Spelling suggestions: "subject:"neocortex""
1 |
Molecular mechanisms downstream of Neurod family transcription factors involved in mouse corticogenesisTutukova, Svetlana 03 March 2023 (has links)
Die Erweiterung des grundlegenden Verständnisses der molekularen Mechanismen der Entwicklung, Organisation und Funktion des Neokortex ist ein Schlüssel zur Erforschung von Entwicklungsstörungen des Gehirns und zur Erarbeitung neuer Therapieansätze. Hier untersuchten wir die molekularen Mechanismen stromabwärts von Transkriptionsfaktoren der Neurod-Familie in der neokortikalen Entwicklung der Maus.
Neurod1, Neurod2 und Neurod6 sind zentrale Regulatoren der neuronalen Differenzierung, Spezifikation und Axonführung. In dieser Arbeit zeigen wir, dass Neurod-Transkriptionsfaktoren über ein Zwischenmolekül den Tbr2-Transkriptionsfaktor unterdrücken, um eine ordnungsgemäße neuronale Migration und Differenzierung sicherzustellen. Die verlängerte ektopische Tbr2-Expression stört die neuronale Migration, Somagröße und dendritische Verzweigung in embryonalen und postnatalen Perioden. Wir untersuchen den genetischen Crosstalk zwischen Neurod1/2/3- und WWP1/2/miR-140-Wegen zu ihrem gemeinsamen nachgeschalteten Ziel Tbr2 und zeigten, dass diese Wege unabhängig voneinander auf Tbr2 konvergieren.
Wir identifizieren neue nachgeschaltete Ziele von Neurod-Transkriptionsfaktoren wie Kcnq3,
Bhlhe22 und Prdm8 und demonstrieren ihre entscheidende Rolle bei der richtigen Corpus
Callosum-Etablierung. Darüber hinaus wird in dieser Forschung ein In-vitro-System zur
Untersuchung der Callosom-Axon-Führung entwickelt und etabliert.
Wir stellen fest, dass die Sh3gl2-Expression unter der Kontrolle von Neurod-Transkriptionsfaktoren steht und die Eliminierung von Sh3gl2 zu einer verzögerten Bestimmung des Zellschicksals führt. Wir nehmen an, dass die beeinträchtigte Sh3gl2-Expression in Neurod2/6 dKO- und Neurod1/2/6 tKO-Mutanten die Clathrin-unabhängige Endozytose und die anschließende Internalisierung von Membranrezeptoren stört, was zu einer Störung der Cortex-Zytoarchitektur führt. / Expanding the fundamental understanding of the molecular mechanisms of neocortex development, organization, and function is a key to investigating brain developmental disorders and elaborating new therapeutic approaches. Here, we studied the molecular mechanisms downstream of Neurod family transcription factors in mouse neocortical development. Neurod1, Neurod2, and Neurod6 are pivotal regulators of neuronal differentiation, specification, and axon guidance. In this study, we demonstrated that Neurod transcription factors via an intermediate molecule, repress the Tbr2 transcription factor to ensure proper
neuronal migration and differentiation. The prolonged ectopic Tbr2 expression disrupts neuronal migration, soma size and dendritic branching in embryonic and postnatal periods. We investigated the genetic crosstalk between Neurod1/2/3 and WWP1/2/miR-140 pathways to their common downstream target Tbr2 and showed that these pathways converge on Tbr2 independently of each other.
We identified new downstream targets of Neurod transcription factors such as Kcnq3, Bhlhe22, and Prdm8, and demonstrated their crucial role in the proper Corpus Callosum establishment. Moreover, an in-vitro system for investigation of the callosal axons guidance
was developed and established in this research.
We detected that Sh3gl2 expression is under Neurod transcription factors control and the Sh3gl2 elimination results in the delayed cell fate specification. We hypothesize that impaired Sh3gl2 expression in Neurod2/6 dKO and Neurod1/2/6 tKO mutants disrupts the clathrin-
independent endocytosis and subsequent membrane receptors internalization, that leads to disturbance of cortex cytoarchitecture.
