• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 861
  • 161
  • 72
  • 59
  • 41
  • 12
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 1348
  • 1124
  • 135
  • 134
  • 116
  • 112
  • 111
  • 104
  • 102
  • 102
  • 101
  • 94
  • 84
  • 81
  • 78
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
951

Understanding toughness and ductility in novel steels with mixed microstructures

Fielding, Lucy Chandra Devi January 2014 (has links)
The purpose of the work presented in this thesis was to explore and understand the mechanisms governing toughness, ductility and ballistic performance in a class of nanostructured carbide-free bainite-austenite steels, sometimes known as ‘superbainite’. The mechanical properties of these alloys have been extensively reported, but their interpretation is not clear. The thesis begins with an introduction to both the relevant nanostructures and some of the difficulties involved in explaining observed properties, alongside a summary of the role of mixed- microstructures in alloy development. An overview of the debate regarding the mechanism of bainite formation is pre- sented in Chapter 2, in the form of a literature survey encompassing the period of explicit recognition of the bainite microstructure. Of note is the role played by the displacive theory of formation in the development of the alloy structures investigated in this thesis. A characterisation of a commonly available bainitic alloy forms the basis for Chapter 4. Observations confirm the nanoscale nature of the structure, although additional phases are found to be present, namely: cementite and martensite. This is explained as resulting from relatively low alloying additions and chem- ical segregation effects, which are modelled using thermodynamic and kinetic approaches. Chapters 5 and 6 contain a comprehensive study of the response of this alloy to the stress concentration present at the notch root of a Charpy impact sample. The work provides evidence of notch root embrittlement due to stress-induced martensite transformation. Results from synchrotron and laboratory X-ray experiments in particular reveal that machining, as well as applied stress, can initiate the austenite-martensite transformation, and methods to mitigate this effect are suggested. An innovative approach is harnessed in Chapter 7, in order to identify exper- imentally the volume fraction at which three-dimensional connectivity (‘percolation’) of austenite is lost in a superbainitic steel. Hydrogen thermal desorption techniques are applied to this problem, inspired by the tendency of such alloys to undergo tensile failure with limited or zero necking. The striking result sheds light on the importance of austenite morphology in restricting the diffusion of hydrogen into a mixed structure. The final set of experimental work is directed towards understanding the damage mechanisms that occur during projectile penetration of a coarser bainitic armour- plate alloy. The formation of adiabatic shear bands is found to be a dominant factor governing the ballistic failure of the plate. The sheared material undergoes severe high-temperature deformation, but does not change phase upon cooling, leading to the proposal of certain methods that could be implemented to improve ballistic resistance of the steel. The totality of the research presented herein is summarised in Chapter 9, which draws attention to new areas of interest that have arisen from the current work, proposing several future directions of investigation. The broader issue of understanding, common to all studies performed thus far, is that of the causes, effects, and extent, of stress-induced transformation to martensite experienced by the retained austenite that is a key feature of superbainite and similar steels.
952

Study of Conductance Quantization by Cross-Wire Junction

Zheng, Tao 05 1900 (has links)
The thesis studied quantized conductance in nanocontacts formed between two thin gold wires with one of the wires coated by alkainthiol self assembly monolayers (SAM), by using the cross-wire junction. Using the Lorenz force as the driving force, we can bring the two wires in contact in a controlled manner. We observed conductance with steps of 2e2 / h. The conductance plateaus last several seconds. The stability of the junction is attributed to the fact that the coating of SAM improves the stability and capability of the formed contact.
953

Single and double doping of nanostructured titanium dioxide with silver and copper : structural, optical and gas-sensing properties

