• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 88
  • 85
  • 11
  • 8
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 452
  • 116
  • 53
  • 51
  • 38
  • 37
  • 36
  • 34
  • 33
  • 32
  • 28
  • 26
  • 26
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

[en] HIERARCHICAL NEURO-FUZZY MODELS / [pt] MODELOS NEURO-FUZZY HIERÁRQUICOS

FLAVIO JOAQUIM DE SOUZA 13 December 2005 (has links)
[pt] Esta dissertação apresenta uma nova proposta de sistemas (modelos) neuro-fuzzy que possuem, além do tradicional aprendizado dos parâmetros, comuns às redes neurais e aos sistemas nero-fuzzy, as seguintes características: aprendizado de estrutura, a partir do uso de particionamentos recursisvos; número maior de entradas que o comumente encontrado nos sistemas neuro-fuzzy; e regras com hierarquia. A definição da estrutura é uma necessidade que surge quando da implementação de um determinado modelo. Pode-se citar o caso das redes neurais, em que se deve determinar (ou arbitrar) a priori sua estrutura (número de camadas e quantidade de neurônios por camadas) antes de qualquer teste. Um método automático de aprendizado da estrutura é, portanto, uma característica importante em qualquer modelo. Um sistema que também permita o uso de um número maior de entradas é interessante para se abranger um maior número de aplicações. As regras com hierarquia são um subproduto do método de aprendizado de estrutura desenvolvido nestes novos modelos. O trabalho envolveu três partes principais: um levantamento sobre os sistemas neuro-fuzzy existentes e sobre os métodos mais comuns de ajuste de parâmetros; a definição e implementação de dois modelos neuro-fuzzy hierárquicos; e o estudo de casos. No estudo sobre os sistemas neuro-fuzzy(SNF) fez-se um levantamento na bibliografia da área sobre as características principais desses sistemas, incluindo suas virtudes e deficiências. Este estudo gerou a proposta de uma taxonomia para os SNF, em função das características fuzzy neurais. Em virtude deste estudo constataram-se limitações quanto à capacidade de criação de sua própria estrutura e quanto ao número reduzido de entradas possíveis. No que se refere aos métodos de ajuste dos parâmetros abordou-se os métodos mais comuns utilizados nos SNF, a saber: o método dos mínimos quadrados com sua solução através de métodos numéricos iterativos; e o método gradient descent e seus derivados como o BackPropagation e o RProp(Resilient BackPropagation). A definição dos dois novos modelos neuro-fuzzy foi feita a partir do estudo das características desejáveis e das limitações dos SNF até então desenvolvidos. Observou-se que a base de regras dos SNF juntamente com os seus formatos de particionamento dos espaços de entrada e saída têm grande influência sobre o desempenho e as limitações destes modelos. Assim sendo, decidiu-se utilizar uma nova forma de particionamento que eliminasse ou reduzisse as limitações existentes- os particionamentos recursivos. Optou-se pelo uso dos particionamentos Quadtree e BSP, gerando os dois modelos NFHQ (Neuro-Fuzzy Hierárquico Quadree) e NFHB (Neiro-Fuzzy Hierárquico BSP). Com o uso de particionamentos obteve-se um nova classe de SNF que permitiu além do aprendizado dos parâmetros, também o aprendizado dos parâmetros. Isto representa um grande diferencial em relação aos SNF tradicionais, além do fato de se conseguir extender o limite do número de entradas possíveis para estes sistemas. No estudo de casos, os dois modelos neurofuzzy hierárquicos foram testados 16 casos diferentes, entre as aplicações benchmarks mais tradicionais da área e problemas com maior número de entradas. Entre os casos estudados estão: o conjunto de dados IRIS; o problema das duas espirais; a previsão da série caótica de Mackey- Glass; alguns sistemas de diagnóstico e classificação gerados a partir de conjuntos de dados comumente utilizados em artigos de machine learning e uma aplicação de previsão de carga elétrica. A implementação dos dois novos modelos neuro-fuzzy foi efetuada em linguagem pascal e com o uso de um compilador de 32 bits para micros da linha PC (Pentium) com sistema operacional DOS 32 bits, Windows, ou Linux. Os testes efetuados demostraram que: esses novos modelos se ajustam bem a qualquer conjunto de dados; geram sua própria estrutura; ajustam seus parâmetros com boa generalização e extraem / [en] This dissertation presents a new proposal of neurofuzzy systems (models), which present, in addition to the learning capacity (which are common to the neural networks and neurofuzzy systems) the following features: learning of the structure; the use of recursive partitioning; a greater number of inputs than usually allowed in neurofuzzy systems; and hierarchical rules. The structure´s definition is needed when implementing a certain model. In the neural network case, for example, one must, first of all, estabilish its structure (number of layers and number of neurons per layers) before any test is performed. So, an important feature for any model is the existence of an automatic learning method for creating its structure. A system that allows a larger number of inputs is also important, in order to extend the range of possible applications. The hierarchical rules feature results from the structure learning method developed for these two models. The work has involved three main parts: study of the existing neurofuzzy systems and of the most commom methods to adjust its parameters; definition and implementation of two hierarchical neurofuzzy models; and case studies. The study of neurofuzzy systems (NFS) was accomplished by creating a survey on this area, including advantages, drawbacks and the main features of NFS. A taxonomy about NFS was then proposed, taking into account the neural and fuzzy features of the existing systems. This study pointed out the limitations of neurofuzzy systems, mainly their poor capability of creating its own structure and the reduced number of allowed inputs. The study of the methods for parameter adjustment has focused on the following algorithms: Least Square estimator (LSE) and its solutions by numerical iterative methods; and the basic gradient descent method and its offsprings such as Backpropagation and Rprop (Resilient Backpropagation). The definition of two new neurofuzzy models was accomplished by considering desirable features and limitations of the existing NFS. It was observed that the partitioning formats and rule basis of the NFS have great influence on its performance and limitations. Thus, the decision to use a new partitioning method to remove or reduce the existing limitations - the recursive partitioning. The Quadtree and BSP partitioning were then adopted, generating the so called Quadree Hierarchical Neurofuzzy model (NFHQ) and the BSP hierarchical Neurofuzzy model (NFHB). By using these kind os partitioning a new class of NFS was obtained allowing the learning of the structure in addition to parameter learning. This Feature represents a great differential in relation to the traditional NFS, besides overcoming the limitation in the number of allowed inputs. In the case studies, the two neurofuzzy models were tested in 16 differents cases, such as traditional benchmarks and problems with a greater number of inputs. Among the cases studied are: the IRIS DATA set; the two spirals problem; the forecasting of Mackey-Glass chaotic time series; some diagnosis and classifications problems, found in papers about machine learning; and a real application involving load forecasting. The implementation of the two new neurofuzzy models was carried out using a 32 bit Pascal compiler for PC microcomputers using DOS or Linux operating system. The tests have shown that: these new models are able to adjust well any data sets; they create its own struture; they adjust its parameters, presenting a good generalization performance; and automatically extract the fuzzy rules. Beyond that, applications with a greater number of inputs for these neurofuzzy models. In short two neurofuzzy models were developed with the capability of structure learning, in addition to parameter learning. Moreover, these new models have good interpretability through hierarchical fuzzy rules. They are not black coxes as the neural networks.
112

