• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 10
  • Tagged with
  • 50
  • 50
  • 44
  • 44
  • 44
  • 40
  • 39
  • 37
  • 35
  • 33
  • 29
  • 17
  • 16
  • 13
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

En undersökning av metoder förautomatiserad text ochparameterextraktion frånPDF-dokument med NaturalLanguage Processing / An investigation of methods forautomated text and parameterextraction from PDF documentsusing Natural LanguageProcessing

Värling, Alexander, Hultgren, Emil January 2024 (has links)
I dagens affärsmiljö strävar många organisationer efter att automatisera processen för att hämta information från fakturor. Målet är att göra hanteringen av stora mängder fakturor mer effektiv. Trots detta möter man utmaningar på grund av den varierande strukturen hos fakturor. Placeringen och formatet för information kan variera betydligt mellan olika fakturor, vilket skapar komplexitet och hinder vid automatiserad utvinning av fakturainformation. Dessa utmaningar kan påverka noggrannheten och effektiviteten i processen. Förmågan att navigera genom dessa utmaningar blir därmed avgörande för att framgångsrikt implementera automatiserade system för hantering av fakturor. Detta arbete utforskar fyra olika textextraktions metoder som använder optisk teckenigenkänning, bildbehandling, vanlig textextraktion och textbearbetning, följt av en jämförelse mellan de naturliga språkbehandlingsmodellerna GPT- 3.5 (Generative Pre-trained Transformer) och GPT-4 för parameterextraktion av fakturor. Dessa modeller testades på sin förmåga att extrahera åtta specifika fält i PDF-dokument, sedan jämfördes deras resultat. Resultatet presenteras med valideringsmetoden ”Micro F1-poäng” en skala mellan 0 till 1, där 1 är en perfekt extraktion. Metoden som använde GPT-4 visade sig vara mest framgångsrik, som gav ett resultat på 0.98 och felfri extraktion i sex av åtta fält när den testades på 19 PDF-dokument. GPT 3.5 kom på andraplats och visade lovande resultat i fyra av de åtta fält, men presterade inte lika bra i de återstående fält, vilket resulterade i ett Micro F1-poäng på 0.71. På grund av det begränsade datamängden kunde GPT 3.5 inte uppnå sin fulla potential, eftersom finjustering och validering kräver större datamängder. Likaså behöver GPT-4 valideras med ett mer omfattande dataset för att kunna dra slutsatser om modellernas faktiska prestanda. Ytterligare forskning är nödvändig för att fastställa GPT-modellernas kapacitet med dessa förbättringar. / In today’s business environment, many organizations aim to automate the process of extracting information from invoices with the goal of making the management of large volumes of invoices more efficient. However, challenges arise due to the varied structure of invoices. The placement and format of information can significantly differ between different invoices, creating complexity and obstacles in the automated extraction of invoice information. These challenges can impact the accuracy and efficiency of the process, making the ability to navigate through them crucial for the successful implementation of automated systems for invoice management. This work explores four different text extraction methods that use optical character recognition, image processing, plain text extraction, and text processing, followed by a comparison between the natural language processing models GPT-3.5 (Generative Pre-trained Transformer) and GPT-4 for parameter extraction of invoices. These models were tested on their ability to extract eight specific fields in PDF documents, after which their results were compared. The results are presented using the ”Micro F1-Score” validation method, a scale from 0 to 1, where 1 represents perfect extraction. The method that used GPT-4 proved to be the most successful, yielding a result of 0.98 and error-free extraction in six out of eight fields when tested on 19 PDF documents. GPT-3.5 came in second place and showed promising results in four of the eight fields but did not perform as well in the remaining fields, resulting in a Micro F1-Score of 0.71. Due to the limited amount of data, GPT-3.5 could not reach its full potential, as fine-tuning and validation require larger datasets. Similarly, GPT-4 needs validation with a more comprehensive dataset to draw conclusions about the models’ actual performance. Further research is necessary to determine the capacities of GPT models with these improvements.
2

