• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 47
  • 37
  • 11
  • 9
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 362
  • 190
  • 168
  • 44
  • 43
  • 43
  • 37
  • 37
  • 36
  • 36
  • 35
  • 33
  • 30
  • 30
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Etude fonctionnelle de deux marqueurs régionaux du cerveau chez la souris / A functional study of two regional markers of the mouse brain

Caudy, Nada 09 September 2011 (has links)
Ce travail porte sur l’étude fonctionnelle de deux gènes préférentiellement exprimés dans deux régions du cerveau touchées par des pathologies neurodégénératives : Capucine, un marqueur du striatum, structure qui dégénère au cours de la maladie de Huntington et Agpat4, un marqueur de l’aire tegmentaire ventrale et de la substance noire compacte, dont les neurones dopaminergiques sont sélectivement atteints lors de la maladie de Parkinson. Des lignées de souris invalidées pour ces gènes ont été générées au laboratoire et au cours de ma thèse j’ai procédé à leur caractérisation. L’expression striatale du gène de la Capucine étant significativement diminuée dans des modèles murins de la maladie de Huntington, nous avons souhaité évaluer son rôle éventuel dans la pathogenèse de cette maladie. Pour ce faire, nous avons examiné, dans le cadre d’une collaboration, l’effet du knock-out et de la surexpression du gène de la Capucine sur la vulnérabilité des neurones striataux à un fragment de la Huntingtine mutée dans un modèle murin de la maladie de Huntington. Les données montrent que la Capucine n’a pas d’effet significatif sur la toxicité du fragment de la Huntingtine mutée dans le modèle étudié.La protéine Agpat4 présente des homologies de séquence avec des acyltransférases impliquées dans le métabolisme des phosphoglycérides. J’ai réalisé des études d’expression par différentes techniques de biologie moléculaire qui montrent que le gène d’Agpat4 est exprimé dans la plupart des tissus catécholaminergiques. Pour déterminer l’activité endogène d’Agpat4 et son rôle physiologique dans les tissus où elle est exprimée, j’ai comparé le métabolome de tissus de souris invalidées pour le gène d’Agpat4 et sauvages par chromatographie en phase liquide couplée à la spectrométrie de masse. Mes résultats indiquent que l’invalidation du gène d’Agpat4 perturbe le métabolisme non seulement de différentes classes de lipides, notamment les lysophosphatidyléthanolamines, mais aussi celui des catécholamines. / This work concerns the functional study of two genes preferentially expressed in two brain regions affected by neurodegenerative diseases: Capucine, a marker of the striatum, a structure that degenerates in Huntington's disease and Agpat4, a marker of the ventral tegmental area and the substantia nigra pars compacta, whose dopaminergic neurons are selectively affected in Parkinson's disease. Mouse lines deficient for Capucine and Agpat4 have been generated in the laboratory and during my PhD thesis I carried out their characterization.As the striatal gene expression of Capucine is significantly reduced in mouse models of Huntington's disease, we wished to evaluate its possible role in the pathogenesis of this disease. In a collaborative work, we examined the effect of the knockout and overexpression of the Capucine gene on the vulnerability of striatal neurons to a mutant Huntingtin fragment in a mouse model of Huntington’s disease. The data show that Capucine has no significant effect on the toxicity of the mutant Huntingtin fragment in the considered model.The Agpat4 protein has sequence homologies with acyltransferases involved in the metabolism of phosphoglycerides. I conducted expression studies using different molecular biology techniques, which showed that the Agpat4 gene is expressed in most catecholaminergic tissues. To determine the endogenous activity of Agpat4 and its physiological role in the tissues where it is expressed, I compared the metabolomes of Agpat4-deficient and wild-type mice tissues by liquid chromatography coupled with mass spectrometry. My results indicate that Agpat4 deficiency alters not only the metabolism of different lipid classes, in particular lysophosphatidylethanolamines, but also the metabolism of catecholamines.
252