Calculation of Tidal Volume based on EMG-activity of the Diaphragm

Micski, Erik, Ottosson, Ulrika January 2017 (has links)
The objective of the thesis was to evaluate the possibility to calculate the unloading distribution between a ventilator and a patient using a new mathematical modelling of the breathing patterns. The modelling used today is considered to lack sufficient precision for clinical use, and is a somewhat simplified model. To evaluate the possibility of a new model, a volunteer test was carried out - recording data such as Edi, pressure, volume and flow. Using this data, and by using a more complex model, tidal volume was estimated and compared to the measured data. The results did not imply any improvement compared to the simpler model regarding the accuracy and the variability. However, more work should be done in this area, as time deficiency prevented further analysis.
113

[pt] MODELOS NEURO-FUZZY HIERÁRQUICO BSP PARA CLASSIFICAÇÃO DE PADRÕES E EXTRAÇÃO DE REGRAS FUZZY EM BANCO DE DADOS. / [es] MODELOS NEURO-FUZZY JERÁRQUICO BSP PARA CLASIFICACIÓN DE PADRONES Y EXTRACCIÓN DE REGLAS FUZZY EN BASES DE DATOS / [en] NEURAL-FUZZY HIERARCHICAL MODELS FOR PATTERN CLASSIFICATION AND FUZZY RULE EXTRACTION FROM DATABASES