Investigating the Effect of Complementary Information Stored in Multiple Languages on Question Answering Performance : A Study of the Multilingual-T5 for Extractive Question Answering / Vad är effekten av kompletterande information lagrad i flera språk på frågebesvaring : En undersökning av multilingual-T5 för frågebesvaring

Aurell Hansson, Björn January 2021 (has links)
Extractive question answering is a popular domain in the field of natural language processing, where machine learning models are tasked with answering questions given a context. Historically the field has been centered on monolingual models, but recently more and more multilingual models have been developed, such as Google’s MT5 [1]. Because of this, machine translations of English have been used when training and evaluating these models, but machine translations can be degraded and do not always reflect their target language fairly. This report investigates if complementary information stored in other languages can improve monolingual QA performance for languages where only machine translations are available. It also investigates if exposure to more languages can improve zero-shot cross-lingual QA performance (i.e. when the question and answer do not have matching languages) by providing complementary information. We fine-tune 3 different MT5 models on QA datasets consisting of machine translations, as well as one model on the datasets together in combination with 3 other datasets that are not translations. We then evaluate the different models on the MLQA and XQuAD datasets. The results show that for 2 out of the 3 languages evaluated, complementary information stored in other languages had a positive effect on the QA performance of the MT5. For zero-shot cross-lingual QA, the complementary information offered by the fused model lead to improved performance compared to 2/3 of the MT5 models trained only on translated data, indicating that complementary information from other languages do not offer any improvement in this regard. / Frågebesvaring (QA) är en populär domän inom naturlig språkbehandling, där maskininlärningsmodeller har till uppgift att svara på frågor. Historiskt har fältet varit inriktat på enspråkiga modeller, men nyligen har fler och fler flerspråkiga modeller utvecklats, till exempel Googles MT5 [1]. På grund av detta har maskinöversättningar av engelska använts vid träning och utvärdering av dessa modeller, men maskinöversättningar kan vara försämrade och speglar inte alltid deras målspråk rättvist. Denna rapport undersöker om kompletterande information som lagras i andra språk kan förbättra enspråkig QA-prestanda för språk där endast maskinöversättningar är tillgängliga. Den undersöker också om exponering för fler språk kan förbättra QA-prestanda på zero-shot cross-lingual QA (dvs. där frågan och svaret inte har matchande språk) genom att tillhandahålla kompletterande information. Vi finjusterar 3 olika modeller på QA-datamängder som består av maskinöversättningar, samt en modell på datamängderna tillsammans i kombination med 3 andra datamängder som inte är översättningar. Vi utvärderar sedan de olika modellerna på MLQA- och XQuAD-datauppsättningarna. Resultaten visar att för 2 av de 3 utvärderade språken hade kompletterande information som lagrats i andra språk en positiv effekt på QA-prestanda. För zero-shot cross-lingual QA leder den kompletterande informationen som erbjuds av den sammansmälta modellen till förbättrad prestanda jämfört med 2/3 av modellerna som tränats endast på översättningar, vilket indikerar att kompletterande information från andra språk inte ger någon förbättring i detta avseende.
3

NLP-baserad kravhantering: möjligheter och utmaningar : En kvalitativ undersökning / NLP-based requirements management: opportunities and challenges : A qualitative study

