• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1291
  • 349
  • 214
  • 91
  • 65
  • 53
  • 40
  • 36
  • 27
  • 17
  • 14
  • 13
  • 13
  • 13
  • 7
  • Tagged with
  • 2671
  • 2671
  • 837
  • 823
  • 594
  • 574
  • 451
  • 412
  • 406
  • 333
  • 310
  • 284
  • 261
  • 248
  • 243
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Study of Induction Motor Fault Diagnosis Based on Sound-Signal and Artificial Neural Network

He, Cheng-Jhe 12 July 2007 (has links)
Induction motor is the most popular machine in the industry. It is used extensively in mechanical plants, and it is un- avoidable to have the motor¡¦s electrical and mechanical faults due to continuously operating throughout the year. Faults of motors do not only cause the production line to shut down but also imperil the personnel security. A suitable motor maintenance schedule will be a needed to decrease the machine down time. However, major investment might take up to 90% for equipment, and it would be helpful to have a practicable low-cost supervisory scheme on maintenance. If the faults of machine can be detected correctly and effectively, the maintenance efficiency and dependability could be increased greatly. In the past, researches on fault recognition for Induction motors only concentrated on Spectrum analysis with amplitudes based on a constant load. However, the frequency and amplitude of the spectrum analyzed under different fault conditions are also affected significantly by load variations. Using spectrum amplitudes to recognize motor faults is not sufficient in a practical system. Various types of faults and load conditions will influence the spectrum structure. In order to recognize faults under various load conditions, we must consider band shift and amplitude variation as two major factors. In this paper, we use the methods of frequency axis adjustment, load interval and feature exaction to solve the band shift and amplitude variation problems respectively. After the above-mentioned procedures, efficient features are obtained. We use the Back Propagation Neural Network (BPNN) and General Regression Neural Network (GRNN) to train and recognize fault conditions.
132

Automatic Substation Fault Diagnosis with Artificial Intelligence

Sun, Zheng-Chi 20 June 2002 (has links)
Power system protection is important for service reliability and quality assurance. Various faults may occur due to natural and artificial calamity. To reduce the outage duration and promptly restore power services, fault section estimate has to be done effectively with appeared fault alarms. Dispatchers could study the changed statuses of primary/back-up relays and circuit breakers to identify the fault section and fault types. It is difficult to process too many alarms under various conditions in a large power system. Single fault, multiple faults, single and multiple faults could coexist with the failed operation of relays and circuit breakers, or with the erroneous data communication. Dispatchers need more time to process the many uncertainties before identifying the fault. This thesis presents the use of artificial intelligence for fault section detection in substation with neural networks. Probabilistic Neural Networks (PNN) are proposed for fault detection system in substation. The proposed methodology will use primary/back-up information of protective relays and circuit breakers to detect the fault sections involving single fault, multiple faults, or fault with the failure operation of the relays and circuit breakers. This paper also presents a fuzzy theory-based method to identify fault types. It is derived to improve the inadequacy of making decisions by selecting a fixed threshold value and has the capability of non-deterministic decision making with a prior knowledge of uncertainties in fault location, fault resistance and the a size of loads. The proposed approach has been tested on a typical taipower system with accurate results.
133

Power System Harmonic Sources and Location Detection with Artificial Intelligence

Tu, Keng-Pang 12 June 2003 (has links)
The technology of power electronics is used increasingly during recent years, and the electronic power facilities are used more and more in the power system. The non-linear electronic loads produce heavy harmonic currents and could significantly degrade the power quality. Nonlinear loads, including the un-interruptible power supply, motor control and converter, etc, are important equipment in a modern factory, however, these nonlinear loads could lead to power facility malfunction and capacitor damage. The harmonics would eventually cause severe unexpected capital loss. Identification of harmonic sources location becomes an important study for power quality. An effective tool is thus helpful for the harmonic source locating. This paper proposes a method to deal with the harmonic sources and location detection in the power system by using the artificial neural network (ANN). The non-linear loading characteristics are studied by the power flow analysis, and then the proposed methodology uses the Probabilistic Neural Networks¡]PNN¡^and wavelet-probabilistic network (WPN) for harmonic source locating. An IEEE 14-bus power system is used for study to show the effectiveness of the proposed approach.
134

Use of autoassociative neural networks for sensor diagnostics

Najafi, Massieh 17 February 2005 (has links)
The new approach for sensor diagnostics is presented. The approach, Enhanced Autoassociative Neural Networks (E-AANN), adds enhancement to Autoassociative Neural Networks (AANN) developed by Kramer in 1992. This enhancement allows AANN to identify faulty sensors. E-AANN uses a secondary optimization process to identify and reconstruct sensor faults. Two common types of sensor faults are investigated, drift error and shift or offset error. In the case of drift error, the sensor error occurs gradually while in the case of shift error, the sensor error occurs abruptly. EAANN catches these error types. A chiller model provided synthetic data to test the diagnostic approach under various noise level conditions. The results show that sensor faults can be detected and corrected in noisy situations with the E-AANN method described. In high noisy situations (10% to 20% noise level), E-AANN performance degrades. E-AANN performance in simple dynamic systems was also investigated. The results show that in simple dynamic situations, E-AANN identifies faulty sensors.
135

