• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 225
  • 68
  • 38
  • 22
  • 17
  • 13
  • 9
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 464
  • 87
  • 84
  • 79
  • 78
  • 76
  • 72
  • 62
  • 55
  • 49
  • 47
  • 47
  • 45
  • 43
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Der Einfluss des Tau-Proteins auf die Morphologie von Nervenzellen: Der Einfluss des Tau-Proteins auf die Morphologie von Nervenzellen

Barbu, Corina 01 November 2012 (has links)
Tau ist ein Mikrotubuli-assoziiertes Protein, das die Polymerisation von Tubulin fördert und die Mikrotubuli stabilisiert. Folglich wird angenommen, dass Tau essentiell für die neuronale Morphogenese ist, vor allem für die Axonenausbildung und -aufrechterhaltung. Mittels tangentieller Nissl-gefärbter Schnitte von Mäusegehirnen konnte in der vorliegenden Arbeit gezeigt werden, dass Tau-knockout Mäuse die regelhafte thalamokortikale Barthaar-projektion („Barrel“ Konfiguration) entwickeln. Der Einfluss von Tau auf die Entstehung von Dendriten wurde anhand von Golgi-gefärbten Präparaten untersucht. Die Sholl-Analyse der gefärbten CA1-Pyramidenzellen zeigte, dass die Komplexität apikaler Dendriten durch das Fehlen von Tau reduziert wurde, während die Basaldendriten unbeeinflusst blieben. Das Tau-Protein scheint demzufolge unwesentlich für die Entstehung von axonalen Verbindungen im embryonalen Gehirn zu sein, ist aber beteiligt an der Steuerung des dendritischen Verzweigungsmusters. Ferner wurde beobachtet, dass sowohl die adulte Neurogenese, als auch die Mikrotubuli-Stabilität in den Apikal- und Basaldendriten und die Synapsen von dem Fehlen des Tau-Proteins unbeeinflusst blieben. In primären Zellkulturen aus dem Kleinhirn von Tau-knockout und Tau-wildtyp Mäusen konnten zwischen den zwei Genotypen keine signifikanten Unterschiede in der Länge oder im Verzweigungsmuster der Dendriten und der Axone von Körnerzellen beobachtet werden. Die Untersuchung der Effekte einzelner Tau-Isoformen auf die Morphologie von N2A-Zellen zeigte, dass es Unterschiede sowohl zwischen Tau-defizienten und Tau-positiven Zellen, als auch zwischen Zellen mit den verschiedenen Tau-Isoformen gibt. Das Tau-Protein übt demnach in vivo einen wichtigen Einfluss auf die Morphologie der Nervenzellen und besonders der Dendriten aus, welcher in vitro weiter analysiert wurde.:Abkürzungsverzeichnis 1 Einleitung 1 1.1 Das Mikrotubuli-assoziierte Protein Tau 1 1.2 Bedeutung des Tau-Proteins beim Menschen: Tauopathien 3 1.3 Bedeutung des Tau-Proteins beim Menschen: Mikrodeletion des MAPT-Lokus 4 1.4 Ergebnisse aus bisherigen Studien mit Tau-knockout Tieren 6 1.5 Aufgabenstellung 7 2 Material und