LAERCIO BRITO GONCALVES 08 March 2001 (has links)
[pt] Esta dissertação investiga a utilização de sistemas Neuro- Fuzzy Hierárquicos BSP (Binary Space Partitioning) para classificação de padrões e para extração de regras fuzzy em bases de dados. O objetivo do trabalho foi criar modelos específicos para classificação de registros a partir do modelo Neuro-Fuzzy Hierárquico BSP que é capaz de gerar sua própria estrutura automaticamente e extrair regras fuzzy, lingüisticamente interpretáveis, que explicam a estrutura dos dados. O princípio da tarefa de classificação de padrões é descobrir relacionamentos entre os dados com a intenção de prever a classe de um padrão desconhecido. O trabalho consistiu fundamentalmente de quatro partes: um estudo sobre os principais métodos de classificação de padrões; análise do sistema Neuro-Fuzzy Hierárquico BSP (NFHB) original na tarefa de classificação; definição e implementação de dois sistemas NFHB específicos para classificação de padrões; e o estudo de casos. No estudo sobre os métodos de classificação foi feito um levantamento bibliográfico da área, resultando em um "survey" onde foram apresentadas as principais técnicas utilizadas para esta tarefa. Entre as principais técnicas destacaram-se: os métodos estatísticos, algoritmos genéticos, árvores de decisão fuzzy, redes neurais, e os sistemas neuro-fuzzy. Na análise do sistema NFHB na classificação de dados levou- se em consideração as peculiaridades do modelo, que possui: aprendizado da estrutura, particionamento recursivo do espaço de entrada, aceita maior número de entradas que os outros sistemas neuro-fuzzy, além de regras fuzzy recursivas. O sistema NFHB, entretanto, não é um modelo exatamente desenvolvido para classificação de padrões. O modelo NFHB original possui apenas uma saída e para utilizá- lo como um classificador é necessário criar um critério de faixa de valores (janelas) para representar as classes. Assim sendo, decidiu-se criar novos modelos que suprissem essa deficiência. Foram definidos dois novos sistemas NFHB para classificação de padrões: NFHB-Invertido e NFHB-Class. O primeiro utiliza a arquitetura do modelo NFHB original no aprendizado e em seguida a inversão da mesma para a validação dos resultados. A inversão do sistema consistiu de um meio de adaptar o novo sistema à tarefa específica de classificação, pois passou-se a ter o número de saídas do sistema igual ao número de classes ao invés do critério de faixa de valores utilizado no modelo NFHB original. Já o sistema NFHB-Class utilizou, tanto para a fase de aprendizado, quanto para a fase de validação, o modelo NFHB original invertido. Ambos os sistemas criados possuem o número de saídas igual ao número de classes dos padrões, o que representou um grande diferencial em relação ao modelo NFHB original. Além do objetivo de classificação de padrões, o sistema NFHB-Class foi capaz de extrair conhecimento em forma de regras fuzzy interpretáveis. Essas regras são expressas da seguinte maneira: SE x é A e y é B então padrão pertence à classe Z. Realizou-se um amplo estudo de casos, abrangendo diversas bases de dados Benchmark para a tarefa de classificação, tais como: Iris Dataset, Wine Data, Pima Indians Diabetes Database, Bupa Liver Disorders e Heart Disease, e foram feitas comparações com diversos modelos e algoritmos de classificação de padrões. Os resultados encontrados com os modelos NFHB-Invertido e NFHB-Class mostraram-se, na maioria dos casos, superiores ou iguais aos melhores resultados encontrados pelos outros modelos e algoritmos aos quais foram comparados.O desempenho dos modelos NFHB-Invertido e NFHB-Class em relação ao tempo de processamento também se mostrou muito bom. Para todas as bases de dados descritas no estudo de casos (capítulo 8), os modelos convergiram para uma ótima solução de classificação, além da extração das regras fuzzy, em / [en] This dissertation investigates the use of Neuro-Fuzzy Hierarchical BSP (Binary Space Partitioning) systems for pattern classification and extraction of fuzzy rules in databases. The objective of this work was to create specific models for the classification of registers based on the Neuro-Fuzzy BSP model that is able to create its structure automatically and to extract linguistic rules that explain the data structure. The task of pattern classification is to find relationships between data with the intention of forecasting the class of an unknown pattern. The work consisted of four parts: study about the main methods of the pattern classification; evaluation of the original Neuro-Fuzzy Hierarchical BSP system (NFHB) in pattern classification; definition and implementation of two NFHB systems dedicated to pattern classification; and case studies. The study about classification methods resulted in a survey on the area, where the main techniques used for pattern classification are described. The main techniques are: statistic methods, genetic algorithms, decision trees, neural networks, and neuro-fuzzy systems. The evaluation of the NFHB system in pattern classification took in to consideration the particularities of the model which has: ability to create its own structure; recursive space partitioning; ability to deal with more inputs than other neuro-fuzzy system; and recursive fuzzy rules. The original NFHB system, however, is unsuited for pattern classification. The original NFHB model has only one output and its use in classification problems makes it necessary to create a criterion of band value (windows) in order to represent the classes. Therefore, it was decided to create new models that could overcome this deficiency. Two new NFHB systems were developed for pattern classification: NFHB-Invertido and NFHB-Class. The first one creates its structure using the same learning algorithm of the original NFHB system. After the structure has been created, it is inverted (see chapter 5) for the generalization process. The inversion of the structure provides the system with the number of outputs equal to the number of classes in the database. The second system, the NFHB-Class uses an inverted version of the original basic NFHB cell in both phases, learning and validation. Both systems proposed have the number of outputs equal to the number of the pattern classes, what means a great differential in relation to the original NFHB model. Besides the pattern classification objective, the NFHB- Class system was able to extract knowledge in form of interpretable fuzzy rules. These rules are expressed by this way: If x is A and y is B then the pattern belongs to Z class. The two models developed have been tested in many case studies, including Benchmark databases for classification task, such as: Iris Dataset, Wine Data, Pima Indians Diabetes Database, Bupa Liver Disorders and Heart Disease, where comparison has been made with several traditional models and algorithms of pattern classification. The results found with NFHB-Invertido and NFHB-Class models, in all cases, showed to be superior or equal to the best results found by the others models and algorithms for pattern classification. The performance of the NFHB- Invertido and NFHB-Class models in terms of time-processing were also very good. For all databases described in the case studies (chapter 8), the models converged to an optimal classification solution, besides the fuzzy rules extraction, in a time-processing inferior to a minute. / [es] Esta disertación investiga el uso de sistemas Neuro- Fuzzy Herárquicos BSP (Binary Space Partitioning) en problemas de clasificación de padrones y de extracción de reglas fuzzy en bases de datos. El objetivo de este trabajo fue crear modelos específicos para clasificación de registros a partir del modelo Neuro-Fuzzy Jerárquico BSP que es capaz de generar automáticamente su propia extructura y extraer reglas fuzzy, lingüisticamente interpretables, que explican la extructura de los datos. El principio de la clasificación de padrones es descubrir relaciones entre los datos con la intención de prever la clase de un padrón desconocido. El trabajo está constituido por cuatro partes: un estudio sobre los principales métodos de clasificación de padrones; análisis del sistema Neuro-Fuzzy Jerárquico BSP (NFHB) original en la clasificación; definición e implementación de dos sistemas NFHB específicos para clasificación de padrones; y el estudio de casos. En el estudio de los métodos de clasificación se realizó un levatamiento bibliográfico, creando un "survey" donde se presentan las principales técnicas utilizadas. Entre las principales técnicas se destacan: los métodos estadísticos, algoritmos genéticos, árboles de decisión fuzzy, redes neurales, y los sistemas neuro-fuzzy. En el análisis del sistema NFHB para clasificación de datos se tuvieron en cuenta las peculiaridades del modelo, que posee : aprendizaje de la extructura, particionamiento recursivo del espacio de entrada, acepta mayor número de entradas que los otros sistemas neuro-fuzzy, además de reglas fuzzy recursivas. El sistema NFHB, sin embargo, no es un modelo exactamente desarrollado para clasificación de padrones. El modelo NFHB original posee apenas una salida y para utilizarlo conmo un clasificador fue necesario crear un criterio de intervalos de valores (ventanas) para representar las clases. Así, se decidió crear nuevos modelos que supriman esta deficiencia. Se definieron dos nuevos sistemas NFHB para clasificación de padrones: NFHB- Invertido y NFHB-Clas. El primero utiliza la arquitectura del modelo NFHB original en el aprendizaje y en seguida la inversión de la arquitectura para la validación de los resultados. La inversión del sistema es un medio para adaptar el nuevo sistema, específicamente a la clasificación, ya que el sistema pasó a tener número de salidas igual al número de clases, al contrario del criterio de intervalo de valores utilizado en el modelo NFHB original. En el sistema NFHB-Clas se utilizó, tanto para la fase de aprendizajeo, cuanto para la fase de validación, el modelo NFHB original invertido. Ambos sistemas poseen el número de salidas igual al número de clases de los padrones, lo que representa una gran diferencia en relación al modelo NFHB original. Además del objetivo de clasificación de padrones, el sistema NFHB-Clas fue capaz de extraer conocimento en forma de reglas fuzzy interpretables. Esas reglas se expresan de la siguiente manera: Si x es A e y es B entonces el padrón pertenece a la clase Z. Se realizó un amplio estudio de casos, utilizando diversas bases de datos Benchmark para la clasificación, tales como: Iris Dataset, Wine Data, Pima Indians Diabetes Database, Bupa Liver Disorders y Heart Disease. Los resultados se compararon con diversos modelos y algoritmos de clasificación de padrones. Los resultados encontrados con los modelos NFHB-Invertido y NFHB-Clas se mostraron, en la mayoría de los casos, superiores o iguales a los mejores resultados encontrados por los otros modelos y algoritmos con los cuales fueron comparados. El desempeño de los modelos NFHB-Invertido y NFHB-Clas en relación al tiempo de procesamiento tambiém se mostró muy bien. Para todas las bases de datos descritas en el estudio de casos (capítulo 8), los modelos convergieron para una solución óptima, además de la extracción de las reglas fuzzy, con tiemp
114