Blystedt, Theo, Sandberg, Albin January 2024 (has links)
Denna studie utforskar det växande området för naturlig språkbehandling (NLP) och dess tillämpning inom kravhantering, ett kritiskt område i mjukvaruutveckling för att säkerställa att system uppfyller uppsatta standarder och användarförväntningar. Komplexiteten i moderna IT-projekt har ökat efterfrågan på effektiv kravhantering. Trots omfattande studier inom NLP finns det brist på fokuserad forskning om dess specifika möjligheter och utmaningar inom ett företags- och verksamhetsperspektiv för att förbättra processerna inom kravhantering. Studien utgår från en kvalitativ metod genom semistrukturerade intervjuer med respondenter inom kravhantering och AI för att få djupgående insikter i praktiska implikationer av NLP inom kravhantering. Genom en tematisk analys på den data som samlades in genom intervjuerna togs fem olika teman fram som var relevant för forskningsfrågorna. Tillsammans med detta genomförs även en litteratursökning som syftar att ge förståelse över insikter och kunskap utifrån relevant forskning. Resultatet som framförs utifrån intervjuerna jämfördes sedan med artiklarna i litteratursökningen. Resultatet visar att NLP har potentialen att effektivisera hanteringen av krav, men medför också betydande utmaningar och komplexitet. Teknikens förmåga att hantera stora datamängder och automatisera extraktion och tolkning av krav kan avsevärt påskynda projektets tidiga skeden. Tidig implementering låter organisationer att snabbt anpassa och identifiera krav baserat på föränderliga omständigheter och insikter. Specifikt så har generativa modeller, så som BERT, hög potential inom kravhanteringsfältet på grund av dess höga effektivitet jämfört med traditionella NLP-modeller. Dock är de största utmaningarna kopplade till risker inom säkerhet och sekretess då NLP-system ofta bearbetar stora mängder textdata som kan innehålla känslig eller konfidentiell information Tillförlitlighet är även en utmaning då systemen måste hantera språklig otydlighet och kontextberoendetolkningar utan att förlora noggrannhet. Kvalitén och mängden träningsdata är även en utmaning på grund av dess direkta påverkan på prestandan och effektiviteten av modellen. Utmaningarna och möjligheterna som denna studie presenterar kan hjälpa verksamheter och företag att implementera NLP-teknologier i kravhanteringsprocesser. / This thesis explores the evolving field of Natural Language Processing (NLP) and its application in requirement management, a critical area in software development ensuring that systems meet set standards and user expectations. The complexity of modern IT projects has heightened the demand for effective requirements management. Despite extensive studies on NLP, there is a lack of focused research on its specific opportunities and challenges from a company and business perspective regarding requirement management processes.  This study adopts a qualitative approach through semi-structured interviews with respondents in the requirement management and AI field, to gain deep insights into the practical implications of NLP in requirements management. The study uses a thematic analysis to analyze the data gathered from the interviews and produce themes which are relevant to the research questions. The study also conducts a literature search to gain scientific insight, which will be used to compare the results from the interviews.  The findings reveal that NLP has promising potential to streamline information handling and requirement interpretation, but also introduces significant risks and complexities. The technology's ability to process large data volumes and automate requirement extraction and interpretation can significantly speed up project stages. Early implementation allows organizations to swiftly adjust, and pinpoint requirements based on changing circumstances and insights. There is also a lot of potential regarding generative models, such as BERT, in the requirement management field due to its extreme efficiency compared to traditional NLP-models. However, major challenges include risks regarding security and secrecy due to the sensitive and confidential information which the NLP-system handles. Additionally, reliability remains a challenge as these systems must handle linguistic ambiguities and context-dependent interpretations without losing accuracy. The quality and the amount of training data regarding the NLP-models also is a major challenge due to its direct impact of the model’s performance and efficiency. The challenges and opportunities in this study can help organizations and businesses in adapting NLP-technologies into their requirement management processes.
4

”Du är så mogen för din ålder…” : Identifiering av grooming med hjälp av en AI-språkmodell.