A longitudinal study of brain structure in the early stages of schizophrenia

Whitford, Thomas James January 2007 (has links)
Doctor of Philosophy (PhD) / Schizophrenia is a severe mental illness that affects approximately 1% of the population worldwide, and which typically has a devastating effect on the lives of its sufferers. The characteristic symptoms of the disease include hallucinations, delusions, disorganized thought and reduced emotional expression. While many of the early theories of schizophrenia focused on its psychosocial foundations, more recent theories have focused on the neurobiological underpinnings of the disease. This thesis has four primary aims: 1) to use magnetic resonance imaging (MRI) to identify the structural brain abnormalities present in patients suffering from their first episode of schizophrenia (FES), 2) to elucidate whether these abnormalities were static or progressive over the first 2-3 years of patients’ illness, 3) to identify the relationship between these neuroanatomical abnormalities and patients’ clinical profile, and 4) to identify the normative relationship between longitudinal changes in neuroanatomy and electrophysiology in healthy participants, and to compare this to the relationship observed between these two indices in patients with FES. The aim of Chapter 2 was to use MRI to identify the neuroanatomical changes that occur over adolescence in healthy participants, and to identify the normative relationship between the neuroanatomical changes and electrophysiological changes associated with healthy periadolescent brain maturation. MRI and electroencephalographic (EEG) scans were acquired from 138 healthy participants between the ages of 10 and 30 years. The MRI scans were segmented into grey matter (GM) and white matter (WM) images, before being parcellated into the frontal, temporal, parietal and occipital lobes. Absolute EEG power was calculated for the slow-wave, alpha and beta frequency bands, for the corresponding cortical regions. The age-related changes in regional tissue volumes and regional EEG power were inferred with a regression model. The results indicated that the healthy participants experienced accelerated GM loss, EEG power loss and WM gain in the frontal and parietal lobes between the ages of 10 and 20 years, which decelerated between the ages of 20 and 30 years. A linear relationship was also observed between the maturational changes in regional GM volumes and EEG power in the frontal and parietal lobes. These results indicate that the periadolescent period is a time of great structural and electrophysiological change in the healthy human brain. The aim of Chapter 3 was to identify the GM abnormalities present in patients with FES, both at the time of their first presentation to mental health services (baseline), and over the first 2-3 years of their illness (follow-up). MRI scans were acquired from 41 patients with FES at baseline, and 47 matched healthy control subjects. Of these participants, 25 FES patients and 26 controls returned 2-3 years later for a follow-up scan. The analysis technique of voxel-based morphometry (VBM) was used in conjunction with the Statistical Parametric Mapping (SPM) software package in order to identify the regions of GM difference between the groups at baseline. The related analysis technique of tensor-based morphometry (TBM) was used to identify subjects’ longitudinal GM change over the follow-up interval. Relative to the healthy controls, the FES patients were observed to exhibit widespread GM reductions in the frontal, parietal and temporal cortices and cerebellum at baseline, as well as more circumscribed regions of GM increase, particularly in the occipital lobe. Furthermore, the FES patients lost considerably more GM over the follow-up interval than the controls, particularly in the parietal and temporal cortices. These results indicate that patients with FES exhibit significant structural brain abnormalities very early in the course of their illness, and that these abnormalities progress over the first few years of their illness. Chapter 4 employed the same methodology to investigate the white matter abnormalities exhibited by the FES subjects relative to the controls, both at baseline and over the follow-up interval. Compared to controls, the FES patients exhibited volumetric WM deficits in the frontal and temporal lobes at baseline, as well as volumetric increases at the fronto-parietal junction bilaterally. Furthermore, the FES patients lost considerably more WM over the follow-up interval than did the controls in the middle and inferior temporal cortex bilaterally. While there is substantial evidence indicating that abnormalities in the maturational processes of myelination play a significant role in the development of WM abnormalities in FES, the observed longitudinal reductions in WM were consistent with the death of a select population of temporal lobe neurons over the follow-up interval. The aim of Chapter 5 was to investigate the clinical correlates of the GM abnormalities exhibited by the FES patients at baseline. The volumes of four distinct cerebral regions where 31 patients with FES exhibited reduced GM volumes relative to 30 matched controls were calculated and correlated with patients’ scores on three primary symptom dimensions: Disorganization, Reality Distortion and Psychomotor Poverty. The results indicated that the greater the degree of atrophy exhibited by the FES patients in three of these four ‘regions-of-reduction’, the less severe their degree of Reality Distortion. These results suggest that an excessive amount of GM atrophy may in fact preclude the formation of hallucinations or highly systematized delusions in patients with FES. The aim of Chapter 6 was to identify the relationship between the longitudinal changes in brain structure and brain electrophysiology exhibited by 19 FES patients over the first 2-3 years of their illness, and to compare it to the normative relationship between the two indices reported in Chapter 2. The methodology employed for the parcellation of the MRI and EEG data was identical to Chapter 2. The results indicated that, in contrast to the healthy controls, the longitudinal reduction in GM volume exhibited by the FES patients was not associated with a corresponding reduction in EEG power in any brain lobe. In contrast, EEG power was observed to be maintained or even to increase over the follow-up interval in these patients. These results were consistent with the FES patients experiencing an abnormal elevation of neural synchrony. Such an abnormality in neural synchrony could potentially form the basis of the dysfunctional neural connectivity that has been widely proposed to underlie the functional deficits present in patients with schizophrenia. The primary aim of Chapter 7 was to assimilate the findings from the preceding empirical chapters with the theoretical framework provided in the literature, into an integrated and testable model of schizophrenia. The model emphasized dysfunctions in brain maturation, specifically in the normative processes of synaptic ‘pruning’ and axonal myelination, as playing a key role in the development of disintegrated neural activity and the subsequent onset of schizophrenic symptoms. The model concluded with the novel proposal that disintegrated neural activity arises from abnormal elevations in the synchrony of synaptic activity in patients with first-episode schizophrenia.
253