Upravljanje performansama redova čekanja u poštanskom saobraćaju / Management queues performances in postal traffic

Jovanović Bojan 30 September 2015 (has links)
<p>U doktorskoj disertaciji rešavaju se sledeći problemi: problem opisivanja sistema masovnog opsluživanja kada teorija masovnog opsluživanja nailazi na ograničenja primene, problem predviđanja vremena čekanja, problem modelovanja odnosa na tržištu ekspres usluga kao izvora uticaja na redove čekanja, problem upravljanja brojem aktivnih kanala sistema masovnog opsluživanja i problem uticaja na subjektivno vreme čekanja. Primenom elemenata veštačke inteligencije i statističkih metoda razvijen je model za predviđanje parametra vremena čekanja u realnom vremenu pri jedinicama poštanske mreže za pružanje usluga korisnicima.</p> / <p>The dissertation provides answers to the following issues: the problem of describing the queueing system when the queueing theory encounters limitations in its use, predicting the waiting time, the problem of modeling relations in the market of express services as a source of influence on the queues, managing the number of active channels in the queueing systems and the impact on subjective waiting time. Through application of artificial intelligence and statistical methods, a model has been developed which in real time predicts the parameters of waiting time at the units of postal network that provide service to customers.</p>
115

[en] HIERARCHICAL NEURAL FUZZY MODELS BASED ON REINFORCEMENT LEARNING OF INTELLIGENT AGENTS / [pt] MODELOS NEURO-FUZZY HIERÁRQUICOS COM APRENDIZADO POR REFORÇO PARA MULTI-AGENTES INTELIGENTES