O'Neill, Monia, Chroscielewski, Jasmin January 2024 (has links)
Genom litteratursökning och manuell datakompilering av sexualbrott mot barn, besvaras frågan “Vilka ord och fraser som förbrytare använder i konversationer är vanligt förekommande och kan användas som identifierande markörer av grooming?” och resulterade i en ordlista av könsord, sexuellt nedvärderande skällsord, och interjektioner som utrop, uppmaningar, och svordomar, som förekommer i högre utsträckning än i vardagliga konversationer. Denna lista användes för träning och test av en språkmodell som flaggar för skadlig data som kan indikera på grooming. Med en semistrukturerad intervju, kompletterat med litteratursökningen av sexualbrottmål besvarades frågan “Vilka sociala plattformar används av förbrytare för att kontakta barn med syfte att utsätta dem för sexualbrott, och varför är dessa plattformar mer använda än andra?”. Dessa metoder påvisade att Snapchat hade en överväldigande majoritet och var den mest använda plattformen, följt av Instagram på en andraplats, samt Tiktok och Kik på en gemensam tredjeplats. För att besvara den tredje frågeställningen “Kan identifiering av grooming underlättas genom Djupinlärning och Naturlig språkbehandling?" utfördes ett flertal experiment på den skapade detekteringsmodell med Naïve Bayes algoritmen som gav positiva utslag. Motiveringen till användandet av AI var att underlätta för IT-forensiker och utredare i deras arbete genom att snabbt identifiera förekomsten av grooming. Eftersom mängden data som extraheras är väldigt omfattande och innehållsklassificering har stor potential för automatisering, kan AI-modeller avsevärt minska arbetsbördan och öka effektiviteten. / By investigating and analyzing court cases, the question of which are the most commonly used words and phrases during grooming attempts that could be used as grooming indicators. A list was compiled and utilized as “harmful” and “harmless” for a training- and test dataset for an AI-model. The list contained snippets of conversations where genital, sexually derogatory terms, commands, and swear words averaged higher than in daily conversation. Through the methods of a semistructured interview and analyzing court cases, results of which social platforms perpetrators use to contact children could be compiled. This showed that Snapchat was by far the most prevalent platform used, followed by Instagram and in third place Tiktok and Kik Messaging. To answer this question, “harmless” data from the same platforms were used in the experiments. The third and final question, pertaining to the possibility of using an AI in grooming detection, was answered through multiple experiments. In an effort to determine if the conversations contained grooming or not, similar in fashion to e-mail spam classification problems, a script with Naïve Bayes as the classifier produced positive results. The goal of this study was to compile a list of words and phrases that, once used to train the model, could detect usage of these words and phrases. And notify the user if the current conversation has been flagged for suspected grooming attempts.
5

Semantiska modeller för syntetisk textgenerering - en jämförelsestudie / Semantic Models for Synthetic Textgeneration - A Comparative Study

Åkerström, Joakim, Peñaloza Aravena, Carlos January 2018 (has links)
Denna kunskapsöversikt undersöker det forskningsfält som rör musikintegrerad matematikundervisning. Syftet med översikten är att få en inblick i hur musiken påverkar elevernas matematikprestationer samt hur forskningen ser ut inom denna kombination. Därför är vår frågeställning: Vad kännetecknar forskningen om integrationen mellan matematik och musik? För att besvara denna fråga har vi utfört litteratursökningar för att finna studier och artiklar som tillsammans bildar en överblick. Med hjälp av den metod som Claes Nilholm beskriver i SMART (2016) har vi skapat en struktur för hur vi arbetat. Ur det material som vi fann under sökningarna har vi funnit mönster som talar för musikens positiva inverkan på matematikundervisning. Förmågan att uttrycka sina känslor i form av ord eller beröra andra med dem har alltid varit enbeundransvärd och sällsynt egenskap. Det här projektet handlar om att skapa en text generatorkapabel av att skriva text i stil med enastående män och kvinnor med den här egenskapen. Arbetet har genomförts genom att träna ett neuronnät med citat skrivna av märkvärdigamänniskor såsom Oscar Wilde, Mark Twain, Charles Dickens, etc. Nätverket samarbetar med två olika semantiska modeller: Word2Vec och One-Hot och alla tre är delarna som vår textgenerator består av. Med dessa genererade texterna gjordes en enkätudersökning för att samlaåsikter från studenter om kvaliteten på de genererade texterna för att på så vis utvärderalämpligheten hos de olika semantiska modellerna. Efter analysen av resultatet lärde vi oss att de flesta respondenter tyckte att texterna de läste var sammanhängande och roliga. Vi lärde oss också att Word2Vec, presterade signifikant bättre än One-hot. / The ability of expressing feelings in words or moving others with them has always been admired and rare feature. This project involves creating a text generator able to write text in the style of remarkable men and women with this ability, this gift. This has been done by training a neural network with quotes written by outstanding people such as Oscar Wilde, Mark Twain, Charles Dickens, et alt. This neural network cooperate with two different semantic models: Word2Vec and One-Hot and the three of them compound our text generator. With the text generated we carried out a survey in order to collect the opinion of students about the quality of the text generated by our generator. Upon examination of the result, we proudly learned that most of the respondents thought the texts were coherent and fun to read, we also learned that the former semantic model performed, not by a factor of magnitude, better than the latter.
6

