disparités dans les modes d’entrée ont été observées selon le ligand de surface. Nous avons ensuite analysé l’effet de l’agglomération de différents QDs sur leur internalisation dans des cellules microgliales. La caractérisation des agglomérats dans le milieu de culture cellulaire a été faite par la technique de fractionnement par couplage flux-force (AF4) associé à un détecteur de diffusion de la lumière. En fonction du ligand de surface et de la présence ou non de protéines du sérum, chacun des types de QDs se sont agglomérés de façon différente. À l'aide d’inhibiteur des modes d’internalisation, nous avons corrélé les données de tailles d’agglomérats avec leur mode d’entrée cellulaire. Les cellules microgliales sont les cellules immunitaires du système nerveux central (CNS). Elles répondent aux blessures ou à la présence d’inflammagènes en relâchant des cytokines pro-inflammatoires. Une inflammation non contrôlée du CNS peut conduire à la neurodégénérescence neuronale et est souvent observée dans les cas de maladies chroniques. Nous nous sommes intéressés au développement d’un nanosenseur pour mesurer des biomarqueurs du début de l’inflammation. Les méthodes classiques pour étudier l’inflammation consistent à mesurer le niveau de protéines ou molécules relâchées par les cellules stressées (par exemple monoxyde d’azote, IL-1β). Bien que précises, ces méthodes ne mesurent qu’indirectement l’activité de la caspase-1, responsable de la libération du l’IL-1β. De plus ces méthode ne peuvent pas être utilisées avec des cellules vivantes. Nous avons construit un nanosenseur basé sur le FRET entre un QD et un fluorophore organique reliés entre eux par un peptide qui est spécifiquement clivé par la caspase-1. Pour induire l’inflammation, nous avons utilisé des molécules de lipopolysaccharides (LPS). La molécule de LPS est amphiphile. Dans l’eau le LPS forme des nanoparticules, avec des régions hydrophobes à l’intérieure. Nous avons incorporé des QDs dans ces régions ce qui nous a permis de suivre le cheminement du LPS dans les cellules microgliales. Les LPS-QDs sont internalisés spécifiquement par les récepteurs TLR-4 à la surface des microglies. Le nanosenseur s’est montré fonctionnel dans la détermination de l’activité de la caspase-1 dans cellules microgliales activées par le LPS. Éventuellement, le senseur permettrait d’observer en temps réel l’effet de thérapies ciblant l’inflammation, sur l’activité de la caspase-1. / Medical imaging based on fluorescence has suffered from the poor photostability and mediocre performance of organic fluorophores. The discovery and subsequent improvements in nanocrystal synthesis and functionalization has greatly benefited the applications in medical imaging and the development of nanocrystal-based sensors for diagnostics. QDs are semi-conductor nanocrystals which have similar sizes as proteins (2-10 nm). They are highly luminescent, and can be made to emit at any desired wavelength by varying their size and composition. The surface of QDs can be easily functionalized with biomolecules. Hence, it is interesting to study how QDs interact in the biological world. Highly luminescent core-shell QDs emitting at different wavelengths were prepared according to our needs. In a first study, the surface of the QDs was modified with various small bi-functional thiolated ligands (carboxylated, aminated and zwitterionic). The modified-QDs of nearly identical sizes were administered in vitro to study the impact of surface charge and cell type on the mode and extent of cell uptake and elimination. Using specific inhibitors of cell uptake we determined which modes contributed to the internalization of the QDs. Endocytosis mediated by lipid rafts represented the predominant pathway for the internalization of QDs. However, other modes contributed to a lesser degree, depending on the surface ligand. We then analyzed the effect of QD agglomeration in cell culture media on its cellular uptake by microglia. Thorough characterization of QD agglomerate size distribution was conducted by asymmetrical flow field-flow fractionation (AF4) with a dynamic light scattering detector. Depending on the type of surface ligand and if serum proteins were present, the agglomeration pattern of the QDs was significantly different. With inhibitors of specific modes of cell uptake, we showed that the size distribution data, obtained by AF4, correlated with the modes of cell uptake. Microglia cells are immune cells of the central nervous system (CNS). They respond to injury or the presence of inflammagens by producing pro-inflammatory cytokine. Inflammation in the CNS may lead to loss of neurons, and can found in many chronic diseases. We were interested in building nanosensors to measure the onset of inflammation. Current methods to study inflammation consist in measuring levels of certain proteins or chemicals released by stressed cell (e.g. Western blot or ELISA assay for IL-1β). Although precise, these methods measure indirectly the activity of the enzyme responsible for releasing IL-1β, i.e. caspase-1. Moreover, these methods cannot be applied to live cells. We designed a sensor based on FRET between a QD and a dye linked by a peptide specifically cleaved by the caspase-1. To induce inflammation, we applied lipopolysaccharides (LPS), which are endotoxins present in Gram negative bacteria responsible for sceptic shock. The LPS form nanoparticles due to their amphiphilicity. The interior hydrophobic regions were used to load hydrophobic QDs, making the LPS luminescent. The microglia internalized LPS-QD predominantly through TLR-4 membrane receptors. We describe how the LPS induce inflammation and demonstrated the functionality of the QD-based sensor. Eventually, the sensor could be used to monitor in real time the action of therapeutics against inflammation.
20