Methoden 9 2.1 Material 9 2.1.1 Versuchstiere 9 2.1.2 Chemikalien 9 2.1.3 Häufig verwendete Lösungen 10 2.1.4 Geräte 10 2.2 Histologie 11 2.2.1 Fixierung 11 2.2.2 Golgi-Einzelschnittimprägnierung 11 2.2.3 Gefrierschnitte 11 2.2.4 Nissl-Färbung 12 2.2.5 Immunhistochemische Markierungen 13 2.3 Morphometrie 15 2.3.1 Sholl-Analyse 15 2.3.2 Volumenbestimmung 16 2.3.3 Zellzahl (Neurogenese) 17 2.3.4 Synapsenzahl 17 2.4 Proteinbiochemie 19 2.4.1 Proben 19 2.4.2 SDS-Polyacrylamid-Gelelektrophorese 19 2.4.3 Western Blot 20 2.4.4 Immundetektion am Western Blot 21 2.5 Transfektion von Nervenzellen in primärer Zellkultur 25 2.5.1 Primäre Zellkultur 25 2.5.2 Transfektion von primären Zellkulturen 25 2.5.3 Morphometrische Analyse von Körnerzellen des Kleinhirns 26 2.6 Klonierung von Tau-Protein-Isoformen 27 2.6.1 Klonierungsstrategie zur Herstellung eines pIRES-DsRed-Tau Vektors 27 2.6.2 Agarose-Gelelektrophorese 30 2.6.3 Gelextraktion der verschiedenen Tau-Isoform-Sequenzen 30 2.6.4 Herstellung chemisch kompetenter E.coli Zellen 31 2.6.5 Chemische Transformation kompetenter E. coli Zellen 32 2.6.6 Animpfen 32 2.6.7 Plasmid-DNA Purifikation aus 15ml Medium („Miniprep”) 32 2.6.8 Schneiden mit Restriktionsendonukleasen 33 2.6.9 Plasmidpräparation aus 100 ml Medium („Midiprep“) 33 2.6.10 Transfektion von N2A-Zellen mit pIRESRed-Tau 34 2.6.11 Rekonstruktion der transfizierten N2A-Zellen 35 2.7 Statistische Auswertung 36 3 Ergebnisse 37 3.1 Thalamokorticale Projektionen 37 3.2 Komplexität der Dendriten von CA1-Pyramidenzellen 37 3.3 Adulte Neurogenese im Hippocampus 41 3.4 Volumen des Hippocampus 43 3.5 Glia 45 3.6 Synapsen 46 3.7 Stabilität der Mikrotubuli 48 3.8 Mikrotubuli-assoziierte Proteine 50 3.9 Entwicklung in vitro 52 3.9.1 Primärkulturen 52 3.9.2 N2A-Zellkultur 54 4 Diskussion 58 4.1 Diskussion der Methoden 58 4.1.1 Herstellung von Tau-knockout Mäusen 58 4.1.2 Golgi-Einzelschnittimprägnierung und die dreidimensionale Zellrekonstruktion 59 4.1.3 Neurogenese 60 4.1.4 Volumenbestimmung von Hippocampus und Gyrus dentatus 61 4.1.5 Synaptische Marker 61 4.1.6 Western Blot 62 4.1.7 Transfektion von primären Zellkulturen 62 4.1.8 Transfektion von N2A-Zellen mit humanen Tau-Isoformen 63 4.2 Vergleich mit bekannten Daten aus der Forschungsliteratur 64 4.2.1 Axonogenese 64 4.2.2 Dendritogenese 64 4.2.3 Mikrotubuli-assoziierte Proteine und Mikrotubuli-Stabilität 67 4.2.4 Neurogenese 67 4.2.5 Synaptogenese 68 4.2.6 Rolle der einzelnen Isoformen 68 4.3 Bedeutung für die Medizin 71 4.4 Fazit 72 5 Zusammenfassung 73 6 Literaturverzeichnis 76 Posterpräsentationen 88 Danksagung 89 Erklärung über die eigenständige Abfassung der Arbeit 90 Lebenslauf 91
412