Named Entity Recognition för Klassificering av Rubriker i Fakturor / Classification of Invoice Headers using Named Entity Recognition

Karlsson, Ludvig, Gyllström, Benjamin January 2021 (has links)
Fakturor är en viktig källa av information för företag. Två exempel på viktiga fält i en faktura kan vara, hur mycket pengar som ska betalas och faktura id. På grund av olika format och innehåll i fakturor som skiljer sig åt är extraktionen av information från dessa fakturor ofta en manuell process som kräver mycket tid. För att kunna spara viktig information från semi-strukturerade dokument som fakturor så måste vissa företag lägga ner mycket manuellt arbete. Detta arbete inkluderar att behöva förstå fakturan och därefter veta vilket innehåll som är av intresse för företaget. Detta arbete kan ta mycket tid och därför hade en automatisering av denna process varit av stort intresse. I denna forskningen används named entity recognition för att lösa problemet. De frågor som forskningen besvarar är: Hur effektiv named entity recognition är för klassificering av rubriker i fakturor, samt hur mycket effektiviteten kan öka vid komplettering av ytterligare komponenter. Named entity recognition används för att kategorisera entiteter som i detta fallet är rubriker för fält i fakturor. Modellen som skapas ska avgöra om rubriker i fakturan kan kategoriseras under någon av kategorierna: Invoice number, invoice date, due date, customer number, total amount, vat code, vat amount eller currency. Forskningen försöker endast göra en proof of concept för att se om denna algoritm kan användas för att minska tiden av manuellt arbete. Produktionsmodellen som skapas evalueras med måttet f1-score. Den får med denna metod resultatet 79 av 100. Detta resultatet antyder på att named entity recognition kan användas i ett verkligt scenario för att identifiera rubriker av intresse i en faktura. Men för att få så bra resultat som möjligt så bör modellen kombineras med en lösning som identifierar fält med hjälp av dess data. / Invoices are an important source of information for businesses. Two examples of important fields in an invoice could be the amount of money to be paid and the invoice Id. Due to the different formats and content of invoices, the extraction of information from these is often a manual and time consuming process. In order to save important information from semi-structured documents such as invoices, some companies have to put in a lot of manual work. This work includes understanding the invoice and then knowing what content is of interest to the company. This work can take a lot of time and therefore an automation of this process would be of great interest. In this research named entity recognition is used to solve the mentioned problem. The topics for this research are: How effective named entity recognition is for classification of headers in invoices, as well as how much the efficiency can be improved by complementing with further components. Named entity recognition is used to categorize entities. In this case the entities are the headings of the invoice. The model that is created must determine whether headings in the invoice can be categorized under one of the following categories: Invoice number, invoice date, due date, customer number, total amount, vat code, vat amount or currency. This research tries to make a proof of concept to discover if this algorithm can be used to reduce the time spent on manual work. The production model that is created is evaluated with the f1-score measurement. With this method, it gets a result of 79 out of 100. This result indicates that named entity recognition can be used by companies in real-world scenarios to identify headings in invoices. But to get the best results possible, the model should also be combined with a solution that identifies fields using its corresponding data.
7

