• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Developmental regulomes that drive tissue-specific and temporally controlled gene expression in Drosophila melanogaster

Guimarães, Ana Luísa 12 February 2020 (has links)
Während der Entwicklung des Organismus führen naive Zellen aufgrund eines streng regulierten Transkriptionsprogramms zu differenzierten Zelltypen und Geweben. Obwohl viele Aspekte dieses Differenzierungsprozesses noch wenig verstanden sind, ist allgemein anerkannt, dass Transkriptionsfaktoren (TFs), die mit cis-regulatorischen Modulen (CRMs), nämlich Enhancern, interagieren, einen wesentlichen Beitrag zur Regulierung der räumlich-zeitlichen Genexpression leisten. Um die regulatorischen Wechselwirkungen von Enhancern zu verstehen, verwendete ich eine Technik namens inSTEP, von zwei wichtigen neurogenen Enhancern und einem mesodermalen Enhancer zu entschlüsseln. inSTEP ist eine Abkürzung für in vivo Spatio-Temporal Enhancer Proteomics und beinhaltet die Präzipitation eines ausgewählten Enhancers zusammen mit all seinen gebundenen Elementen aus einem bestimmten Gewebe zur Identifizierung durch Massenspektrometrie (MS), wodurch die Identifizierung von regulatorischen Kandidaten ermöglicht wird, die die Neurogenese vorantreiben. Das Herunterfallen von mindestens zwei der mutmaßlichen Regulierungskandidaten CG4707 und CG2962 führte zu einem veränderten Reportergen-Expressionsmuster, das vom vndenhancer gesteuert wurde, was darauf hindeutet inSTEP ist in der Lage, neue regulatorische Proteine zu identifizieren, die an der Regulation der Genexpression im sich entwickelnden Nervensystem beteiligt sind. Einer der Enhancer, an denen ich am meisten interessiert bin, ist ein Enhancer für das Gen vnd, das einen entscheidenden TF für die Neurogenese codiert. Ich habe mein Projekt daher über die Frage hinaus erweitert, wie vnd-Expression reguliert wird, um auch die Rolle einzubeziehen, die Vnd selbst bei der Neurogenese spielt. Ich habe ChIP-seq-Experimente durchgeführt, um die genomweiten Bindungsprofile von Vnd aufzuklären, und ich habe Werkzeuge entwickelt, die die isoformspezifische Rolle von Vnd aufklären. / During organismal development, naive cells give rise to differentiated cell types and tissues as a result of a tightly regulated transcriptional programs. Although many aspects of this differentiation process are still poorly understood, it is widely accepted that transcription factors (TFs) interacting with cis-regulatory modules (CRMs), namely enhancers, are major contributors to regulate spatio-temporal gene expression. In order to understand the regulatory interactions of enhancers, I used a technique called inSTEP to unravel the enhancer-protein interactions on two major neurogenic enhancers (for the vnd and rho genes) and one mesodermal enhancer (1070enhancer), for which no target genes are known. inSTEP is an acronym for in vivo Spatio-Temporal Enhancer Proteomics and entails precipitation of a chosen enhancer together with all its bound elements from a specific tissue, for identification by mass spectrometry (MS), thus enabling the identification of regulatory candidates driving neurogenesis. I have identified candidate regulators in the ventral column and selected ten to do follow-up experiments The knock down of at least two of the vndenhancer putative regulators, CG4707 and CG2962, led to an altered reporter gene expression pattern driven by the vndenhancer, suggesting that inSTEP is able to identify new regulatory proteins involved in the regulation of gene expression in the developing nervous system. One of the enhancers I am most interested in is an enhancer for the gene vnd, which encodes a crucial TF for neurogenesis. I have therefore expanded my project beyond the question of ‘how’ vnd expression is regulated, to also include the role Vnd itself plays in neurogenesis. I have conducted ChIP-seq experiments to elucidate the genome-wide binding profiles of Vnd and I have developed tools that will elucidate the isoform-specific role of Vnd.
2