A longitudinal study of brain structure in the early stages of schizophrenia

Whitford, Thomas James January 2007 (has links)
Doctor of Philosophy (PhD) / Schizophrenia is a severe mental illness that affects approximately 1% of the population worldwide, and which typically has a devastating effect on the lives of its sufferers. The characteristic symptoms of the disease include hallucinations, delusions, disorganized thought and reduced emotional expression. While many of the early theories of schizophrenia focused on its psychosocial foundations, more recent theories have focused on the neurobiological underpinnings of the disease. This thesis has four primary aims: 1) to use magnetic resonance imaging (MRI) to identify the structural brain abnormalities present in patients suffering from their first episode of schizophrenia (FES), 2) to elucidate whether these abnormalities were static or progressive over the first 2-3 years of patients’ illness, 3) to identify the relationship between these neuroanatomical abnormalities and patients’ clinical profile, and 4) to identify the normative relationship between longitudinal changes in neuroanatomy and electrophysiology in healthy participants, and to compare this to the relationship observed between these two indices in patients with FES. The aim of Chapter 2 was to use MRI to identify the neuroanatomical changes that occur over adolescence in healthy participants, and to identify the normative relationship between the neuroanatomical changes and electrophysiological changes associated with healthy periadolescent brain maturation. MRI and electroencephalographic (EEG) scans were acquired from 138 healthy participants between the ages of 10 and 30 years. The MRI scans were segmented into grey matter (GM) and white matter (WM) images, before being parcellated into the frontal, temporal, parietal and occipital lobes. Absolute EEG power was calculated for the slow-wave, alpha and beta frequency bands, for the corresponding cortical regions. The age-related changes in regional tissue volumes and regional EEG power were inferred with a regression model. The results indicated that the healthy participants experienced accelerated GM loss, EEG power loss and WM gain in the frontal and parietal lobes between the ages of 10 and 20 years, which decelerated between the ages of 20 and 30 years. A linear relationship was also observed between the maturational changes in regional GM volumes and EEG power in the frontal and parietal lobes. These results indicate that the periadolescent period is a time of great structural and electrophysiological change in the healthy human brain. The aim of Chapter 3 was to identify the GM abnormalities present in patients with FES, both at the time of their first presentation to mental health services (baseline), and over the first 2-3 years of their illness (follow-up). MRI scans were acquired from 41 patients with FES at baseline, and 47 matched healthy control subjects. Of these participants, 25 FES patients and 26 controls returned 2-3 years later for a follow-up scan. The analysis technique of voxel-based morphometry (VBM) was used in conjunction with the Statistical Parametric Mapping (SPM) software package in order to identify the regions of GM difference between the groups at baseline. The related analysis technique of tensor-based morphometry (TBM) was used to identify subjects’ longitudinal GM change over the follow-up interval. Relative to the healthy controls, the FES patients were observed to exhibit widespread GM reductions in the frontal, parietal and temporal cortices and cerebellum at baseline, as well as more circumscribed regions of GM increase, particularly in the occipital lobe. Furthermore, the FES patients lost considerably more GM over the follow-up interval than the controls, particularly in the parietal and temporal cortices. These