Investigating the role of cell-autonomous ROS status in the regulation of hippocampal neural precursor cells in adult mice

Adusumilli, Vijaya 16 November 2020 (has links)
Adult hippocampal neurogenesis entails a continued recruitment of neural precursor cells (NPCs) into active cell cycle and their progressive transition into post-mitotic granule cells. These adult born neurons integrate into the existing circuitry and confer structural plasticity, which aids in key hippocampal functions. For sustained neurogenesis, the cell cycle entry of the NPCs has to be tightly controlled. Environmental cues strongly, and differentially, regulate this checkpoint. Voluntary physical activity represents such an established strong stimulus that results in enhanced proliferation within the neurogenic niche. However, mechanistic insights into the maintenance and regulation of quiescence and the responsiveness of the NPCs to acute physical activity, as a form of adaptive neurogenesis, are yet to be elucidated. In my doctoral studies, we identified redox regulation as a key pathway regulating the cellular state equilibrium. I further explored the role of cellular oxidative stress in the neurogenic course and in adaptive neurogenic responses. Our results show that non-proliferative precursors within the hippocampal dentate gyrus, unlike in other stem cell systems, are marked by high levels of cellular reactive oxygen species (ROS). Using cytometric methodologies, ex vivo bioassays and transcriptional profiling, we revealed that classifying cells based on intracellular ROS content identified functionally defined sub-populations of adult NPCs. We propose that a drop in intracellular ROS content precedes the transition of cellular states, specifically from quiescence to active proliferation. Acute physical activity involves the activation of non- proliferating cells through a transient Nox2-dependent ROS surge in high-ROS, quiescent NPCs. In the absence of Nox2, baseline neurogenesis was unaffected, but the activity- dependent response was abolished. These findings shed new light on the discrete cellular events, which maintain the homeostasis between distinct cellular states of NPCs within the adult murine hippocampus.:Zusammenfassung 3 Summary 4 Acknowledgements 5 Index 8 List of figures 10 List of tables 11 Abbreviations 12 Publications 14 Introduction 15 Adult hippocampal neurogenesis 16 Adult subventricular neurogenesis 21 Methods to study adult neurogenesis 23 Environmental regulation of neurogenesis 26 Redox regulation in a stem cell 29 Working hypothesis 31 Specific aims 31 Materials and methods 32 Mice 34 Physical activity paradigm 35 Thymidine labelling and tissue preparation 35 Fluorescence immunohistochemistry 35 DG and SVZ dissection and dissociation 36 Flow cytometry 36 Gating for ROS classes 36 Neurosphere culture 37 Generation of monolayer culture 37 Inducing quiescence through BMP4 treatment 38 Next Generation sequencing (NGS) 38 RNA extraction 38 Quality control and differential expression 39 Functional enrichment and expression profiles 41 RNA isolation and quantitative RTPCR (qRT-PCR) 43 Ki67 immunochemistry and quantification of in vivo proliferation 45 Quantification and statistical analysis 46 Data and software availability 48 Results 49 Intracellular ROS content functionally delineates subpopulations of neural precursor cells 49 Resolution of ROS profiles of DG and SVZ and neurosphere bioassay 49 Distribution of Nes-GFP cells into different ROS classes 54 Neural precursors of the different ROS classes have distinct molecular profiles 55 Changes in intracellular ROS content precede cell fate changes 65 ROS profiling of other cell types within the DG 70 ROS profiling of Astrocytes and type-1 cells 70 ROS profiling of Doublecortin (Dcx)positive cells of the neurogenic lineage 74 ROS profiling of microglial cells within the DG 77 Resolving the response of Nes-GFP subpopulations to environmental stimulus 78 Nes-GFP+ cells of the hiROS class specifically respond to physical activity 81 Changes in ROS content are not driven by mitochondrial activity 83 In vitro monolayer culture of NPCs as an independent corroboration 86 Discussion 89 The organization of an active stem cell niche with respect to redox content 89 Cytometric classification of cells within the DG 91 Establishing the cellular states of redox defined subsets of Nes-GFP+ adult precursors within the DG 95 Timeline of baseline proliferation within precursors and identifying the subset of precursors responsive to de novo physical activity 97 Monolayer culture to study cellular states and redox regulation 100 Nox2 dependency as a discriminatory feature of adaptive neurogenesis 101 Conclusion 103 References 104 Declarations 122 Anlage 1 122 Anlage 2 124
413