Nubi, Olatunbosun Owolabi January 2016 (has links)
Thesis (Ph. D. (Physics)) -- University of Limpopo, 2016. / Single and double doped nanometric powders of Single and double doped nanometric powders of titanium dioxide (TiO2) were synthesised by the sol-gel process using titanium isopropoxide (TTIP) as the precursor. For comparison, an undoped sample was also prepared. The metal dopants, Ag and Cu, were used at doping levels of 5% molar weight. The samples were dried at 100°C in air and post annealing was done at 300°C, 600°C, 900°C and 1100°C. Structural characterisation of the samples was carried out by X-ray Diffraction (XRD), Raman Spectroscopy, Scanning Electron Microscopy (SEM) and Energy dispersive X-ray Spectrometry (EDS) techniques. Most samples annealed at the 300°C temperature (and lower) revealed the predominantly-anatase phase, while those annealed at 900°C and above were rutile-only. The double-doped powder that was annealed at 300°C was found to be constituted by anatase and brookite phases (with the dopants incorporated into the TiO2 matrix), and the one annealed at 600°C was a mixture of brookite and rutile. The results suggest that multiple doping of titania may favour a two-phase structure at lower temperatures than singly-doped powders. The co-existence of brookite with anatase is believed to be responsible for the enhancement of anatase to rutile transformation in the double-doped sample. UV-visible (UV-vis) and Photoluminescence (PL) measurements were also carried out to study the optical properties of the TiO2 nanoparticles. This revealed the active PL band at around 440 nm. By narrowing the band gap, the double-doped powders that exhibited the brookite phase, again showed improved visible light photo absorption over the other samples, with a significant shift of the absorption edge to shorter wavelengths. Further, PL spectra revealed a change in PL intensity with phase change, as well as the presence of exciton energy levels at the base of the conduction band. The changes in the electrical conductivities of representative anatase and rutile TiO2 nanopowders upon exposure to water-vapour, ammonia (NH3) and hydrogen (H2) were also investigated. Sensing measurements for water-vapour was done at room temperature for various humidity levels ranging from 5.4% RH to 88.4% RH. The detection of NH3 and H2 gases were carried out at temperatures extending from room temperature to 350°C and over concentration ranges of 25 sccm to 500 sccm and 15 v sccm to 200 sccm respectively. The gas-sensing results show that the sol-gel fabricated TiO2 nanoparticles (particularly in anatase form), has excellent fast and stable dynamic responses to humidity, NH3 and H2. They feature good sensitivities, even at a low operating temperatures. However, acceptor behaviour, for which there was a conductivity switch from n-type to p-type, was recorded for the Ag-doped rutile powders at operating temperatures of 300ºC and 350ºC. Overall, the double-doped sample annealed at 300ºC was deemed the most promising candidate for gassensing. (TiO2) were synthesised by the sol-gel process using titanium isopropoxide (TTIP) as the precursor. For comparison, an undoped sample was also prepared. The metal dopants, Ag and Cu, were used at doping levels of 5% molar weight. The samples were dried at 100°C in air and post annealing was done at 300°C, 600°C, 900°C and 1100°C. Structural characterisation of the samples was carried out by X-ray Diffraction (XRD), Raman Spectroscopy, Scanning Electron Microscopy (SEM) and Energy dispersive X-ray Spectrometry (EDS) techniques. Most samples annealed at the 300°C temperature (and lower) revealed the predominantly-anatase phase, while those annealed at 900°C and above were rutile-only. The double-doped powder that was annealed at 300°C was found to be constituted by anatase and brookite phases (with the dopants incorporated into the TiO2 matrix), and the one annealed at 600°C was a mixture of brookite and rutile. The results suggest that multiple doping of titania may favour a two-phase structure at lower temperatures than singly-doped powders. The co-existence of brookite with anatase is believed to be responsible for the enhancement of anatase to rutile transformation in the double-doped sample. UV-visible (UV-vis) and Photoluminescence (PL) measurements were also carried out to study the optical properties of the TiO2 nanoparticles. This revealed the active PL band at around 440 nm. By narrowing the band gap, the double-doped powders that exhibited the brookite phase, again showed improved visible light photo absorption over the other samples, with a significant shift of the absorption edge to shorter wavelengths. Further, PL spectra revealed a change in PL intensity with phase change, as well as the presence of exciton energy levels at the base of the conduction band. The changes in the electrical conductivities of representative anatase and rutile TiO2 nanopowders upon exposure to water-vapour, ammonia (NH3) and hydrogen (H2) were also investigated. Sensing measurements for water-vapour was done at room temperature for various humidity levels ranging from 5.4% RH to 88.4% RH. The detection of NH3 and H2 gases were carried out at temperatures extending from room temperature to 350°C and over concentration ranges of 25 sccm to 500 sccm and 15 v sccm to 200 sccm respectively. The gas-sensing results show that the sol-gel fabricated TiO2 nanoparticles (particularly in anatase form), has excellent fast and stable dynamic responses to humidity, NH3 and H2. They feature good sensitivities, even at a low operating temperatures. However, acceptor behaviour, for which there was a conductivity switch from n-type to p-type, was recorded for the Ag-doped rutile powders at operating temperatures of 300ºC and 350ºC. Overall, the double-doped sample annealed at 300ºC was deemed the most promising candidate for gassensing.
954