Deep Learning för klassificering av kundsupport-ärenden

Jonsson, Max January 2020 (has links)
Företag och organisationer som tillhandahåller kundsupport via e-post kommer över tid att samla på sig stora mängder textuella data. Tack vare kontinuerliga framsteg inom Machine Learning ökar ständigt möjligheterna att dra nytta av tidigare insamlat data för att effektivisera organisationens framtida supporthantering. Syftet med denna studie är att analysera och utvärdera hur Deep Learning kan användas för att automatisera processen att klassificera supportärenden. Studien baseras på ett svenskt företags domän där klassificeringarna sker inom företagets fördefinierade kategorier. För att bygga upp ett dataset extraherades supportärenden inkomna via e-post (par av rubrik och meddelande) från företagets supportdatabas, där samtliga ärenden tillhörde en av nio distinkta kategorier. Utvärderingen gjordes genom att analysera skillnaderna i systemets uppmätta precision då olika metoder för datastädning användes, samt då de neurala nätverken byggdes upp med olika arkitekturer. En avgränsning gjordes att endast undersöka olika typer av Convolutional Neural Networks (CNN) samt Recurrent Neural Networks (RNN) i form av både enkel- och dubbelriktade Long Short Time Memory (LSTM) celler. Resultaten från denna studie visar ingen ökning i precision för någon av de undersökta datastädningsmetoderna. Dock visar resultaten att en begränsning av den använda ordlistan heller inte genererar någon negativ effekt. En begränsning av ordlistan kan fortfarande vara användbar för att minimera andra effekter så som exempelvis träningstiden, och eventuellt även minska risken för överanpassning. Av de undersökta nätverksarkitekturerna presterade CNN bättre än RNN på det använda datasetet. Den mest gynnsamma nätverksarkitekturen var ett nätverk med en konvolution per pipeline som för två olika test-set genererade precisioner på 79,3 respektive 75,4 procent. Resultaten visar också att några kategorier är svårare för nätverket att klassificera än andra, eftersom dessa inte är tillräckligt distinkta från resterande kategorier i datasetet. / Companies and organizations providing customer support via email will over time grow a big corpus of text documents. With advances made in Machine Learning the possibilities to use this data to improve the customer support efficiency is steadily increasing. The aim of this study is to analyze and evaluate the use of Deep Learning methods for automizing the process of classifying support errands. This study is based on a Swedish company’s domain where the classification was made within the company’s predefined categories. A dataset was built by obtaining email support errands (subject and body pairs) from the company’s support database. The dataset consisted of data belonging to one of nine separate categories. The evaluation was done by analyzing the alteration in classification accuracy when using different methods for data cleaning and by using different network architectures. A delimitation was set to only examine the effects by using different combinations of Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) in the shape of both unidirectional and bidirectional Long Short Time Memory (LSTM) cells. The results of this study show no increase in classification accuracy by any of the examined data cleaning methods. However, a feature reduction of the used vocabulary is proven to neither have any negative impact on the accuracy. A feature reduction might still be beneficial to minimize other side effects such as the time required to train a network, and possibly to help prevent overfitting. Among the examined network architectures CNN were proven to outperform RNN on the used dataset. The most accurate network architecture was a single convolutional network which on two different test sets reached classification rates of 79,3 and 75,4 percent respectively. The results also show some categories to be harder to classify than others, due to them not being distinct enough towards the rest of the categories in the dataset.
8

Designing a text-based AI scheduling assistant chatbot for a business environment. : A case study of a mobile-based AI scheduling assistant app.