Zeb2 as a regulator of adhesion interplay in the developing mouse neocortex

Epifanova, Ekaterina 23 February 2022 (has links)
Der menschliche Neokortex wird als Hauptsitz kognitiver Funktionen höherer Ordnung angesehen. Das Verständnis der neokortikalen Entwicklung anderer Säugetierarten ist von wesentlicher Bedeutung, um die menschliche Gehirnorganisation im Allgemeinen und neurologische Entwicklungsstörungen im Speziellen besser zu verstehen. In dieser Arbeit habe ich die Rolle des mit dem Mowat-Wilson-Syndrom assoziierten Transkriptionsfaktors Zeb2 in der neokortikalen Entwicklung der Maus untersucht. Ich habe nachgewiesen, dass Zeb2 die Adhäsion neugeborener kortikaler Neurone sowohl vor als auch nach der radialen Migration über zwei unabhängige molekulare Wege reguliert. Hierbei konnte ich zeigen, dass die Adhäsion im Vorfeld der radialen Migration über den molekularen Zeb2-Nrp1-Itgβ1- Weg reguliert wird. Zeb2 unterdrückt zell-intrinsisch die neuronale Adhäsion an die extrazelluläre Matrix und kontrolliert dadurch den Beginn der radialen Migration, die Dauer des multipolaren Stadiums sowie die Motilität multipolarer Neurone, ohne die radiale Migration selbst oder das spätere Zellschicksal innerhalb der kortikalen Schichten zu beeinflussen. Hierbei sind die apikalen Dendriten der Neurone normalerweise parallel zueinander und senkrecht zur Hirnhautoberfläche ausgerichtet. Ich habe gezeigt, dass die Ausrichtung der Neurone im Anschluss an ihre Migration von der Adhäsion der Zellen untereinander sowie zur extrazellulären Matrix abhängt und dieser Prozess unabhängig von der radialen Migration erfolgt. Zeb2 koordiniert das gesamt e Repertoire dieser postmigratorischen Adhäsion über den molekularen Zeb2-Cdh6-Itgβ1-Weg. Zusammenfassend zeigt diese Studie die Bedeutung der neuronalen Adhäsion während der neokortikalen Entwicklung auf und entschlüsselt die Regulationsmechanismen für die Initiierung der radialen Migration sowie für die postmigratorische Orientierung der Neurone der oberen kortikalen Schichten. / The human brain is a highly sophisticated biological structure and its formation is a highly orchestrated process. The human neocortex, in particular, is the main place of higher-order cognitive functions. Understanding the neocortical development of other mammalian species is essential for understanding brain organisation in common neurodevelopmental disorders in particular. Here I studied the role of Mowat-Wilson syndrome-associated transcription factor Zeb2 in mouse neocortical development. I have shown in this study that Zeb2 regulates adhesion of new born cortical neurons both before and after radial locomotion via two independent molecular pathways. I have shown that adhesion prior to radial locomotion is tightly regulated via Zeb2-Nrp1-Itgβ1 molecular pathway. Zeb2 cell-intrinsically suppresses adhesion of neurons to the extracellular matrix and therefore restricts the initiation of radial locomotion, multipolar stage duration and motility of multipolar neurons without affecting radial locomotion itself and layer cell fate acquisition. Once radial migration is finished neurons have to form apical dendrite and establish contact with the meningeal surface. Normally, apical dendrites of neurons are oriented parallel to each other and perpendicular to the meningeal surface. I have shown that postmigratory orientation of neurons is dependent on cell-to-cell and cell-to-extracellular matrix adhesion and occurs independently from radial migration. Zeb2 orchestrates the whole repertoire of adhesion of neurons completed radial migration via Zeb2-Cdh6-Itgβ1 molecular pathway. I have demonstrated that Cadherin 6 balance is crucial for establishment of postmigratory neuronal orientation under normal conditions. Taken together, this study has revealed the importance of neuronal adhesion during neocortical development and separated the regulation mechanisms for initiation of radial migration and postmigratory orientation of upper layer neurons.
3

Elucidating the influence of chromatin topology on cellular identity in murine pre-implantation development