Computer simulation studies of MnO2 and LiMn2O4 nanotube

Tshwane, David Magolego January 2016 (has links)
Thesis (MSc. (Physics)) -- University of Limpopo, 2016 / Nanostructured materials are attractive candidates for efficient electrochemical energy storage devices because of their unique physicochemical properties. Introducing nanotube systems as electrode materials represents one of the most attractive strategies that could dramatically enhance the battery performance. Nanostructured manganese based oxides are considered as ideal electrode materials for energy storage devices such as high energy and high power lithium-ion batteries. In this study, computer simulation strategies were used to generate various structures of MnO2 and spinel LiMn2O4 nanotubes; where Miller index, diameter and symmetry are considered as variables. The effect of these variables on nanotube generation was investigated. MnO2 and spinel LiMn2O4 nanotubes were generated using MedeA® software. Lower Miller indices, namely; {001}, {100}, {110} and {111} with diameter ranging from 5Å30Å were investigated for both systems. There are two ways that a nanotube structures could be wrapped along different directions, i.e., a_around_b or b_around_a. It was observed that wrapping direction has an effect on the geometrical structure of the nanotube. MnO2 nanotube generated from {110} revealed that nanotube wrapped along b_around_a gave a close-packed structure compared to its counterpart nanotube wrapped a_around_b. Diameter represents an important structural parameter of nanotubes; however, precise control of nanotube diameter over a wide range of materials is yet to be demonstrated. In this study, it was found that as the diameter of the nanotube is changed, parameters such as cross-sectional area and bond length change as well. The average bond distance of the nanotubes is less than that of MnO2 and LiMn2O4 bulk structure. Molecular dynamics simulation is further used to investigate the structure of MnO2 and LiMn2O4 nanotubes and the effect of temperature on the generated systems. Molecular graphical images used for the atomic positions for the nanotubes were investigated. The nanotube structures are described using radial distribution functions and XRD patterns. The calculated XRD patterns are in good agreement with the experiments, thus validating the generated structural models for the nanotubes. The resulting models conform to pyrolusite polymorph of MnO2 and LiMn2O4, featuring octahedrally coordinated manganese atoms. It was established that the variables have a direct control on nanotube morphology and the stability of generated nanotube model depends on surface morphology and termination. / National Research Foundation (NRF) and Centre for High Performance Computing (CHPC) of CSIR
955

Laser Surface Treatment of Amorphous Metals

Katakam, Shravana K. 05 1900 (has links)
Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precursors. Fe-based amorphous/nanocrystalline materials due to their low cost and superior magnetic properties are the most widely used soft magnetic materials. However, achieving nanocrystalline microstructure in Fe-Si-B ternary system becomes very difficult owing its rapid growth rate at higher temperatures and sluggish diffusion at low temperature annealing. Hence, nanocrystallization in this system is achieved by using alloying additions (Cu and Nb) in the ternary Fe-Si-B system. Thus, increasing the cost and also resulting in reduction of saturation magnetization. laser processing technique is used to achieve extremely fine nanocrystalline microstructure in Fe-Si-B amorphous precursor. Microstructure-magnetic Property-laser processing co-relationship has been established for Fe-Si-B ternary system using analytical techniques. Laser processing improved the magnetic properties with significant increase in saturation magnetization and near zero coercivity values. Amorphous materials exhibit excellent corrosion resistance by virtue of their atomic structure. Fe-based amorphous materials are economical and due to their ease of processing are of potential interest to synthesize as coatings materials for wear and corrosion resistance applications. Fe-Cr-Mo-Y-C-B amorphous system was used to develop thick coatings on 4130 Steel substrate and the corrosion resistance of the amorphous coatings was improved. It is also shown that the mode of corrosion depends on the laser processing conditions. The microstructure evolution and the corrosion mechanisms operating are evaluated using post processing and post corrosion analysis.
956

Micro and nano composites composed of a polymer matrix and a metal disperse phase.

Olea Mejia, Oscar Fernando 12 1900 (has links)
Low density polyethylene (LDPE) and Hytrel (a thermoplastic elastomer) were used as polymeric matrices in polymer + metal composites. The concentration of micrometric (Al, Ag and Ni) as well as nanometric particles (Al and Ag) was varied from 0 to 10 %. Composites were prepared by blending followed by injection molding. The resulting samples were analyzed by scanning electron microscopy (SEM) and focused ion beam (FIB) in order to determine their microstructure. Certain mechanical properties of the composites were also determined. Static and dynamic friction was measured. The scratch resistance of the specimens was determined. A study of the wear mechanisms in the samples was performed. The Al micro- and nanoparticles as well as Ni microparticles are well dispersed throughout the material while Ag micro and nanoparticles tend to form agglomerates. Generally the presence of microcomposites affects negatively the mechanical properties. For the nanoparticles, composites with a higher elastic modulus than that of the neat materials are achievable. For both micro- and nanocomposites it is feasible to lower the friction values with respective to the neat polymers. The addition of metal particles to polymers also improves the scratch resistance of the composites, particularly so for microcomposites. The inclusion of Ag and Ni particles causes an increase in the wear loss volume while Al can reduce the wear for both polymeric matrices.
957