MARCELO FRANCA CORREA 20 February 2013 (has links)
[pt] Os benefícios trazidos pela aplicação de Sistemas Multi-Agentes (SMA) são diversos. Através da computação paralela, agentes podem trabalhar em conjunto para explorar melhor a estrutura descentralizada de uma determinada tarefa e acelerar sua conclusão. Além disso, agentes também podem trocar experiências se comunicando, fornecer alto grau de escalabilidade, através da inclusão de novos agentes quando necessário, e ainda fazer com que agentes assumam as atividades de outros agentes em casos de falha. Vários modelos de agentes desenvolvidos até o momento usam o aprendizado por reforço como algoritmo base no processo de aprendizado. Quando o agente está inserido em ambientes pequenos ou discretos, os resultados obtidos com o uso de métodos como Q-learning são satisfatórios. No entanto, quando o ambiente é grande ou contínuo, o uso de métodos de aprendizado por reforço torna-se inviável, devido à grande dimensão do espaço de estados. Nos SMA, este problema é consideravelmente maior, já que a memória necessária passa a crescer exponencialmente com a quantidade de agentes envolvidos na aplicação. Esta tese teve como finalidade o desenvolvimento de um novo modelo de aprendizado autônomo para Sistemas Multi-Agentes (SMA) visando superar estas limitações. O trabalho foi realizado em três etapas principais: levantamento bibliográfico, seleção e implementação do modelo proposto, e desenvolvimento de estudo de casos. O levantamento bibliográfico contemplou o estudo de agentes inteligentes e Sistemas Multi-Agentes, buscando identificar as propriedades e limitações dos algoritmos já desenvolvidos, as aplicações existentes, e as características desejadas em um SMA. A seleção e utilização de um modelo neuro-fuzzy hierárquico da família RL-NFH foi motivada especialmente pela importância de se estender a autonomia e aprendizado de agentes através do quesito inteligência, e pela sua capacidade de superar limitações presentes em algoritmos de aprendizado por reforço tradicionais. Inicialmente, ao modelo anterior foram adicionados os conceitos de satisfatoriedade e não-dominação, com a finalidade de acelerar o processo de aprendizado do algoritmo. Em seguida, o novo modelo multi-agente foi criado, viabilizando o desenvolvimento de aplicações de natureza tanto cooperativa como competitiva, com múltiplos agentes. Os estudos de caso contemplaram situações distintas de cooperação e competição entre agentes autônomos. Foram implementadas três aplicações distintas: uma aplicação benckmark do jogo da presa-predador (Pursuit-Game); um leilão energia elétrica, em que os fornecedores de energia fazem ofertas para atender à previsão de demanda em um período de tempo determinado; e uma aplicação na área de gerenciamento de projetos, onde agentes inteligentes são criados com o objetivo de fornecer estimativas de duração de atividades e automatizar alguns processos realizados pelo Gerente de Projetos. Em todos os Estudos de Caso, os resultados foram comparados com técnicas convencionais e/ou com o desempenho de outros Sistemas Multi-Agente. Os resultados alcançados pelo novo modelo se mostraram promissores. Os testes evidenciaram que o modelo teve a capacidade de coordenar as ações entre agentes totalmente autônomos em diferentes situações e ambientes. Além disso, o novo modelo mostrou-se genérico e flexível, podendo ser usado no futuro em outras aplicações envolvendo múltiplos agentes. / [en] There are several benefits provided by Multi-Agent Systems (MAS). Through parallel computing, agents can work together to better explore the decentralized structure of a given task and speed up its completion. In addition, agents can also exchange knowledge through communication, provide scalability by adding new agents when appropriate, and replace troubled agents in cases of failures. A great number of existing agent models is based on reinforcement learning algorithms for learning. When the agent works in small or discrete environments, the results obtained with methods such as Qlearning are satisfactory. However, when the environment is large or continuous reinforcement learning methods become unfeasible due to the large state space. In MAS, this problem is considerably greater, since the required memory begins to grow exponentially with the number of agents involved in the application. The main objective of this thesis is to develop a new model of autonomous learning for multi-agents in order to overcome these limitations. The study consisted of three main stages: literature review, new model development and implementation, and case studies. Literature review included the study of intelligent agents and Multi-Agent Systems, seeking to identify the properties and limitations of the algorithms already developed, existing applications, and desired features in the new MAS. The choice of a neuro-fuzzy hierarchical model of the family RL-NFH as a basis was especially motivated by the importance of extending the autonomy and learning of the agents through intelligence. And also, because of its capacity to overcome some of the limitations present in traditional reinforcement learning algorithms. Initially, the concepts of satisficing and non-domination were incorporated into the previous model to accelerate the learning algorithm. Then, the new multi-agent model was elaborated and implemented, enabling the development of cooperative and competitive applications, with multiple agents. Case studies have covered different situations of cooperation and competition between autonomous agents. Three applications were considered: the Pursuit-Game benckmark game, an electricity auction, where energy suppliers make offers to meet forecast demand in a given period of time, and an application in project management area, where intelligent agents are created to provide activity duration estimates and to automate some processes done usually by the Project Manager. In all case studies, results were compared with conventional techniques and/or the performance of other MAS. The results achieved by the new model are encouraging. The tests showed that the new system has the capacity to coordinate actions between fully autonomous agents in different situations and environments. Moreover, the new model is strongly generic and flexible. Due to these properties, it can be used in future in several other applications involving multiple agents.
116

Arquitetura híbrida inteligente para navegação autônoma de robôs / Intelligent hybrid architecture for robot autonomous navigation

Calvo, Rodrigo 09 March 2007 (has links)
Este projeto consiste em um sistema de navegação autônomo baseado em redes neurais nebulosas modulares capacitando o robô a alcançar alvos, ou pontos metas, em ambientes desconhecidos. Inicialmente, o sistema não tem habilidade para a navegação, após uma fase de experimentos com algumas colisões, o mecanismo de navegação aprimora-se guiando o robô ao alvo de forma eficiente. Uma arquitetura híbrida inteligente é apresentada para este sistema de navegação, baseada em redes neurais artificiais e lógica nebulosa. A arquitetura é hierárquica e costitiui-se de dois módulos responsáveis por gerar comportamentos inatos de desvio de obstáculos e de busca ao alvo. Um mecanismo de aprendizagem por reforço, baseada em uma extensão da lei de Hebb, pondera os comportamentos inatos conflitantes ajustando os pesos sinápticos das redes neurais nos instantes de captura do alvo e de colisão contra obstáculos. A abordagem consolidada em simulação é validada em ambientes reais neste trabalho. Para tanto, este sistema foi implementado e testado no simulador Saphira, ambiente de simulação que acompanha o robô Pioneer I e que denota um estágio anterior aos testes em ambientes reais por apresentar comportamentos do robô similares aos comportamentos do robô móvel. Modificações na arquitetura híbrida foram necessárias para adaptar o sistema de navegação simulado ao sistema incorporado no Pioneer I. Experimentos em ambientes reais demonstraram a eficiência e a capacidade de aprendizagem do sistema de navegação, validando a arquitetura híbrida inteligente para aplicação em robôs móveis / This project consists in a autonomous navigation system based on modular neuro-fuzzy networks that is able to guide the robot in unknown environments from a initial point to the goal. Initially, the system is not able to navigate, but after a trial and error period and some collisions, it improves in guiding the robot to the goal efficiently. A intelligent hybrid architecture is presented for this naviga tion system based on artificial neural networks and fuzzy logic. This architecture is hierarquical and consists in two modules that generate innate behaviors, like obstacles avoiding and target reaching. A reinforcement learning mecanism, based on the extended Hebb law, balances this conflicting innate behaviors adjusting the neural network synaptic weights as obstacle and collision avoidance and target reaching takes place. In this project, the approach is consolidated in simulation and validated in real environments. To this end, this system has been implemented by using Saphira simulator and Pioneer I simulation environment. This simulated evironment is a previous stage of tests performed real time and presents simulated robot behaviors similar to real mobile robot behaviors. The hybrid architecture was modified to adapt the simulated navigation system into Pioneer I software. Experiments in a real environments show the efficiency and learning capabilities of the navigation system, validating the intelligent hybrid architecture for mobile robots applications
117