Loof, Gesa 22 June 2021 (has links)
Präzise regulierte Genexpression, ist der Schlüssel zu erfolgreicher Embryonal-entwicklung. Die Expression von Zelltyp-spezifischen Transkriptionsfaktoren kann durch räumliche Interaktionen von Promotoren und Enhancern im Nukleus kontrolliert werden, aber auch durch 3D Faltung der DNA in größere organisatorische Einheiten wie “Topologically Associating Domains” (TADs) oder “A/B compartments”. Um die 3D Faltung in den Zelltypen des prä-implantations Embryos zu untersuchen, nutze ich ES und XEN Zellen, die stark dem Epiblast und dem primitiven Endoderm in der inneren Zellmasse des E4.5 Embryos ähneln. Um den Zusammenhang zwischen 3D DNA Faltung und zellulärer Identität zu erforschen, habe ich GAM, ATAC-seq und RNA-seq Daten von ES und XEN Zellen produziert. Um die Genom-Architektur im Embryo zu untersuchen, habe ich außerdem die GAM Methode an den Mausembryo angepasst und kann dadurch erstmals genomweit DNA-Faltung in den spezifischen Zelltypen der inneren Zellmasse des prä-implantations Embryos zeigen. ES und XEN Zellen zeigen viele differentiell exprimierte Gene, sowie starke Veränderungen in der Chromatin-Organisation, beispielweise in der Bildung von reprimierten Chromatinnetzwerken in ESCs, die wichtige XEN Gene wie Gata6 und Lama1 enthalten, während diese nicht aktiv sind. XEN-spezifische Genexpression ist oft mit der Präsenz von XEN-spezifischen “TAD boundaries” gekoppelt. Der Sox2 Locus zeigt eine ESC-spezifische Organisation mit aktiven Genen, und Regionen die von den Transkriptionsfaktoren SOX2, NANOG und OCT4 gebunden sind. Die starke Reorganisation der Genom-Architektur in wichtigen Loci wie Gata6 und Sox2 konnte ich mit in vivo GAM Daten bestätigen und finde ähnliche Unterschiede zwischen den beiden Zelltypen der inneren Zellmasse wie im in vitro Model. Diese Ergebnisse zeigen, wie wichtig es ist, Zelltypen getrennt zu untersuchen und, dass eine Verbindung zwischen zellulärer Identität und der Faltung des Genoms in der Embryonalentwicklung besteht. / Tightly controlled gene regulation is key to functional metazoan embryonic development. The expression of cell-fate determining transcription factors orchestrates the establishment of the various lineages of the embryo. Gene expression is often regulated via specific chromatin organisation. To investigate cell type-specific differences in chromatin folding in early embryonic development, I used in vitro models of the two distinct cell populations in the blastocyst ICM. In mouse ES and XEN cells, I mapped 3D genome conformation using Genome Architecture Mapping (GAM), chromatin accessibility using ATAC-seq, and gene expression using total RNA-seq. To enable the mapping of 3D genome folding directly in the blastocyst ICM, I adapted GAM for cell type-specific selection of nuclei, by integrating immunofluorescence detection of markers, and generated the first genome-wide chromatin contact maps that distinguish ICM cell types. I report that the ES and XEN cell lineages undergo abundant large scale rearrangements of genome architecture and exhibit high numbers of differentially expressed genes. For example, extra-embryonic endoderm genes, such as Lama1 and Gata6, form silent hubs in ESCs, potentially connecting maintenance of pluripotency to 3D structure of the genome. Further, I show that the expression of XEN cell-specific genes relates to the formation of XEN cell-specific TAD boundaries. Chromatin contacts at the Sox2 locus exhibit an ESC-specific organisation around binding of pluripotency transcription factors OCT4, NANOG and SOX2, into hubs of high gene activity. The observations detected in in vitro models, were investigated in smaller GAM datasets produced using the in vivo counterparts in the ICM. Overall, in vivo data confirmed the high degree of chromatin rearrangement among the two cell types, specifically in loci of lineage driving genes. The findings from in vivo data further underscore the connection of genome topology and cellular identity.
4