|
2 |
In vivo monosynaptic connectivity and network activity of neocortical interneuronsDorrn, Anja Luise 21 March 2017 (has links)
In lokalen neokortikalen Netzwerken stellen GABAerge Interneurone die Quelle der Inhibition dar, wobei sie inhibitorische Verbindungen mit benachbarten exzitatorischen und anderen inhibitorischen Neuronen bilden. Man geht davon aus, dass synaptische Transmission in vivo als Folge spontaner Aktionspotentiale während aktiven depolarisierten Erregungszuständen des Netzwerks auftritt. Ziel dieser Studie war es monosynaptische inhibitorische Verbindungen in vivo zu detektieren um den Zusammenhang zwischen der Konnektivität kortikaler Interneurone und deren Spontanaktivität untersuchen zu können. Dafür wurden von zwei bis drei benachbarten GABAergen Interneuronen gleichzeitig gezielte elektrophysiologische Ganz-Zell-Ableitungen unter visueller Kontrolle des Zwei-Photonen-Mikroskops gemacht. Die Ableitungen wurden an Zellen in Schicht 2/3 des primären somatosensorischen Kortex der Vorderpfote von Mäusen durchgeführt, welche mit Urethan narkotisiert waren. Hierbei wurden zwei Mauslinien eingesetzt, um elektrophysiologische Ableitungen von genetisch identifizierten Interneuronen zu erhalten. GAD67-GFP Mäuse wurden genutzt, um Interneurone allgemein und unabhängig von ihrem Subtyp untersuchen zu können. Die Züchtung der dreifach transgenen Linie GIN-VIPcre-Ai9 erlaubte gezielte Ableitungen von SST und VIP Zellen. In beiden Linien konnten monosynaptische inhibitorische Verbindungen zwischen Interneuronen detektiert werden, wobei die Konnektivitätsrate zwischen ''nicht-schnell'' feuernden Interneuronen in GAD67-GFP Mäusen höher war als für SST und VIP Zellen. Die inhibitorische synaptische Transmission wurde jeweils stark vom aktuellen Erregungszustand des Kortex moduliert wobei ein Anstieg der IPSP-Amplitude während depolarisierter Zustände des Netzwerks festgestellt wurde. Es konnten subtyp-spezifische Korrelationen in der Aktivität neokortikaler Interneurone beobachtet werden, welche sich im unterschwelligen Membranpotential und auch der spontanen Feuerrate der Zellen zeigte. / GABAergic interneurons provide the source of inhibition in local neocortical networks, where they form inhibitory connections with nearby excitatory and other inhibitory neurons. In cortical circuits in vivo synaptic transmission is thought to emerge during depolarized active network states, when spontaneous spiking can occur. The aim of this study was to identify monosynaptic inhibitory connections in vivo in order to relate interneuron connectivity to their spontaneous activity. Therefore simultaneous two-photon targeted whole-cell recordings were made from two to three neighboring layer 2/3 GABAergic interneurons in the forepaw primary somatosensory cortex of urethane anesthetized mice. Two different mouse strains were used to record from genetically identified interneurons: in GAD67-GFP animals interneurons could be examined regardless to their subtype. Breeding of the triple transgenic mouse line GIN-VIPcre-Ai9 allowed to specifically target SST and VIP cells. Monosynaptic inhibitory connections could be identified in both mouse lines, with higher connectivity rates of non-fast spiking interneurons recorded in GAD67-GFP animals than for SST and VIP cells. Overall, the ongoing state of the cortex powerfully modulated inhibitory synaptic transmission, with IPSPs increasing in amplitude in depolarized network states. Subtype-specific correlations in the activity of neocortical interneurons could be observed and were reflected in the subthreshold and also spontaneous firing activity of cells.
|
3 |
Investigation of Sip1 gene interactions in the development of the mammalian telencephalon / Untersuchung der Sip1 Gen-Interaktion in der Entwicklung des Telencephalons der MammaliaNityanandam, Anjana 28 April 2009 (has links)
No description available.
|
4 |
Identification and Functional Characterization of unc5A during Neocortical Regionalization / Identifikation und funktionelle Characterizierung von Unc5A während der Neocorticalen-RegionalisierungUcar, Ahmet 04 May 2007 (has links)
No description available.
|
5 |
Zeb2 as a regulator of adhesion interplay in the developing mouse neocortexEpifanova, Ekaterina 23 February 2022 (has links)
Der menschliche Neokortex wird als Hauptsitz kognitiver Funktionen höherer Ordnung angesehen. Das Verständnis der neokortikalen Entwicklung anderer Säugetierarten ist von wesentlicher Bedeutung, um die menschliche Gehirnorganisation im Allgemeinen und
neurologische Entwicklungsstörungen im Speziellen besser zu verstehen. In dieser Arbeit habe ich die Rolle des mit dem Mowat-Wilson-Syndrom assoziierten Transkriptionsfaktors Zeb2 in der neokortikalen Entwicklung der Maus untersucht.