An Annealed Neural Network Approach to Solving the Mobile Agent Planning Problem

Chiou, Yan-cheng 11 December 2009 (has links)
Annealed neural network combines the characteristics of both simulation annealing and Hopfield-Tank neural network, which are high quality solutions and fast convergence. Mobile agent planning is an important technique of information retrieval systems to provide the minimum cost of the location-aware services in mobile computing environment. By taking the time constraints of effective resources into account and the mobile agent to explore the cost optimization, we modify annealing neural network to design a new energy function and control the annealing temperature in order to deal with the dynamic temporal feature of computing environments. We not only consider the server performance and network latency when scheduling mobile agents, but also investigate the location-based constraints, such as the home site of routing sequence of the traveling mobile agent must be the start and end node. To guarantee the convergent stable state and existence of the valid solution, the energy function is reformulated into a Lyapunov function which is combined with the annealing temperature to form an activation function. The connection weights between the neurons and the activation function of state variables in the dynamic network are devised in searching for the valid solutions. Simulation of different coefficients assess the proposed model and algorithm. Furthermore, Taguchi method is used to obtain the optimal combination factors of annealing neural network. The results show that this research presents the feature of both simulated annealing and Hopfield neural network by providing fast convergence and highly quality. In addition with a larger number of sites, the experimental results demonstrate the benefits of the annealed neural network. This innovation would be applicable to improve the effectiveness of solving optimization problems.
136

Digital control networks for virtual creatures

Bainbridge, Christopher James January 2010 (has links)
Robot control systems evolved with genetic algorithms traditionally take the form of floating-point neural network models. This thesis proposes that digital control systems, such as quantised neural networks and logical networks, may also be used for the task of robot control. The inspiration for this is the observation that the dynamics of discrete networks may contain cyclic attractors which generate rhythmic behaviour, and that rhythmic behaviour underlies the central pattern generators which drive lowlevel motor activity in the biological world. To investigate this a series of experiments were carried out in a simulated physically realistic 3D world. The performance of evolved controllers was evaluated on two well known control tasks—pole balancing, and locomotion of evolved morphologies. The performance of evolved digital controllers was compared to evolved floating-point neural networks. The results show that the digital implementations are competitive with floating-point designs on both of the benchmark problems. In addition, the first reported evolution from scratch of a biped walker is presented, demonstrating that when all parameters are left open to evolutionary optimisation complex behaviour can result from simple components.
137

Design and development of an anthropomorphic hand prosthesis

Carvalho, André Rui Dantas 26 July 2011 (has links)
This thesis presents a preliminary design of a fully articulated five-fingered anthropomorphic human hand prosthesis with particular emphasis on the controller and actuator design. The proposed controller is a modified artificial neural network PID-based controller with application to the nonlinear and highly coupled dynamics of the hand prosthesis. The new solid state actuator has been designed based on electroactive polymers, which are a type of material that exhibit electromechanical behavior and a liquid metal alloy acts as the electrode. The solid state actuators reduce the overall mechanical complexity, risk failure and required maintenance of the prosthesis. / Graduate
138

Chinese Text Classification Based On Deep Learning

Wang, Xutao January 2018 (has links)
Text classification has always been a concern in area of natural language processing, especially nowadays the data are getting massive due to the development of internet. Recurrent neural network (RNN) is one of the most popular method for natural language processing due to its recurrent architecture which give it ability to process serialized information. In the meanwhile, Convolutional neural network (CNN) has shown its ability to extract features from visual imagery. This paper combine the advantages of RNN and CNN and proposed a model called BLSTM-C for Chinese text classification. BLSTM-C begins with a Bidirectional long short-term memory (BLSTM) layer which is an special kind of RNN to get a sequence output based on the past context and the future context. Then it feed this sequence to CNN layer which is utilized to extract features from the previous sequence. We evaluate BLSTM-C model on several tasks such as sentiment classification and category classification and the result shows our model’s remarkable performance on these text tasks.
139

Designing an Artificial Neural Network for state evaluation in Arimaa : Using a Convolutional Neural Network / Design av ett Artificiellt Neuralt Nätverk för evaluering av tillstånd i Arimaa

Keisala, Simon January 2017 (has links)
Agents being able to play board games such as Tic Tac Toe, Chess, Go and Arimaa has been, and still is, a major difficulty in Artificial Intelligence. For the mentioned board games, there is a certain amount of legal moves a player can do in a specific board state. Tic Tac Toe have in average around 4-5 legal moves, with a total amount of 255168 possible games. Both Chess, Go and Arimaa have an increased amount of possible legal moves to do, and an almost infinite amount of possible games, making it impossible to have complete knowledge of the outcome. This thesis work have created various Neural Networks, with the purpose of evaluating the likelihood of winning a game given a certain board state. An improved evaluation function would compensate for the inability of doing a deeper tree search in Arimaa, and the anticipation is to compete on equal skills against another well-performing agent (meijin) having one less search depth. The results shows great potential. From a mere one hundred games against meijin, the network manages to separate good from bad positions, and after another one hundred games able to beat meijin with equal search depth. It seems promising that by improving the training and by testing different sizes for the neural network that a neural network could win even with one less search depth. The huge branching factor of Arimaa makes such an improvement of the evaluation beneficial, even if the evaluation would be 10 000 times more slow.
140

A Deep Learning Approach to Autonomous Relative Terrain Navigation

Campbell, Tanner, Campbell, Tanner January 2017 (has links)
Autonomous relative terrain navigation is a problem at the forefront of many space missions involving close proximity operations to any target body. With no definitive answer, there are many techniques to help cope with this issue using both passive and active sensors, but almost all require high fidelity models of the associated dynamics in the environment. Convolutional Neural Networks (CNNs) trained with images rendered from a digital terrain map (DTM) of the body’s surface can provide a way to side-step the issue of unknown or complex dynamics while still providing reliable autonomous navigation. This is achieved by directly mapping an image to a relative position to the target body. The portability of trained CNNs allows “offline” training that can yield a matured network capable of being loaded onto a spacecraft for real-time position acquisition. In this thesis the lunar surface is used as the proving ground for this optical navigation technique, but the methods used are not unique to the Moon, and are applicable in general.

Page generated in 0.0503 seconds