Processing, Structure and Tribological Property Relations of Ternary Zn-Ti-O and Quaternary Zn-Ti-Zr-O Nanocrystalline Coatings

Ageh, Victor 08 1900 (has links)
Conventional liquid lubricants are faced with limitations under extreme cyclic operating conditions, such as in applications that require lubrication when changing from atmospheric pressure to ultrahigh vacuum and ambient air to dry nitrogen (e.g., satellite components), and room to elevated (>500°C) temperatures (e.g., aerospace bearings). Alternatively, solid lubricant coatings can be used in conditions where synthetic liquid lubricants and greases are not applicable; however, individual solid lubricant phases usually perform best only for a limited range of operating conditions. Therefore, solid lubricants that can adequately perform over a wider range of environmental conditions are needed, especially during thermal cycling with temperatures exceeding 500°C. One potential material class investigated in this dissertation is lubricious oxides, because unlike other solid lubricant coatings they are typically thermodynamically stable in air and at elevated temperatures. While past studies have been focused on binary metal oxide coatings, such as ZnO, there have been very few ternary oxide and no reported quaternary oxide investigations. The premise behind the addition of the third and fourth refractory metals Ti and Zr is to increase the number of hard and wear resistant phases while maintaining solid lubrication with ZnO. Therefore, the major focus of this dissertation is to investigate the processing-structure-tribological property relations of composite ZnO, TiO2 and ZrO2 phases that form ternary (ZnTi)xOy and quaternary (ZnTiZr)xOy nanocrystalline coatings. The coatings were processed by atomic layer deposition (ALD) using a selective variation of ALD parameters. The growth structure and chemical composition of as-deposited and ex situ annealed ternary and quaternary oxide coatings were studied by combined x-ray diffraction/focused ion beam microscopy/cross-sectional transmission electron microscopy, and x-ray photoelectron spectroscopy/Auger electron spectroscopy, respectively. It was determined that the structure varied from purely nanocrystalline (ternary oxides) to composite amorphous/nanocrystalline (quaternary oxides) depending on ALD parameters and annealing temperatures. In particular, the ZnTiO3 ilmenite phase with (104) textured nanocolumnar grains, exhibiting high stacking fault/partial dislocation densities >1012/cm2, was responsible for the excellent tribological behavior. Steady-state sliding friction coefficients down to 0.12 in humid air and 0.2 in dry nitrogen were measured along with sliding and fretting wear factors in the range of 10-6 to 10-7 mm3/N·m, even after ex situ annealing to 550°C. Additionally, the quaternary oxide phase Zn(Ti,Zr)O3 in solid solution exhibited a low fretting wear rate of 1x10-6 mm3/N·m. In contrast, certain phases, such as Zn2TiO4 cubic spinel, that form at annealing temperatures >550°C were responsible for high friction and wear. Mechanistic studies using the above techniques revealed low friction and wear-reducing surfaces and subsurfaces were due to different velocity accommodation modes (VAM). In the case of the ternary system, sliding-induced plastic deformation was possible when ZnTiO3 (104) stacking faults, bordered by partial dislocations, serve as a pathway for the dislocations to glide parallel to the sliding direction and hence achieve low friction and wear via an intrafilm shear VAM. It was evident that the individual nanocolumnar ZnTiO3 grains were plastically sheared as opposed to being fractured during wear. Conversely for the quaternary system, an interfacial sliding VAM between the counterface and a mechanically mixed layer (tribofilm) composed of the refined coating and counterface material, that also served as a source for the formation of cylindrical rolls, was responsible for wear reduction. Therefore, these lubricious oxides are a potential candidate for solid lubrication at high temperatures (up to 550 °C) and in space environments.
958

Acceptor-sensitizers for Nanostructured Oxide Semiconductor in Excitonic Solar Cells