Controlled and localized synthesis of molecularly imprinted polymers for chemical sensors / Synthèse localisée et contrôlée de polymères à empreintes moléculaires pour capteurs chimiques

Kaya, Zeynep 05 November 2015 (has links)
Les polymères à empreintes moléculaires (MIP), également appelés "anticorps en plastique", sont des récepteurs biomimétiques synthétiques qui sont capables de reconnaître et lier une molécule cible avec une affinité et une spécificité comparables à celles des récepteurs naturels tels que des enzymes ou des anticorps. En effet, les MIP sont utilisés comme éléments de reconnaissance synthétiques dans les biocapteurs et biopuces pour la détection de petits analytes et les protéines. La technique d'impression moléculaire est basée sur la formation de cavités de reconnaissance spécifiques dans des matrices polymères par un procédé de moulage à l'échelle moléculaire. Pour la conception de capteurs et biopuces, une cinétique d'adsorption et une réponse du capteur rapide, l'intégration des polymères avec des transducteurs, et une haute sensibilité de détection sont parmi les principaux défis. Dans cette thèse, ces problèmes ont été abordés par le développement de nanocomposites MIP / d'or via le greffage du MIP sur les surfaces en utilisant des techniques de polymérisation dédiées comme l'ATRP qui est une technique de polymérisation radicalaire contrôlée (CRP). Ces techniques CRP sophistiquées sont en mesure d'améliorer considérablement les matériaux polymères. L'utilisation de l'ATRP dans le domaine de MIP a été limitée jusqu'à présent en raison de son incompatibilité inhérente avec des monomères acides comme l'acide méthacrylique (MAA), qui est de loin le monomère fonctionnel le plus largement utilisé dans les MIP. Ici, un nouveau procédé est décrit pour la synthèse de MIP par ATRP photo-initiée utilisant fac-[Ir(Ppy)3] comme catalyseur. La synthèse est possible à température ambiante et est compatible avec des monomères acides. Cette étude élargit considérablement la gamme de monomères fonctionnels et de molécules empreintes qui peuvent être utilisés lors de la synthèse de MIP par ATRP. La méthode proposée a été utilisée pour la fabrication de nanocomposites hiérarchiquement organisés sur des surfaces métalliques nanostructurés avec des nano-trous et nano-ilots, présentant des effets plasmoniques pour l'amplification du signal. La synthèse de films de MIP à l'échelle du nanomètre localisés sur la surface d'or a été démontrée. Des méthodes de transduction optiques, à savoir la résonance de plasmons de surface localisée (LSPR) et la spectroscopie Raman exaltée par effet de surface (SERS) ont été exploitées. Ces techniques se sont montrées prometteuses pour l'amélioration de la limite de détection dans la détection d'analytes biologiquement pertinents, y compris les protéines et le médicament propranolol. / Molecularly imprinted polymers (MIPs), also referred to as plastic antibodies, are synthetic biomimetic receptors that are able to bind target molecules with similar affinity and specificity as natural receptors such as enzymes or antibodies. Indeed, MIPs are used as synthetic recognition elements in biosensors and biochips for the detection of small analytes and proteins. The molecular imprinting technique is based on the formation of specific recognition cavities in polymer matrices by a templating process at the molecular level. For sensor and biochip development, fast binding kinetics of the MIP for a rapid sensor response, the integration of the polymers with transducers, and a high sensitivity of detection are among the main challenges. In this thesis, the above issues are addressed by developing MIP/gold nanocomposites by grafting MIPs on surfaces, using dedicated techniques like atom transfer radical polymerization (ATRP) which is a versatile controlled radical polymerization (CRP) technique. Theses ophisticated CRP techniques, are able to greatly improve the polymeric materials. The use of ATRP in the MIP field has been limited so far due to its inherent incompatibility with acidic monomers like methacrylic acid (MAA), which is by far the most widely used functional monomer. Herein, a new method is described for the MIP synthesis through photo-initiated ATRP using fac-[Ir(ppy)3] as ATRP catalyst. The synthesis is possible at room temperature and is compatible with acidic monomers. This study considerably widens the range of functional monomers and thus molecular templates that can be used when MIPs are synthesized by ATRP. The proposed method was used for fabrication of hierarchically organised nanocomposites based on MIPs and nanostructured metal surfaces containing nanoholes or nanoislands, exhibiting plasmonic effects for signal amplification. The fabrication of nanometer scale MIP coatings localized on gold surface was demonstrated. Optical transduction methods, namely Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) were exploited and shown that they hold great promise for enhancing the limit of detection in sensing of biologically relevant analytes including proteins and the drug propranolol.

Page generated in 0.1136 seconds