Avaliação da adequabilidade de redes neurais artificiais e sistemas neuro-fuzzy no apoio à predição de desempenho de cadeias de suprimento baseada no SCOR® / Evaluation of the adequability of artificial neural network and neuro-fuzzy systems to deal with supply chain performance prediction based on SCOR®

Lima Junior, Francisco Rodrigues 02 December 2016 (has links)
Sistemas de predição de desempenho de cadeias de suprimento são constituídos por indicadores que visam estimar o desempenho da empresa-foco em decorrência também do desempenho dos indicadores dos fornecedores. Na literatura são encontrados apenas dois modelos quantitativos (GANGA; CARPINETTI, 2011; AGAMI; SALEH; RASMY, 2014) que permitem predizer o desempenho de cadeias de suprimento usando os indicadores do modelo SCOR® (Supply Chain Operations Reference). Uma limitação de ambos modelos é a dificuldade de se ajustar ao ambiente de uso, uma vez que sua implementação e atualização requerem a parametrização manual de muitas regras de decisão. Tanto o uso de redes neurais quanto de sistemas neuro-fuzzy têm o potencial de contornar essa dificuldade por utilizarem um mecanismo de aprendizagem que possibilita a adaptação ao ambiente de uso usando dados numéricos. Todavia, na literatura não são encontradas aplicações dessas técnicas no apoio à predição de desempenho de cadeias de suprimento, tampouco estudos que discutam qual dessas técnicas se mostra mais adequada para lidar com este problema. Diante disso, o objetivo desta pesquisa é construir e a avaliar a adequabilidade de dois sistemas de predição de desempenho, ambos baseados nos indicadores do modelo SCOR®, mas usando alternativamente as técnicas redes neurais e sistemas neuro-fuzzy, para apoiar a gestão de desempenho da empresa-foco e de sua cadeia imediata. A execução desta pesquisa envolveu o uso de simulação computacional e de testes estatísticos. Os resultados mostram que, embora ambas as técnicas apresentem capacidade de predição satisfatória, as redes neurais são mais adequadas em relação à complexidade da definição da configuração topológica, enquanto os sistemas neuro-fuzzy se sobressaíram em relação à capacidade de predição, complexidade do treinamento, quantidade de variáveis de entrada, suporte à tomada de decisão sob incerteza e interpretabilidade dos dados. Outros resultados desta pesquisa estão relacionados à identificação de particularidades do processo de modelagem das técnicas avaliadas, à elaboração de um panorama sobre o uso de técnicas quantitativas na avaliação de desempenho de cadeias de suprimento e à identificação de algumas oportunidades de pesquisa. / Supply chain performance prediction systems are composed by indicators that aim to estimate the performance of a focal company considering also indicators related to their suppliers. There are two quantitative models in the literature (GANGA; CARPINETTI, 2011; AGAMI; SALEH; RASMY, 2014) that enable to predict the supply chain performance using the indicators proposed by the SCOR® model (Supply Chain Operations Reference). Nevertheless, there is a drawback of both models that refers to the difficulty in adapting to the environment of use, since implementation and updating of these models require parameterization of many decision rules that must be done by an expert. The application of artificial neural networks as well as neuro-fuzzy systems can overcome this drawback by using a learning mechanism that enables the adaptation to the environment of use using numerical data on supply chain performance. However, there are neither studies in the literature that propose the use of these techniques in order to support supply chain performance prediction nor studies that discuss which of these techniques seem to be more appropriate to deal with this problem. Thus, the objective of this study is to propose and evaluate the adequability of the two types of performance prediction systems based on the performance indicators of the SCOR® model, and both using alternatively artificial neural networks and neuro-fuzzy systems to support performance management of a focal company and their supply chain. The implementation of this research involved the use of computer simulation and statistical tests. The results show that although both techniques present a satisfactory predictive capacity, neural networks are more appropriate in relation to the complexity of defining the topological configuration, whereas the neuro-fuzzy systems are more adequate regarding the predictive capacity, complexity of the training, amount of input variables, support to decision-making under uncertainty and interpretability of data. Other results of this research refer to the identification of characteristics of the modeling process of the evaluated techniques, as well as to the review on the use of quantitative techniques for supply chain performance evaluation and to the identification of some research opportunities.
118

Towards a « Neuro-Encryption » system : from understanding the influence of brain oscillations in vision to controlling perception / Vers un système de "neuro-encryption" : de la compréhension de l'influence des oscillations cérébrales en vision au contrôle de la perception