Investigation of cap-independent translation in neuronal differentiation

Ruhe, Larissa 15 June 2020 (has links)
Initiation der Translation ist ein komplexer und stark regulierter Prozess, bei dem Ribosomen die mRNA binden. Die überwiegende Mehrheit eukaryotischer mRNAs wird durch einen 5‘-Cap-abhängigen Mechanismus translatiert. Dazu bindet der eIF4F-Proteinkomplex die mRNA an der 5'-Cap-Struktur, um weitere eIFs und die kleine ribosomale Untereinheit zu rekrutieren, welche dann die 5'UTR von 5'- in 3'-Richtung bis zu einem Startcodon scannt. Anschließend trifft die große ribosomale Untereinheit dazu und die Proteinsynthese beginnt. Darüber hinaus kann die Translation durch IRES, interne ribosomale Eintrittsstellen, vermittelt werden, welche das Ribosom unabhängig von Cap und 5‘-Ende zum Startcodon rekrutieren. Die zelluläre IRES-vermittelte Translation gilt als ineffizient unter physiologischen Bedingungen, wird aber durch Stress aktiviert. Da die Regulation dieses Mechanismus weitaus unbekannt ist, haben wir die zelluläre, Cap-unabhängige Translationsinitiation untersucht. Dafür haben wir eine embryonale Stammzelllinie generiert, welche eine dominant-negative Mutante von 4E-BP1 exprimiert. 4E-BP1 bindet das 5‘-Cap-bindende Protein, sodass eIF4F nicht am 5'-Cap andocken kann. Wir haben das Proteom während der Überexpression von 4E-BP1 und der neuronalen Differenzierung bestimmt, um Translationsdynamiken systemisch zu erfassen. Gene mit verminderter Sensitivität für die Cap-abhängige Translation wurden so identifiziert und in bicistronischen Reporter-Assays getestet. Nach strenger Validierung wurde eine Cap-unabhängig translatierte mRNA, Pqbp1, entdeckt. Der zweite Teil dieser Studie untersuchte die Cap-unabhängige Translation einer circRNA, welche keine freien Enden hat und daher per IRES translatiert werden muss. Wir konnten bestätigen, dass circMbl in vitro translatiert wird und konnten so innerhalb eines Kooperationsprojekts zu der Erkenntnis beitragen, dass circRNAs im Fliegengehirn translatiert werden. / Translation initiation is a complex and highly regulated process which involves the assembly of an elongation competent ribosome on the mRNA. The vast majority of eukaryotic mRNAs is translated by a canonical cap-dependent mechanism. This requires the eIF4F protein complex to bind the mRNA at the 5’-cap to recruit further eIFs and the small ribosomal subunit which then scans the 5’UTR in 5’ to 3’ direction until a start codon is encountered. Afterwards the large ribosomal subunit joins and protein synthesis begins. Besides that, translation of mRNAs can be mediated by IRESs, internal ribosome entry sites, which recruit the ribosome in a cap and 5’-end-independent manner to the start codon. Such cellular IRES-mediated translation is thought to be inefficient under physiological conditions but activated during stress. As the regulation of this mechanism is not well understood, we aimed to elucidate cellular cap-independent translation events. Therefore, we generated a mouse embryonic stem cell line with inducible overexpression of a dominant negative mutant of 4E-BP1. 4E-BP1 sequesters the cap-binding protein eIF4E so that the eIF4F protein complex fails to assemble at the 5’-cap. We performed shotgun proteomics during 4E‑BP1 overexpression and neuronal differentiation to globally monitor translation dynamics. Genes with reduced sensitivity for cap-dependent translation were identified and tested for internal translation initiation in bicistronic reporter assays. After stringent validation one cap-independently translated mRNA, Pqbp1, was discovered. The second part of this study investigated cap-independent translation initiation on a circRNA, which by nature lacks free ends and thus requires IRES-mediated translation. We could show that circMbl is translated in vitro and thus contributed to the scientific evidence for the translation of circRNAs in fly brain, which was studied in a collaboration project.
5