results indicate that patients with FES exhibit significant structural brain abnormalities very early in the course of their illness, and that these abnormalities progress over the first few years of their illness. Chapter 4 employed the same methodology to investigate the white matter abnormalities exhibited by the FES subjects relative to the controls, both at baseline and over the follow-up interval. Compared to controls, the FES patients exhibited volumetric WM deficits in the frontal and temporal lobes at baseline, as well as volumetric increases at the fronto-parietal junction bilaterally. Furthermore, the FES patients lost considerably more WM over the follow-up interval than did the controls in the middle and inferior temporal cortex bilaterally. While there is substantial evidence indicating that abnormalities in the maturational processes of myelination play a significant role in the development of WM abnormalities in FES, the observed longitudinal reductions in WM were consistent with the death of a select population of temporal lobe neurons over the follow-up interval. The aim of Chapter 5 was to investigate the clinical correlates of the GM abnormalities exhibited by the FES patients at baseline. The volumes of four distinct cerebral regions where 31 patients with FES exhibited reduced GM volumes relative to 30 matched controls were calculated and correlated with patients’ scores on three primary symptom dimensions: Disorganization, Reality Distortion and Psychomotor Poverty. The results indicated that the greater the degree of atrophy exhibited by the FES patients in three of these four ‘regions-of-reduction’, the less severe their degree of Reality Distortion. These results suggest that an excessive amount of GM atrophy may in fact preclude the formation of hallucinations or highly systematized delusions in patients with FES. The aim of Chapter 6 was to identify the relationship between the longitudinal changes in brain structure and brain electrophysiology exhibited by 19 FES patients over the first 2-3 years of their illness, and to compare it to the normative relationship between the two indices reported in Chapter 2. The methodology employed for the parcellation of the MRI and EEG data was identical to Chapter 2. The results indicated that, in contrast to the healthy controls, the longitudinal reduction in GM volume exhibited by the FES patients was not associated with a corresponding reduction in EEG power in any brain lobe. In contrast, EEG power was observed to be maintained or even to increase over the follow-up interval in these patients. These results were consistent with the FES patients experiencing an abnormal elevation of neural synchrony. Such an abnormality in neural synchrony could potentially form the basis of the dysfunctional neural connectivity that has been widely proposed to underlie the functional deficits present in patients with schizophrenia. The primary aim of Chapter 7 was to assimilate the findings from the preceding empirical chapters with the theoretical framework provided in the literature, into an integrated and testable model of schizophrenia. The model emphasized dysfunctions in brain maturation, specifically in the normative processes of synaptic ‘pruning’ and axonal myelination, as playing a key role in the development of disintegrated neural activity and the subsequent onset of schizophrenic symptoms. The model concluded with the novel proposal that disintegrated neural activity arises from abnormal elevations in the synchrony of synaptic activity in patients with first-episode schizophrenia.
254

Occupational exposure to electromagnetic fields and chronic diseases /

Håkansson, Niclas, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2003. / Härtill 5 uppsatser.
255

Synthesis & biological evaluation of neuroprotective molecules with polycyclic scaffolds