Ich habe nachgewiesen, dass Zeb2 die Adhäsion neugeborener kortikaler Neurone sowohl vor als auch nach der radialen Migration über zwei unabhängige molekulare Wege reguliert. Hierbei konnte ich zeigen, dass die Adhäsion im Vorfeld der radialen Migration über den molekularen Zeb2-Nrp1-Itgβ1- Weg reguliert wird. Zeb2 unterdrückt zell-intrinsisch die neuronale Adhäsion an die extrazelluläre Matrix und kontrolliert dadurch den Beginn der radialen Migration, die Dauer des multipolaren Stadiums sowie die Motilität multipolarer Neurone, ohne die radiale Migration selbst oder das spätere Zellschicksal innerhalb der kortikalen Schichten zu beeinflussen. Hierbei sind die apikalen Dendriten der Neurone
normalerweise parallel zueinander und senkrecht zur Hirnhautoberfläche ausgerichtet. Ich habe gezeigt, dass die Ausrichtung der Neurone im Anschluss an ihre Migration von der Adhäsion der Zellen untereinander sowie zur extrazellulären Matrix abhängt und dieser Prozess unabhängig von der radialen Migration erfolgt. Zeb2 koordiniert das gesamt e Repertoire dieser postmigratorischen Adhäsion über den molekularen Zeb2-Cdh6-Itgβ1-Weg.
Zusammenfassend zeigt diese Studie die Bedeutung der neuronalen Adhäsion während der neokortikalen Entwicklung auf und entschlüsselt die Regulationsmechanismen für die Initiierung der radialen Migration sowie für die postmigratorische Orientierung der Neurone der oberen kortikalen Schichten. / The human brain is a highly sophisticated biological structure and its formation is a highly orchestrated process. The human neocortex, in particular, is the main place of higher-order cognitive functions. Understanding the neocortical development of other mammalian species is essential for understanding brain organisation in common neurodevelopmental disorders in particular. Here I studied the role of Mowat-Wilson syndrome-associated transcription factor Zeb2 in mouse neocortical development.
I have shown in this study that Zeb2 regulates adhesion of new born cortical neurons both before and after radial locomotion via two independent molecular pathways. I have shown that adhesion prior to radial locomotion is tightly regulated via Zeb2-Nrp1-Itgβ1 molecular
pathway. Zeb2 cell-intrinsically suppresses adhesion of neurons to the extracellular matrix and therefore restricts the initiation of radial locomotion, multipolar stage duration and motility of multipolar neurons without affecting radial locomotion itself and layer cell fate acquisition. Once radial migration is finished neurons have to form apical dendrite and establish contact with the meningeal surface. Normally, apical dendrites of neurons are oriented parallel to each other and perpendicular to the meningeal surface. I have shown that postmigratory orientation of neurons is dependent on cell-to-cell and cell-to-extracellular matrix adhesion and occurs independently from radial migration. Zeb2 orchestrates the whole repertoire of adhesion of neurons completed radial migration via Zeb2-Cdh6-Itgβ1 molecular pathway. I have demonstrated that Cadherin 6 balance is crucial for establishment of postmigratory neuronal orientation under normal conditions.
Taken together, this study has revealed the importance of neuronal adhesion during neocortical development and separated the regulation mechanisms for initiation of radial migration and postmigratory orientation of upper layer neurons.
|
6 |
Polycomb-mediated gene regulation in human brain development and neurodevelopmental disorders: Review ArticleBölicke, Nora, Albert, Mareike 22 February 2024 (has links)
The neocortex is considered the seat of higher cognitive function in humans. It develops from a sheet of neural progenitor cells, most of which eventually give rise to neurons. This process of cell fate determination is controlled by precise temporal and spatial gene expression patterns that in turn are affected by epigenetic mechanisms including Polycomb group (PcG) regulation. PcG proteins assemble in multiprotein complexes and catalyze repressive posttranslational histone modifications. Their association with neurodevelopmental disease and various types of cancer of the central nervous system, as well as observations in mouse models, has implicated these epigenetic modifiers in controlling various stages of cortex development. The precise mechanisms conveying PcG-associated transcriptional repression remain incompletely understood and are an active field of research. PcG activity appears to be highly context-specific, raising the question of species-specific differences in the regulation of neural stem and progenitor regulation. In this review, we will discuss our growing understanding of how PcG regulation affects human cortex development, based on studies in murine model systems, but focusing mostly on findings obtained from examining impaired PcG activity in the context of human neurodevelopmental disorders and cancer. Furthermore, we will highlight relevant experimental approaches for functional investigations of PcG regulation in human cortex development.