Shih, Hau-Ben Benjamin January 2021 (has links)
Scheduling a time to meet can be time-consuming, especially when coordinating with email. It could be challenging for business people when each participant is required to email back and forth to propose their availability, matching each other's time availability, and finding a suitable location to meet. It is even worse when participants must reschedule the entire meeting.   This thesis aims to design and develop an artificial intelligence (AI) scheduling assistant chatbot mobile app that could assist people in scheduling meetings efficiently in the business environment. The research process involves two rounds of design iterations. In the first design iteration, the goal was to explore and test the possible ways to design the chatbot. In the second design iteration, the goal was to learn from the first iteration and improve the design to fulfil the users' needs. The results implied five options for designers to consider when designing an AI assistant chatbot for the business environment. The considerations include the (1) maturity of natural language processing, (2) instructions to new users, (3) feedback provided by the AI assistant, (4) effort of typing messages, and (5) personality of the AI assistant. / Det kan vara tidskrävande att planera en tid att träffas, särskilt när man samordnar med e-post. Det kan vara utmanande för affärsmän när varje deltagare måste skicka e-post fram och tillbaka för att föreslå deras tillgänglighet, matcha varandras tillgänglighet och hitta en lämplig plats att möta. Det är ännu värre när deltagarna måste planera om hela mötet. Denna avhandling syftar till att utforma och utveckla en artificiell intelligens (AI) schemaläggningsassistent chatbot mobilapp som kan hjälpa människor att schemalägga möten effektivt i affärsmiljön. Forskningsprocessen innefattar två omgångar med design-iterationer. I den första designversionen var målet att utforska och testa möjliga sätt att utforma chatboten. I den andra designiterationen var målet att lära av den första iteration och förbättra designen för att uppfylla användarnas behov. Resultaten innebar fem alternativ för designers att överväga när de designade en AI-assistent-chatbot för affärsmiljön. Övervägandena inkluderar (1) mognad för naturlig språkbehandling, (2) instruktioner till nya användare, (3) feedback från AI-assistenten, (4) ansträngning att skriva meddelanden och (5) AI-assistentens personlighet.
9

Graph Neural Networks for Article Recommendation based on Implicit User Feedback and Content

Bereczki, Márk January 2021 (has links)
Recommender systems are widely used in websites and applications to help users find relevant content based on their interests. Graph neural networks achieved state- of-the- art results in the field of recommender systems, working on data represented in the form of a graph. However, most graph- based solutions hold challenges regarding computational complexity or the ability to generalize to new users. Therefore, we propose a novel graph- based recommender system, by modifying Simple Graph Convolution, an approach for efficient graph node classification, and add the capability of generalizing to new users. We build our proposed recommender system for recommending the articles of Peltarion Knowledge Center. By incorporating two data sources, implicit user feedback based on pageview data as well as the content of articles, we propose a hybrid recommender solution. Throughout our experiments, we compare our proposed solution with a matrix factorization approach as well as a popularity- based and a random baseline, analyse the hyperparameters of our model, and examine the capability of our solution to give recommendations to new users who were not part of the training data set. Our model results in slightly lower, but similar Mean Average Precision and Mean Reciprocal Rank scores to the matrix factorization approach, and outperforms the popularity- based and random baselines. The main advantages of our model are computational efficiency and its ability to give relevant recommendations to new users without the need for retraining the model, which are key features for real- world use cases. / Rekommendationssystem används ofta på webbplatser och applikationer för att hjälpa användare att hitta relevant innehåll baserad på deras intressen. Med utvecklingen av grafneurala nätverk nådde toppmoderna resultat inom rekommendationssystem och representerade data i form av en graf. De flesta grafbaserade lösningar har dock svårt med beräkningskomplexitet eller att generalisera till nya användare. Därför föreslår vi ett nytt grafbaserat rekommendatorsystem genom att modifiera Simple Graph Convolution. De här tillvägagångssätt är en effektiv grafnodsklassificering och lägga till möjligheten att generalisera till nya användare. Vi bygger vårt föreslagna rekommendatorsystem för att rekommendera artiklarna från Peltarion Knowledge Center. Genom att integrera två datakällor, implicit användaråterkoppling baserad på sidvisningsdata samt innehållet i artiklar, föreslår vi en hybridrekommendatörslösning. Under våra experiment jämför vi vår föreslagna lösning med en matrisfaktoriseringsmetod samt en popularitetsbaserad och en slumpmässig baslinje, analyserar hyperparametrarna i vår modell och undersöker förmågan hos vår lösning att ge rekommendationer till nya användare som inte deltog av träningsdatamängden. Vår modell resulterar i något mindre men liknande Mean Average Precision och Mean Reciprocal Rank poäng till matrisfaktoriseringsmetoden och överträffar de popularitetsbaserade och slumpmässiga baslinjerna. De viktigaste fördelarna med vår modell är beräkningseffektivitet och dess förmåga att ge relevanta rekommendationer till nya användare utan behov av omskolning av modellen, vilket är nyckelfunktioner för verkliga användningsfall.
10