Sharma, Rajan January 2017 (has links)
Doctor Pharmaceuticae - Dpharm / Among neurological disorders, many of the most devastating disorders are neurodegenerative. Modern research associates excitotoxicity to a variety of neuropathological conditions, suggesting that the neurodegenerative diseases with distinct etiologies may have excitotoxicity as a common pathway. Excitotoxicity occurs through over-stimulation of receptors for excitatory neurotransmitters like the N-methyl-D-aspartate (NMDA) receptors. Due to the relevance of NMDA receptors and excitotoxic processes, the antagonism or modulation of NMDA receptors is used as a therapeutic tool against neurodegenerative diseases. NMDA receptor activity can be modulated by S-nitrosylation and this modulation of NMDA receptor activity can be utilised in the development of neuroprotective drugs.
256

Axonal translation and links to neuropathies

Lin, Qiaojin January 2018 (has links)
Neurons connect to their remote targets via axons, which usually survive for the lifetime of an organism. Spatiotemporal regulation of the axonal proteome by local protein synthesis (LPS) plays a critical role in neuronal wiring and axon survival, raising the intriguing possibility that some neurological disorders involve LPS dysfunction. To visualise LPS in situ, I optimised multiple imaging techniques to investigate Netrin-1-induced translation in cultured retinal axons. Total axonal protein synthesis measured by metabolic and puromycin labelling indicates axons experience stage-dependent alterations in translation rate upon Netrin-1 stimulation. Remarkably, Netrin-1 triggers a burst of β-actin synthesis starting within 20 seconds of cue application at multiple non-repetitive sites visualised by single molecule translation imaging, an approach that allows direct visualisation of translation dynamics in response to external stimuli. Further studies have shown that local translation can occur on Rab7a-associated late endosomes, where mRNA recruitment and translation are coordinately regulated. Notably, mRNAs encoding mitochondria-related proteins are found translating on late endosomes docking in the vicinity of mitochondria, suggesting late endosomes act as ‘platforms’ for the localised synthesis of mitochondrial proteins necessary for maintaining mitochondrial integrity. Moreover, this process is affected in axons expressing the Charcot-Marie-Tooth disease type 2B (CMT2B)-related Rab7a mutants, leading to abnormal mitochondrial biogenesis and activity and compromised axon survival. Finally, attenuated de novo protein synthesis is observed in axons expressing amyotrophic lateral sclerosis (ALS)-associated fused in sarcoma (FUS) mutants and hypomethylated wild-type FUS. Live imaging reveals mislocalised mutant or hypomethylated FUS granules are transported along axons and accumulate at growth cones, possibly irreversibly trapping RNA molecules, resulting in reduced distance travelled by RNA granules in axons. Furthermore, mutant FUS expression results in defective retinal projections in vivo, highlighting the importance of RNA metabolism and local translation in axonal homeostatic mechanisms. In conclusion, aberrant translational activity in axons leads to prominent axonopathy, which recapitulates features of early stages of neurological diseases, providing the basis for novel therapeutic strategies.
257