|
7 |
Perirhinal feedback input controls neocortical memory formation via layer 1Shin, Jiyun 29 January 2021 (has links)
Das deklarative Gedächtnis beruht auf Wechselwirkungen zwischen dem medialen Temporallappens (MTL) und Neokortex. Aufgrund der verteilten Natur neokortikaler Netzwerke bleiben zelluläre Ziele und Mechanismen der Gedächtnisbildung im Neokortex jedoch schwer fassbar. Im sechsschichtigen Säugetier-Neokortex konvergieren die Top-Down-Inputs auf Schicht 1 (L1). Wir untersuchten, wie Top-Down-Inputs von MTL die neokortikale Aktivität während der Gedächtnisbildung modulieren. Wir haben zunächst ein Kortex- und Hippocampus-abhängiges Lernparadigma angepasst, in dem Tiere gelernt haben, direkte kortikale Mikrostimulation und Belohnung zu assoziieren. Neuronen in den tiefen Schichten des perirhinalen Kortex lieferten monosynaptische Eingaben in L1 des primären somatosensorischen Kortex (S1), wo die Mikrostimulation vorgestellt wurde. Die chemogenetische Unterdrückung der perirhinalen Inputs in L1 von S1 störte die Gedächtnisbildung, hatte jedoch keinen Einfluss auf die Leistung der Tiere nach abgeschlossenem Lernen. Dem Lernen folgte das Auftreten einer klaren Subpopulation von Pyramidenneuronen der Schicht 5 (L5), die durch hochfrequentes Burst-Feuern gekennzeichnet war und durch Blockieren der perirhinalen Inputs zu L1 reduziert werden konnte. Interessanterweise zeigte ein ähnlicher Anteil an apikalen Dendriten von L5-Pyramidenneuronen ebenfalls eine signifikant erhöhte Ca2+-Aktivität während des Gedächtnisabrufs bei Expertentieren. Wichtig ist, dass die Störung der dendritischen Ca2+-Aktivität das Lernen beeinträchtigte, was darauf hindeutet, dass apikale Dendriten von L5-Pyramidenneuronen eine entscheidende Rolle bei der Bildung des neokortikalen Gedächtnisses spielen. Wir schließen daraus, dass MTL-Eingaben das Lernen über einen perirhinalen vermittelten Gating-Prozess in L1 steuern, der sich in einer erhöhten dendritischen Ca2+-Aktivität und einem Burst-Firing in pyramidalen L5-Neuronen manifestiert. / Declarative memory relies on interactions between the medial temporal lobe (MTL) and neocortex. However, due the distributed nature of neocortical networks, cellular targets and mechanisms of memory formation in the neocortex remain elusive. In the six-layered mammalian neocortex, top-down inputs converge on its outermost layer, layer 1 (L1). We examined how layer-specific top-down inputs from MTL modulate neocortical activity during memory formation. We first adapted a cortical- and hippocampal-dependent learning paradigm, in which animals learned to associate direct cortical microstimulation and reward, and characterized the learning behavior of rats and mice. We next showed that neurons in the deep layers of the perirhinal cortex not only provide monosynaptic inputs to L1 of the primary somatosensory cortex (S1), where microstimulation was presented, but also actively reflect the behavioral outcome. Chemogenetic suppression of perirhinal inputs to L1 of S1 disrupted early memory formation but did not affect animals’ performance after learning. The learning was followed by an emergence of a distinct subpopulation of layer 5 (L5) pyramidal neurons characterized by high-frequency burst firing, which could be reduced by blocking perirhinal inputs to L1. Interestingly, a similar proportion of apical dendrites (~10%) of L5 pyramidal neurons also displayed significantly enhanced calcium (Ca2+) activity during memory retrieval in expert animals. Importantly, disrupting dendritic Ca2+ activity impaired learning, suggesting that apical dendrites of L5 pyramidal neurons have a critical role in neocortical memory formation. Taken together, these results suggest that MTL inputs control learning via a perirhinal-mediated gating process in L1, manifested by elevated dendritic Ca2+ activity and burst firing in L5 pyramidal neurons. The present study provides insights into cellular mechanisms of learning and memory representations in the neocortex.
|
Page generated in 0.0538 seconds