Berhe, Seare Ahferom 08 1900 (has links)
Organic dyes are examined in photoelectrochemical systems wherein they engage in thermal (rather than photoexcited) electron donation into metal oxide semiconductors. These studies are intended to elucidate fundamental parameters of electron transfer in photoelectrochemical cells. Development of novel methods for the structure/property tuning of electroactive dyes and the preparation of nanostructured semiconductors have also been discovered in the course of the presented work. Acceptor sensitized polymer oxide solar cell devices were assembled and the impact of the acceptor dyes were studied. The optoelectronic tuning of boron-chelated azadipyrromethene dyes has been explored by the substitution of carbon substituents in place of fluoride atoms at boron. Stability of singlet exited state and level of reduction potential of these series of aza-BODIPY coumpounds were studied in order to employ them as electron-accepting sensitizers in solid state dye sensitized solar cells.
959

The Role of Crystallographic Texture in Achieving Low Friction Zinc Oxide Nanolaminate Films

Mojekwu, Nneoma 12 1900 (has links)
Metal oxide nanolaminate films are potential high temperature solid lubricants due to their ability to exhibit significant plasticity when grain size is reduced to the nanometer scale, and defective growth structure is achieved by condensation of oxygen vacancies to form intrinsic stacking faults. This is in contrast to conventional microcrystalline and single crystal oxides that exhibit brittle fracture during loading in a sliding contact. This study emphasizes the additional effect of growth orientation, in particular crystallographic texture, on determining the sliding friction behavior in nanocolumnar grain zinc oxide films grown by atomic layer deposition. It was determined that zinc oxide low (0002) versus higher (101 ̅3) surface energy crystallographic planes influenced the sliding friction coefficient. Texturing of the (0002) grains resulted in a decreased adhesive component of friction thereby lowering the sliding friction coefficient to ~0.25, while the friction coefficient doubled to ~0.5 with increasing contribution of surface (101 ̅3) grains. In addition, the variation of the x-ray grazing incident angle from 0.5° to 5° was studied to better understand the surface grain orientation as a function of ZnO layer thickness in one versus four bilayer nanolaminates where the under layer (seed layer) was load-bearing Zn(Ti,Zr)O3.
960

Growth, Structure and Tribological Properties of Atomic Layer Deposited Lubricious Oxide Nanolaminates

Mensah, Benedict Anyamesem 12 1900 (has links)
Friction and wear mitigation is typically accomplished by introducing a shear accommodating layer (e.g., a thin film of liquid) between surfaces in sliding and/or rolling contacts. When the operating conditions are beyond the liquid realm, attention turns to solid coatings. Solid lubricants have been widely used in governmental and industrial applications for mitigation of wear and friction (tribological properties). Conventional examples of solid lubricants are MoS2, WS2, h-BN, and graphite; however, these and some others mostly perform best only for a limited range of operating conditions, e.g. ambient air versus dry nitrogen and room temperature versus high temperatures. Conversely, lubricious oxides have been studied lately as good potential candidates for solid lubricants because they are thermodynamically stable and environmentally robust. Oxide surfaces are generally inert and typically do not form strong adhesive bonds like metals/alloys in tribological contacts. Typical of these oxides is ZnO. The interest in ZnO is due to its potential for utility in a variety of applications. To this end, nanolaminates of ZnO, Al2O3, ZrO2 thin films have been deposited at varying sequences and thicknesses on silicon substrates and high temperature (M50) bearing steels by atomic layer deposition (ALD). The top lubricious, nanocrystalline ZnO layer was structurally-engineered to achieve low surface energy {0002}-orientated grain that provided low sliding friction coefficients (0.2 to 0.3), wear factors (range of 10-7 to 10-8 mm3/Nm) and good rolling contact fatigue resistance. The Al2O3 was intentionally made amorphous to achieve the {0002} preferred orientation while {101}-orientated tetragonal ZrO2 acted as a high toughness/load bearing layer. It was determined that the ZnO defective structure (oxygen sub-stoichiometric with growth stacking faults) aided in shear accommodation by re-orientating the nanocrystalline grains where they realigned to create new friction-reducing surfaces. Specifically, high resolution transmission electron microscopy (HRTEM) inside the wear surfaces revealed in an increase in both partial dislocation and basal stacking fault densities through intrafilm shear/slip of partial dislocations on the (0002) planes via a dislocation glide mechanism. This shear accommodation mode mitigated friction and prevented brittle fracture classically observed in higher friction microcrystalline and single crystal ZnO that has potential broad implications to other defective nanocrystalline ceramics. Overall, this work has demonstrated that environmentally-robust, lubricious ALD nanolaminates of ZnO/Al2O3/ZrO2 are good candidates for providing low friction and wear interfaces in moving mechanical assembles, such as fully assembled rolling element bearings and microelectromechanical systems (MEMS) that require thin (~10-200 nm), uniform and conformal films.

Page generated in 0.0911 seconds