Mechanisms of Dopaminergic Neurodegeneration in Parkinson's Disease

Verma, Aditi January 2018 (has links) (PDF)
Parkinson’s disease (PD) is a debilitating movement disorder. The cardinal symptoms of PD are bradykinesia, resting tremors and rigidity. PD is characterized by degeneration of dopaminergic neurons of A9 region, substantia nigra pars compacta (SNpc) and loss of dopaminergic terminals in striatum while the dopaminergic neurons of A10 region, ventral tegmental area (VTA) are relatively protected. Putative mechanisms, such as mitochondrial dysfunction, dysregulation of the ubiquitin proteasome system and increased oxidative stress have been hypothesized to mediate PD pathology. However, precise mechanisms that underlie selective vulnerability of SNpc dopaminergic neurons to degeneration are unknown. The aim of this thesis was to evaluate the pathological mechanisms that may contribute to degeneration of SNpc dopaminergic neurons in PD. Dopaminergic neurons of SNpc are pacemakers and constant calcium entry through L-type calcium channel, Cav1.3 has been reported in these neurons during pacemaking. In addition, these neurons have poor calcium buffering capacity. Together, this leads to dysregulation of calcium homeostasis in the SNpc dopaminergic neurons leading to increased oxidative stress. Gene expression of the full length channel and the variant was investigated in the mouse midbrain and further their presence was verified in mouse SNpc and VTA and also in SNpc and VTA in the MPTP mouse model of PD. Gene expression of Cav1.3 -42 and its variant was also studied in SNpc from autopsy tissue from PD patients and age matched controls. Having studied differential expression of the calcium channels, global changes in gene expression in SNpc from the MPTP mouse model of PD and PD autopsy tissues were next examined. This is the first report of transcriptome profile alterations from SNpc in mouse model and PD tissue performed using RNA-seq. Gene expression profiles were examined from SNpc 1 day post single exposure to MPTP, in which case there is no neuronal death and 14 days after daily MPTP treatment where SNpc has undergone ~50% cell death. Further, RNA- seq was performed to study gene expression alterations in SNpc from human PD patients and age- matched controls. The RNA-seq data was taken through extensive analyses; analysed for differential gene expression, gene-set enrichment analysis, pathway analysis and network analysis. Glutaredoxin 1 (Grx1) is a thiol disulfide oxidoreductase that catalyses the deglutathionylation of proteins and is important for regulation of cellular protein thiol redox homeostasis. Down-regulation of Grx1 has been established to exacerbate neurodegeneration through impairment of cell survival signalling. Previous work from our laboratory has demonstrated that perturbation of protein thiol redox homeostasis through diamide injection into SNpc leads to development of PD pathology and motor deficits. It was therefore investigated if Grx1 down-regulation in vivo, leading to increased glutathionylation and protein thiol oxidation, could result in PD pathology. This work is thus the first study of RNA-seq based transcriptomic profile alterations in SNpc from human PD patients. This work also highlights several differences between mouse model and human PD tissue indicating that the underlying mechanisms of PD pathogenesis differ from mouse to humans in addition to developing a novel model for PD.
258

Using Bioengineering Approaches to Generate a Three-Dimensional (3D) Human Pluripotent Stem Cell (hPSC)-Based Model for Neurodegenerative Diseases

January 2016 (has links)
abstract: The pathophysiology of neurodegenerative diseases, such as Alzheimer’s disease (AD), remain difficult to ascertain in part because animal models fail to fully recapitulate the complex pathophysiology of these diseases. In vitro models of neurodegenerative diseases generated with patient derived human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) could provide new insight into disease mechanisms. Although protocols to differentiate hiPSCs and hESCs to neurons have been established, standard practice relies on two dimensional (2D) cell culture systems, which do not accurately mimic the complexity and architecture of the in vivo brain microenvironment. I have developed protocols to generate 3D cultures of neurons from hiPSCs and hESCs, to provide more accurate models of AD. In the first protocol, hiPSC-derived neural progenitor cells (hNPCs) are plated in a suspension of Matrigel™ prior to terminal differentiation of neurons. In the second protocol, hiPSCs are forced into aggregates called embryoid bodies (EBs) in suspension culture and subsequently directed to the neural lineage through dual SMAD inhibition. Culture conditions are then changed to expand putative hNPC populations and finally differentiated to neuronal spheroids through activation of the tyrosine kinase pathway. The gene expression profiles of the 3D hiPSC-derived neural cultures were compared to fetal brain RNA. Our analysis has revealed that 3D neuronal cultures express high levels of mature pan-neuronal markers (e.g. MAP2, β3T) and neural transmitter subtype specific markers. The 3D neuronal spheroids also showed signs of neural patterning, similar to that observed during embryonic development. These 3D culture systems should provide a platform to probe disease mechanisms of AD and enable to generation of more advanced therapeutics. / Dissertation/Thesis / Masters Thesis Bioengineering 2016
259

Avaliação do efeito do disseleneto de difenila em modelo de doença de Alzheimer no nematódeo Caernorhabditis elegans / Evaluation of diphenyl disselenide effect in the nematode Caernorhabditis elegans Alzheimer disease model