CHARACTERISATION OF Y-BOX PROTEIN 3 (MSY3) IN THE DEVELOPING MURINE CENTRAL NERVOUS SYSTEM

Grzyb, Anna Natalia 05 February 2007 (has links)
Neurons, astrocytes and oligodendrocytes of the central nervous system (CNS) arise from a common pool of multipotent neuroepithelial progenitor cells lining the walls of the neural tube. Initially, neuroepithelial cells undergo symmetric proliferative divisions, thereby expanding the progenitor pool and determining the size of brain compartments. At the onset of neurogenesis, a subset of progenitors switch to asymmetric or terminal symmetric neurogenic divisions. Maintenance of progenitor cell population throughout the period of neurogenesis is essential to generate the full diversity of neuronal cell types and proper histological pattern. However, the mechanisms responsible for the maintenance of progenitor cells proliferation are far from being fully understood. The family of Y-box proteins is involved in control of proliferation and transformation in various normal and pathological cellular systems, and therefore was considered as a candidate to exert such a function. Y-box proteins have a capacity to bind DNA and RNA, thereby controlling gene expression from transcription to translation. This study aimed to examine the expression of mouse Y-box protein 3 (MSY3) in the developing nervous system and elucidate its putative role in regulation of proliferation of progenitor cells. As presented in this work, the MSY3 protein in the embryonic CNS is expressed solely in progenitor cells and not neurons. Moreover, as shown by two independent approaches: morphologically, i.e. using immunofluorescence and confocal microscopy, and biochemically, MSY3 expression is downregulated concomitantly with the spatiotemporal progression of neurogenesis. Interestingly, in preliminary results it was shown that MSY3 is expressed in Dcx-positive transient amplifying precursors in germinal zones of the adult brain, and in EGF-dependent neurospheres. To evaluate whether MSY3 could regulate the neurogenesis, the levels of the MSY3 protein in the progenitors were acutely downregulated or elevated by electroporation of RNAi or MSY3 expression plasmids, respectively. Neither premature reduction of MSY3 in the neuroepithelium (E9.5-E11.5) nor prolonged expression at the developmental stage when this protein is endogenously downregulated (E10.5-14.5) did affect proliferation versus the cell cycle exit of progenitors. Moreover, in Notch1-deficient progenitors in the cerebellar anlage, which exhibit precocious differentiation, MSY3 was not prematurely downregulated, suggesting that MSY3 also is not an early marker of differentiation. Differential centrifugation, immunoprecipitation and polysomal analysis performed in this study revealed that the MSY3 protein in the developing embryo, as well as in Neuro-2A cells, is associated with RNA. On a sucrose density gradient MSY3 co-fractionates with ribosomes and actively translating polysomes, suggesting that it might have a role in regulation of translation. However, downregulation or overexpression of MSY3 in the Neuro-2A cell line did not affect global translation rates. Other researchers suggested that the MSY3 protein has the redundant function with Y-box protein 1 (YB-1). Accordingly, in our system the MSY3 protein could be co-immunoprecipitated with YB-1. Importantly, developmentally regulated expression of MSY3 is not a hallmark of general translation apparatus, as several other proteins involved in translation did not show similar downregulation. To summarise, this work showed that the MSY3 protein is a marker of proliferation of progenitor cells in the embryonic and adult brain, being absent from neurons. Discovery of the molecular mechanism by which MSY3 exerts its role in the cell could provide the link between the translational machinery and proliferation.
414

Regulation of Suprachiasmatic Nucleus and Hippocampal Cellular Activity as a Function of Circadian Signaling

Alzate Correa, Diego Fernando January 2017 (has links)
No description available.
415

Chronic–Progressive Dopaminergic Deficiency Does Not Induce Midbrain Neurogenesis

Fauser, Mareike, Pan-Montojo, Francisco, Richter, Christian, Kahle, Philipp J., Schwarz, Sigrid C., Schwarz, Johannes, Storch, Alexander, Hermann, Andreas 03 May 2023 (has links)
Background: Consecutive adult neurogenesis is a well-known phenomenon in the ventricular–subventricular zone of the lateral wall of the lateral ventricles (V–SVZ) and has been controversially discussed in so-called “non-neurogenic” brain areas such as the periventricular regions (PVRs) of the aqueduct and the fourth ventricle. Dopamine is a known modulator of adult neural stem cell (aNSC) proliferation and dopaminergic neurogenesis in the olfactory bulb, though a possible interplay between local dopaminergic neurodegeneration and induction of aNSC proliferation in mid/hindbrain PVRs is currently enigmatic. Objective/Hypothesis: To analyze the influence of chronic–progressive dopaminergic neurodegeneration on both consecutive adult neurogenesis in the PVRs of the V–SVZ and mid/hindbrain aNSCs in two mechanistically different transgenic animal models of Parkinson´s disease (PD). Methods: We used Thy1-m[A30P]h α synuclein mice and Leu9′Ser hypersensitive α4* nAChR mice to assess the influence of midbrain dopaminergic neuronal loss on neurogenic activity in the PVRs of the V–SVZ, the aqueduct and the fourth ventricle. Results: In both animal models, overall proliferative activity in the V–SVZ was not altered, though the proportion of B2/activated B1 cells on all proliferating cells was reduced in the V–SVZ in Leu9′Ser hypersensitive α4* nAChR mice. Putative aNSCs in the mid/hindbrain PVRs are known to be quiescent in vivo in healthy controls, and dopaminergic deficiency did not induce proliferative activity in these regions in both disease models. Conclusions: Our data do not support an activation of endogenous aNSCs in mid/hindbrain PVRs after local dopaminergic neurodegeneration. Spontaneous endogenous regeneration of dopaminergic cell loss through resident aNSCs is therefore unlikely.
416