Natural Language Processing Model for Log Analysis to Retrieve Solutions For Troubleshooting Processes / En NLP-model för analys av loggar för att inhämta lösningar till felsökningsprocesser

Marzo i Grimalt, Núria January 2021 (has links)
In the telecommunications industry, one of the most time-consuming tasks is troubleshooting and the resolution of Trouble Report (TR) tickets. This task involves the understanding of textual data which can be challenging due to its domain- and company-specific features. The text contains many abbreviations, typos, tables as well as numerical information. This work tries to solve the issue of retrieving solutions for new troubleshooting reports in an automated way by using a Natural Language Processing (NLP) model, in particular Bidirectional Encoder Representations from Transformers (BERT)- based approaches. It proposes a text ranking model that, given a description of a fault, can rank the best possible solutions to that problem using answers from past TRs. The model tackles the trade-off between accuracy and latency by implementing a multi-stage BERT-based architecture with an initial retrieval stage and a re-ranker stage. Having a model that achieves a desired accuracy under a latency constraint allows it to be suited for industry applications. The experiments to evaluate the latency and the accuracy of the model have been performed on Ericsson’s troubleshooting dataset. The evaluation of the proposed model suggest that it is able to retrieve and re-rank solution for TRs with a significant improvement compared to a non-BERT model. / En av de mest tidskrävande uppgifterna inom telekommunikationsindustrin är att felsöka och hitta lösningar till felrapporter (TR). Denna uppgift kräver förståelse av textdata, som försvåras as att texten innehåller företags- och domänspecifika attribut. Texten innehåller typiskt sett många förkortningar, felskrivningar och tabeller blandat med numerisk information. Detta examensarbete ämnar att förenkla inhämtningen av lösningar av nya felsökningar på ett automatiserat sätt med hjälp av av naturlig språkbehandling (NLP), specifikt modeller baserade på dubbelriktad kodrepresentation (BERT). Examensarbetet föreslår en textrankningsmodell som, givet en felbeskrivning, kan rangordna de bästa möjliga lösningarna till felet baserat på tidigare felsökningar. Modellen hanterar avvägningen mellan noggrannhet och fördröjning genom att implementera den dubbelriktade kodrepresentationen i två faser: en initial inhämtningsfas och en omordningsfas. För industrianvändning krävs att modellen uppnår en given noggrannhet med en viss tidsbegränsning. Experimenten för att utvärdera noggrannheten och fördröjningen har utförts på Ericssons felsökningsdata. Utvärderingen visar att den föreslagna modellen kan hämta och omordna data för felsökningar med signifikanta förbättringar gentemot modeller utan dubbelriktad kodrepresentation.

Page generated in 0.0754 seconds