Zamberlan, Daniele Coradini 21 February 2014 (has links)
Alzheimer s (DA) is a neurodegenerative disease evidenced by cognitive disorders and attention deficit and learning, and is the main cause of dementia in the elderly. The amyloid hypothesis posits that extracellular amyloid-β (Aβ) deposits are the fundamental etiological factor of the disease. However, the AD etiology has yet to be fully understood and common treatments remain largely non-efficacious. Caernorhabditis elegans transgenic strains expressing toxic Aβ has been employed as AD in vivo model in order to elucidate mechanisms and verifying the effectiveness of pharmacological compounds. The organoselenium compound tested in this study, Diphenyl-diselenide (PhSe)2, has shown efficacy in ameliorate several parametres in neurodegenerative disease models. In the present study, we analyzed the effects of (PhSe)2 chronic treatment on Aβ peptide-induced toxicity in C. elegans. This data shows that chronic exposure to (PhSe)2 attenuated oxidative stress induced by Aβ with concomitant recovery of associative learning memory in worms. In addition, (PhSe)2 decreased Aβ transgene expression, suppressing the Aβ peptide and down-regulating hsp-16.2 by reducing the need of this chaperone under Aβ toxicity. This observations suggest that (PhSe)2 plays an important role in protection against oxidative stress-induced toxicity, this representing a promising potential pharmaceutical modality by attenuating Aβ expression. / A Doença de Alzheimer (DA) é uma doença neurodegenerativa evidenciada por distúrbios cognitivos e déficit de atenção e aprendizagem, sendo a principal causa de demência em idosos. A Hipótese Amilóide postula o acúmulo de depósitos extracelulares do peptídio β-amilóide (Aβ) no cérebro como o principal fator da doença. Entretanto, sua etiologia ainda não está completamente elucidada e seu tratamento visa apenas a melhora dos sintomas. Cepas transgênicas do nematódeo Caernorhabditis elegans que expressam as espécies tóxicas Aβ, têm sido utilizadas como modelos in vivo de DA para elucidar mecanismos e verificar a eficácia de novas moleculas. O disseleneto de difenila ((PhSe)2), composto orgânico de selênio utilizado nesse estudo, tem demonstrado eficácia em melhorar diversos parâmetros em modelos de doenças neurodegenerativas. No presente estudo foram analisados os efeitos do tratamento crônico com (PhSe)2 na toxicidade induzida pela Aβ em C. elegans. Os resultados mostraram que a exposição crônica ao (PhSe)2 atenuou o estresse oxidativo induzido pela Aβ, além de recuperar a memória associativa no nematódeo. Além disso, o (PhSe)2 diminuiu a expressão do gene Aβ, levando a supressão do peptídio Aβ e reduzindo a expressão do gene hsp-16.2, por diminuir a necessidade desta chaperona frente a toxicidade Aβ. Estes dados sugerem que o (PhSe)2 desempenha um importante papel na proteção contra a toxicidade induzida por estresse oxidativo, além de representar um promissor agente farmacológico por atenuar a expressão do Aβ.
260

Estudos estruturais e bioquímicos das septinas humanas bradeiona alfa e beta: moléculas relacionadas com o desenvolvimento de câncer do cólon, reto e melanoma maligno / Human SETPT4: heterologoes expression, Purification and biophysical characterization