Brüers, Sasskia 27 October 2017 (has links)
L'activité de notre cerveau est intrinsèquement rythmique : des oscillations sont observées à tous les niveaux de son organisation. Cette rythmicité de l'activité cérébrale influence notre perception. En effet, au lieu de superviser continuellement notre environnement, notre cerveau effectue de brèves " clichés " du monde extérieur (entre 5 et 15 par seconde). Cela crée des cycles perpétuels : notre perception visuelle fluctue en fonction de la phase de l'oscillation sous- jacente. De nombreuses données témoignent du fait que les oscillations cérébrales à différentes fréquences sont fondamentales à la formation de notre perception visuelle. Lors de cette thèse, nous avons utilisé le Paradigme de Bruit Blanc comme outil pour comprendre l'influence des oscillations sur la perception visuelle et qui par extension pourra être utilisé pour contrôler cette perception. Le paradigme de bruit blanc visuel utilise des séquences de flashs dont la luminance varie aléatoirement (créant ainsi du " bruit blanc "), comme stimuli, qui contraignent l'activité cérébrale de manière prédictible. Les réponses impulsionnelles à ces séquences de bruit blanc sont caractérisées par une composante oscillatoire forte dans la bande alpha (~10Hz), similaire à un écho perceptuel. Puisque les réponses impulsionnelles sont un modèle de la réponse de notre cerveau à un flash dans la séquence de bruit blanc, elles peuvent être utilisées pour reconstruire (plutôt qu'enregistrer) l'activité cérébrale en réponse à de nouvelles séquences de stimulation. Par ailleurs, des cibles ont été introduites au sein des séquences de bruit blanc à un niveau proche du seuil de perception, et le décours temporel de cette activité reconstruite autour de la présentation des cibles a été extrait. Ainsi, l'EEG reconstruit peut être utilisé pour étudier l'influence de ces oscillations contraintes sur la perception visuelle, indépendamment des autres types de signaux généralement enregistrés dans l'EEG. Dans un premier temps, nous avons validé le paradigme de bruit blanc en montrant que : 1) les séquences de bruits blancs influencent bien la détection des cibles, 2) les échos perceptuels évoqués par les séquences de bruit blancs sont stables dans le temps, 3) ces échos sont un bon modèle de l'activité cérébrale enregistrée par EEG, et 4) leurs bases neuronales se situent dans les aires visuelles primaires. Dans un second temps, nous avons étudié la relation entre ces oscillations cérébrales contrôlées par la séquence de bruit blanc et la détection des cibles. Ici, nous montrons que l'activité EEG reconstruite nous aide à déterminer la véritable latence à laquelle la phase de l'oscillation (thêta) influence la perception. De plus, nous avons aussi montré que l'amplitude de l'oscillation (alpha) influence la détection des cibles et ce, indépendamment des fluctuations des facteurs endogènes (tel que l'attention). Enfin, tirant parti de ce lien entre oscillation et perception, nous construisons deux algorithmes qui permettent de contrôler la perception des sujets. Tout d'abord, nous mettons au point un modèle " universel " de la perception qui permet de prédire, pour n'importe quel observateur, si une cible dans une séquence de bruit blanc sera vue ou non. Ensuite, nous construisons un modèle individuel qui utilise l'écho perceptuel de chaque sujet comme clé de cryptage et nous permet de présenter des cibles à des moments où la cible sera détectée par un sujet seulement au détriment de tous les autres sujets, créant ainsi une sorte de système de cryptage neuronal (" Neuro-Encryption "). / Our brain activity is inherently rhythmic: oscillations can be found at all levels of organization. This rhythmicity in brain activity gives a rhythm to what we see: instead of continuously monitoring the environment, our brains take "snapshots" of the external world from 5 to 15 times a second. This creates perceptual cycles: depending on the phase of the underlying oscillation, our perceptual abilities fluctuate. Accumulating evidence shows that brains oscillations at various frequencies are instrumental in shaping visual perception. At the heart of this thesis lies the White Noise Paradigm, which we designed as a tool to better understand the influence of oscillations on visual perception and which ultimately could be used to control visual perception. The White Noise Paradigm uses streams of flashes with random luminance (i.e. white noise) as stimuli, which have been shown to constrain brain oscillations in a predictable manner. The impulse response to WN sequences has a strong (subject specific) oscillatory component at ~10Hz akin to a perceptual echo. Since the impulse response is a model of how our brains respond to one single flash in the sequence, they can be used to reconstruct (rather than record) the brain activity to new stimulation sequences. We then present near-perceptual threshold targets embedded within the WN sequences and extract the time course of these predicted/reconstructed background oscillations around target presentation. Thus, the reconstructed EEG can be used to study the influence of the oscillatory components on visual perception, independently of other types of signals usually recorded in the EEG. First, we validate the White Noise Paradigm by showing that: 1) the WN sequences do modulate behaviour, 2) the perceptual echoes evoked by these WN sequences are stable in time, 3) they are a (relatively) good model of the subject's recorded brain activity and 4) their neuronal basis can be found in the early visual areas. Second, we investigate the relationship between these constrained brain oscillations and visual perception. Specifically, we show that the reconstructed EEG can help us recover the true latency at which (theta) phase influences perception. Moreover, it can help us uncover a causal influence of (alpha) power on target detection, independently from any fluctuation in endogenous factors. Finally, capitalizing on the link between oscillations and perception, we build two algorithms used to control the perception of subjects. First, we build a "universal" forward model which can predict for any observer whether a particular target will be seen or not. Second, we build a subject-dependent model which can predict whether a particular subject (for whom EEG was recorded previously) will perceive a given target or not. Critically, this can be used to present targets optimized to be perceived by one subject only, to the detriment of all other subjects, creating a sort of "Neuro-Encryption" system.
119

[en] APPLICATIONS OF TECHNIQUES BASED ON THE SVD TO THE ANALYSIS AND FORECAST OF DATA. / [pt] APLICAÇÕES DE TÉCNICAS BASEADAS NO SVD À ANÁLISE E PREVISÃO DE DADOS