mRNA localization and transcriptome dynamics in early zebrafish development

Holler, Karoline 03 January 2022 (has links)
Die Lokalisierung von mRNA ist ein wichtiger regulativer Mechanismus in polarisierten Zellen und in frühen Embryonalstadien. Dort sind räumliche Muster maternaler mRNA für die korrekte Entwicklung der Körperachsen und die Spezifizierung der Keimzellen verantwortlich. Systematische Analysen dieser Prozesse wurden jedoch bisher limitiert durch einen Mangel an räumlicher und zeitlicher Auflösung von Einzelzell- Sequenzierungsdaten. Wir analysierten die Dynamik des räumlichen und zeitlichen Transkriptoms während frühen Embryonalstadien von Zebrafischen. Wir verbesserten Empfindlichkeit und Auflösung von tomo-seq und erfassten damit systematisch räumlich aufgelöste Transkriptome entlang der animal-vegetalen-Achse Embryonen im Einzell-Stadium und fanden 97 vegetal lokalisierte Gene. Außerdem etablierten wir eine Hochdurchsatz kompatible Variante der RNA-Markierungsmethode scSLAM-seq. Wir wendeten diese in Embryonen während der Gastrulation. Von den vegetal lokalisierten Genen waren 22 angereichert in Keimzellen, was eine funktionelle Rolle bei der Spezifizierung von Keimzellen nahelegt. Mit tomo-seq untersuchten wir die evolutionäre Konservierung der RNA-Lokalisierung zwischen Zebrafischen und gereiften Oozyten zweier Xenopus-Arten. Wir verglichen die lokalisierten Gene, suchten nach konservierten 3'UTR-Motiven, und fanden zum Teil überlappende Motive, was auf eine mögliche mechanistische Konservierung der Lokalisierungsmechanismen hinweist. Wir untersuchten auch RNA-Editierung von Adenin zu Inosin während der Embryonalentwicklung und in den Organen erwachsener Fische. In im Gehirn exprimierten Transkripten fanden wir 117 Editierstellen, die hauptsächlich für Ionentransporter kodieren und zum Teil zum Menschen konserviert sind. Die höchsten Editierraten konnten wir in Eierstöcken, Hoden und frühen Embryonen nachweisen, was auf eine mögliche Rolle bei der Regulierung der RNA-Stabilität hindeutet. / Subcellular localization of mRNA is an important regulatory mechanism in polarized cells. In early embryos of many species, spatial patterns of maternal mRNA are essential for the proper development of body axes and the specification of germ cells. These processes have been studied in zebrafish, but systematic analyses have been hindered by a lack of spatial and temporal information in single-cell RNA sequencing. We performed a spatial-temporal analysis of the zebrafish transcriptome during early embryonic development to systematically characterize localized mRNA and the fate of maternal transcripts until gastrulation stage. We enhanced sensitivity and resolution of the tomo-seq method and systematically acquired spatially-resolved transcriptomes along the animal-vegetal axis of one-cell stage zebrafish embryos, and found 97 genes to be localized vegetally. Furthermore, we established an in vivo and high-throughput compatible version of the single-cell RNA labeling method scSLAM-seq in gastrulation stage embryos. We followed localized transcripts until gastrulation and found transcripts of 22 of the vegetally localized genes enriched in primordial germ cells. We propose that these genes have a functional role in the early priming of the germ cell fate. To investigate the evolutionary conservation of vegetal RNA localization, we acquired tomo-seq datasets of mature oocytes of two xenopus species. We compared the pools of localized RNA and searched for conserved 3’UTR motifs. The resulting sets showed high similarity, possibly reflecting a mechanistic conservation of localization pathways. We also investigated RNA A-to-I editing during embryonic development and in organs of adult fish. Specifically, we identified 117 recoding editing sites in the brain that mainly encode for ion transporters and are partly conserved in humans. We detected the highest editing levels in ovary, testes and in early embryos, implicating a potential role in regulating RNA stability.

Page generated in 0.0197 seconds