Wânius José Garcia da Silva 08 June 2005 (has links)
Septinas constituem uma família de proteínas de ligação a GTP que foram inicialmente identificadas em levedura Saccharomyces cerevisiae, mas também estão presentes em outros eucariotos com exceção de plantas. Septinas são purificadas de leveduras, Drosophila e cérebros de mamíferos na forma de filamentos, porém o mecanismo através do qual acorre a formação destes filamentos ainda não é muito bem compreendido. Septinas são constituídas de três regiões principais: um N-terminal variável, um domínio central GTPase altamente conservado e um domínio coiled-coil C-terminal. O gene SEPT4 foi identificado por M. Tanaka e colaboradores a partir do cDNA de cérebro humano e apresentou duas distintas transcrições: Bradeiona ? e ?. Interessantemente, além de cérebro e coração, as proteínas Bradeiona Α e Β. são detectadas somente em câncer do cólon, reto, próstata e melanoma maligno. Neste trabalho, o gene da proteína Bradeiona Β foi subclonado em um vetor de expressão bacteriano, produzido em E. coli e purificado com sucesso. O espectro de dicroísmo circular (CD) mostrou o perfil característico de proteínas com hélices a na estrutura secundária. Resultados de cromatografia de exclusão molecular (SEC) e espalhamento dinâmico de luz (DLS) indicam que a septina Bradeina foi produzida na forma de um estável oligômero com características monodispersivas, que foi subseqüentemente cristalizado em PEG6000. A atividade GTPase da Bradeiona Β foi comprovada através da técnica de eletroforese capilar (CE), mostrando-se absolutamente dependente de íons Mg2+. Inibição da atividade GTPase foi verificada em altas concentrações de Mg2+ (maiores que 5 mM). Com a finalidade de caracterizar os domínios preditos da Bradeiona Β (Fragmento Conservado e domínio GTPase), essas regiões foram previamente definidas, expressas em E. cozi e purificadas com sucesso. Resultados de CD, SEC, espectroscopia de fluorescência e NMR-600MHz indicam que o FC foi produzido na forma de um estável monômero com pouca estrutura secundária regular. Resultados de DLS e CD indicam que a fusão 6xHis-DGTPase foi produzida na forma de um oligômero com a presença de hélices a na estrutura secundária. A fusão 6xHis-DGTPase mostrou-se instável a altas concentrações na ausência de imidazol. A atividade GTPase da fusão GST+DGTPase foi comprovada, similarmente a Bradeiona , através da técnica de CE. Novamente, verificou-se dependência de íons Mg2+ (para a atividade catalítica) e inibição em altas concentrações de Mg2+. A fusão GST+DGTPase também foi capaz de hidrolisar ATP. Espera-se que as informações relatadas neste estudo proporcionem um alicerce para estudos estruturais/funcionais futuros das proteínas Bradeiona Α e Βoutras septinas. / Septins form a class of eukaryoyic guanine nucleotide-binding proteins that were first identified in budding yeast. Septins purified from yeast, Drosophila and mammalian brain form filaments, however the mechanism by which the filaments assemble is unclear. Septins have a highly conserved structure, which includes a central GTP-binding domain, a variable N-terminal region, and most septins also contain a coiled coil domain at the Cterminus. Bradeion p is one of the splice variants of the human septin gene, SEPT4, recently isolated by expression screening of an adult human brain cDNA library. The Bradeion gene resides at 17q23, and has been shown to present specific expression in both human colorectal cancer, urologic cancers and malignant melanoma. In order to characterize the GTPase activity of Bradeion Β , the protein was successfully expressed in E. coli and purified. The recombinant protein was characterized by circular dichroism (CD), dynamic light scattering (DLS) and a novel non-radioactive enzyme assay, which utilizes capillary electrophoresis (EC) to monitor GTP hydrolysis. The CD spectrum exhibited the typical shape characteristic of the presence of helical elements of secondary structure and the DLS pattern was indicative of a monodisperse solution, which was readily crystallized in the presence of PEG6000. GTP hydrolysis was shown to be Mg2+ dependent within the low millimolar range but at 5 mM was inhibitory. In order to characterize the predicted domains of Bradeion Β, these defined regions were successfully expressed in E. cozi and purified. The CD spectrum of CF exhibited the shape typically found for non-regular structure. The results of fluorescence spectroscopy, gel filtration (SEC) and NMR-600MHz also corroborate with the CD results indicating an irregular structure. The fusion protein 6xHis-DGTPase exhibited a CD spectrum with the typical shape characteristic of the presence of helical elements but was show to be instable at high concentrations in the absence of imidazole. To characterize the GTPase activity of the fusion protein GST+DGTPase, the CE technique was used to monitor GTP hydrolysis. Analysis by CE showed that GST+DGTPase was functional, since both GTP and ATP hydrolysis was observed in a Mg2+ dependent manner. This work provides novel approaches, which should aid in the fbture study of the structure and fùnction of Bradeion Α e Β, others septins and related GTPases.

Page generated in 0.1297 seconds