EDGARD UBALDO GUILLEN SALAS 07 April 2005 (has links)
[pt] O objetivo do presente trabalho é desenvolver uma técnica para a modelagem de sistemas, capaz de se adaptar a uma larga classe de problemas. Como aspecto inovador esta a forma como é orientada a modelagem do sinal, feita segundo a análise dos espaços dos sinais de entrada e saída, destes analises são feitas partições iterativamente em tais espaços até atingir o erro de modelagem desejado. A técnica proposta aqui foi desenvolvida usando redes neurais RBF e modelos Neuro- fuzzy, ajudando-se mutuamente com o objetivo de gerar uma estimativa mais próxima do ideal, esta ajuda mutua é feita pela combinação lineal dos autovetores e autovalores, de forma tal, a gerar novos autovetores e autovalores mais próximos dos ideais. Um objetivo extra, associado ao processo de identificação de sistemas, é a incorporação de facilidades de identificação nas relações entrada-saída por meio de técnicas de decomposição espectral. Desta forma, por um lado pretende- se reduzir o tempo de treinamento e análise para a identificação, eliminando testes a priori julgados desnecessários. Por outro lado, esta técnica sinalaria caminhos para soluções mais viáveis ao processo. / [en] The objective of the present work is to develop one technique for the modeling of systems, capable of if adapting to a wide classroom of problems. As innovative aspect this the form as the modeling of the signal, made is guided according to analysis of the spaces of the entrance signals and exit, of these you analyze are made partitions iteratively in such spaces until reaching the desired error of modeling. The technique proposal was developed here using neural nets RBF and Neuro-fuzzy models, helping itself with the objective to generate a estimate next to the ideal, this aid lends is made by the lineal combination of the autovetores and autovalores, form such, to generate new autovetores and autovalores next to the ideals. An extra objective, associated to the process of identification of systems, is the incorporation of easinesses of identification in the relations enter-exit by means of techniques of spectral decomposition. Of this form, on the other hand it is intended to reduce the time of training and analysis for the identification, being eliminated tests a priori unnecessary judgeships. On the other hand, this technique would sinalaria ways for more viable solutions to the process.
120

Avaliação da adequabilidade de redes neurais artificiais e sistemas neuro-fuzzy no apoio à predição de desempenho de cadeias de suprimento baseada no SCOR® / Evaluation of the adequability of artificial neural network and neuro-fuzzy systems to deal with supply chain performance prediction based on SCOR®

Francisco Rodrigues Lima Junior 02 December 2016 (has links)
Sistemas de predição de desempenho de cadeias de suprimento são constituídos por indicadores que visam estimar o desempenho da empresa-foco em decorrência também do desempenho dos indicadores dos fornecedores. Na literatura são encontrados apenas dois modelos quantitativos (GANGA; CARPINETTI, 2011; AGAMI; SALEH; RASMY, 2014) que permitem predizer o desempenho de cadeias de suprimento usando os indicadores do modelo SCOR® (Supply Chain Operations Reference). Uma limitação de ambos modelos é a dificuldade de se ajustar ao ambiente de uso, uma vez que sua implementação e atualização requerem a parametrização manual de muitas regras de decisão. Tanto o uso de redes neurais quanto de sistemas neuro-fuzzy têm o potencial de contornar essa dificuldade por utilizarem um mecanismo de aprendizagem que possibilita a adaptação ao ambiente de uso usando dados numéricos. Todavia, na literatura não são encontradas aplicações dessas técnicas no apoio à predição de desempenho de cadeias de suprimento, tampouco estudos que discutam qual dessas técnicas se mostra mais adequada para lidar com este problema. Diante disso, o objetivo desta pesquisa é construir e a avaliar a adequabilidade de dois sistemas de predição de desempenho, ambos baseados nos indicadores do modelo SCOR®, mas usando alternativamente as técnicas redes neurais e sistemas neuro-fuzzy, para apoiar a gestão de desempenho da empresa-foco e de sua cadeia imediata. A execução desta pesquisa envolveu o uso de simulação computacional e de testes estatísticos. Os resultados mostram que, embora ambas as técnicas apresentem capacidade de predição satisfatória, as redes neurais são mais adequadas em relação à complexidade da definição da configuração topológica, enquanto os sistemas neuro-fuzzy se sobressaíram em relação à capacidade de predição, complexidade do treinamento, quantidade de variáveis de entrada, suporte à tomada de decisão sob incerteza e interpretabilidade dos dados. Outros resultados desta pesquisa estão relacionados à identificação de particularidades do processo de modelagem das técnicas avaliadas, à elaboração de um panorama sobre o uso de técnicas quantitativas na avaliação de desempenho de cadeias de suprimento e à identificação de algumas oportunidades de pesquisa. / Supply chain performance prediction systems are composed by indicators that aim to estimate the performance of a focal company considering also indicators related to their suppliers. There are two quantitative models in the literature (GANGA; CARPINETTI, 2011; AGAMI; SALEH; RASMY, 2014) that enable to predict the supply chain performance using the indicators proposed by the SCOR® model (Supply Chain Operations Reference). Nevertheless, there is a drawback of both models that refers to the difficulty in adapting to the environment of use, since implementation and updating of these models require parameterization of many decision rules that must be done by an expert. The application of artificial neural networks as well as neuro-fuzzy systems can overcome this drawback by using a learning mechanism that enables the adaptation to the environment of use using numerical data on supply chain performance. However, there are neither studies in the literature that propose the use of these techniques in order to support supply chain performance prediction nor studies that discuss which of these techniques seem to be more appropriate to deal with this problem. Thus, the objective of this study is to propose and evaluate the adequability of the two types of performance prediction systems based on the performance indicators of the SCOR® model, and both using alternatively artificial neural networks and neuro-fuzzy systems to support performance management of a focal company and their supply chain. The implementation of this research involved the use of computer simulation and statistical tests. The results show that although both techniques present a satisfactory predictive capacity, neural networks are more appropriate in relation to the complexity of defining the topological configuration, whereas the neuro-fuzzy systems are more adequate regarding the predictive capacity, complexity of the training, amount of input variables, support to decision-making under uncertainty and interpretability of data. Other results of this research refer to the identification of characteristics of the modeling process of the evaluated techniques, as well as to the review on the use of quantitative techniques for supply chain performance evaluation and to the identification of some research opportunities.

Page generated in 0.0392 seconds