Enhancing Hippocampal Neurogenesis Rescues Cognitive Functions in Alzheimer’s Disease through Modulating the Neuronal Networks

Lee, Chi-Chieh 17 January 2024 (has links)
The hippocampus is a brain area fundamental for cognitive functions, such as learning, memory, spatial navigation and emotion regulation, and is mainly affected in Alzheimer’s disease (AD). AD is an irreversible neurodegenerative disease, characterized by pathological protein aggregations and cognitive impairments. To date, there is no treatment for Alzheimer’s disease. The search for a therapy is urgently needed to alleviate the suffering of patients and relieve the burden on society. Neural stem cells (NSCs) in the hippocampal neurogenic niche sustain continuous neurogenesis in adulthood. Adult hippocampal neurogenesis (AHN) is functionally associated with many cognitive and emotional functions in humans and rodents. In particular, hippocampal neurogenesis is impaired in AD patients and AD mouse models and may be a putative therapeutic target for curing AD. In my project, endogenous hippocampal neurogenesis is manipulated in the 3xTg AD mouse model by a chronic, genetically-driven expansion of hippocampal NSCs. Exploiting intrinsic NSCs potential to generate newborn neurons increases the neurogenesis in 3xTg AD mice. The boosted neurogenesis ameliorates the anxiety-like behavior, improves spatial navigational performances and restores the connectivity of the hippocampal network in AD. Altogether, this study demonstrates the beneficial effect of enhancing neurogenesis by exploiting the endogenous NSCs reserve to rescue AD phenotypes and elucidates the functional contribution of neurogenesis to learning and memory. The findings support and highlight the therapeutic potential of enhancing neurogenesis in the treatments of neurodegenerative diseases.
417

Identification of the Effects of Diabetes Mellitus on the Brain

Mikhail, Tryphina A 01 January 2016 (has links)
As more studies accumulate on the impact of diabetes mellitus on the central nervous system, they resound with the same conclusion - diabetes has a detrimental effect on cognition regardless of the presence of comorbidities. Less consistent however, are the specific mental processes wherein these declines are noticeable, and the structural changes that accompany these reductions in mental capacity. From global atrophy to changes in the volume of gray and white matter, to conflicting results regarding the effects of hypo- and hyperglycemic states on the development of the hippocampus, the studies display a variety of results. The goal of this research is to link the structural and compositional changes occurring in the diabetic brain with the clinical and behavioral findings highlighted in the literature, as well as to explore the potential mechanisms behind the pathologic brain state of diabetic encephalopathy. Using diabetic (OVE26) and non-diabetic wild type (FVB) mice as models, differences in the number of hippocampal neurons in the dentate gyrus, and cornu ammonis areas 1,2, and 3 were investigated through Nissl staining. Neurodegeneration was confirmed in those cells determined to be hyperchromatic in the diabetic model through staining with Fluoro-Jade C. Finally, the presence of progenitor cells in the hippocampus was compared in the diabetic and non-diabetic models using Musashi-1 antibodies, to determine whether neurogenesis in these areas is affected by diabetes. These experiments were performed to better understand the effect of DM on learning and memory, and could potentially explain the linkage between diabetes mellitus and the increased prevalence of Alzheimer’s disease, vascular dementia, and depression in this subset of the population.
418

Circadian Clocks in Neural Stem Cells and their Modulation of Adult Neurogenesis, Fate Commitment, and Cell Death

Malik, Astha 23 July 2015 (has links)
No description available.
419

Fred Regulatory Network in Drosophila Neurogenesis

Zhang, Yifei 20 June 2012 (has links)
No description available.
420

Identification and Functional Characterization of Novel Genes Involved in Primary Neurogenesis in Xenopus laevis / Characterization of Novel Genes Involved in Neurogenesis in Xenopus

Souopgui, Jacob 20 June 2002 (has links)
No description available.

Page generated in 0.0847 seconds