• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 20
  • 13
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 81
  • 18
  • 10
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Tachykinin Agonists Modulate Cholinergic Neurotransmission at Guinea-Pig Intracardiac Ganglia

Zhang, Lili, Hancock, John C., Hoover, Donald B. 05 December 2005 (has links)
Effects of substance P (SP) and selective tachykinin agonists on neurotransmission at guinea-pig intracardiac ganglia were studied in vitro. Voltage responses of neurons to superfused tachykinins and nerve stimulation were measured using intracellular microelectrodes. Predominant effects of SP (1 μM) were to cause slow depolarization and enable synaptic transmission at low intensities of nerve stimulation. Augmented response to nerve stimulation occurred with 29 of 40 intracardiac neurons (approx. 73%). SP inhibited synaptic transmission at 23% of intracardiac neurons but also caused slow depolarization. Activation of NK3 receptors with 100 nM [MePhe 7]neurokinin B caused slow depolarization, enhanced the response of many intracardiac neurons to low intensity nerve stimulation or local application of acetylcholine, and triggered action potentials independent of other stimuli in 6 of 42 neurons. The NK1 agonist [Sar 9,Met(O2)11]SP had similar actions but was less effective and did not trigger action potentials independently. Neither selective agonist inhibited cholinergic neurotransmission. We conclude that SP can function as a positive or negative neuromodulator at intracardiac ganglion cells, which could be either efferent neurons or interneurons. Potentiation occurs primarily through NK3 receptors and may enable neuronal responses with less preganglionic nerve activity. Inhibition of neurotransmission by SP is most likely explained by the known blocking action of this peptide at ganglionic nicotine receptors.
22

Information Theoretic Analysis of A Biological Signal Transduction System

Wang, Shu 31 August 2018 (has links)
No description available.
23

Régulation du cycle veille-sommeil par l'histamine et ses récepteurs, études utilisant des modèles de souris knock-out / Regulation of sleep-wake cycle by histamine and its receptors, studies using knock-out mice

Gondard, Élise 20 July 2010 (has links)
De nombreuses études de notre laboratoire ont montré le rôle prépondérant des neurones à histamine (HA) dans le contrôle de l'activation corticale et de l'éveil (Ev). Grâce aux divers modèles de souris knockout (KO), cette thèse a apporté de nouvelles données expérimentales confortant le rôle majeur de l’HA dans le contrôle de l’Ev. D’une part, la comparaison des phénotypes des souris sans HA de fond C57BL/6J à ceux observés précédemment chez les souris sans HA de fond 129/Sv nous a permis de confirmer que la somnolence et le déficit en Ev seraient bien dus à l’absence de l’HA. D’autre part, nous avons montré, grâce aux souris KO pour le gène du récepteur H3, qu’une neurotransmission histaminergique accrue et chronique pourrait, face aux divers défis comportementaux notamment le test de motivation, conduire à une extension exagérée de l’Ev semblable à une restriction volontaire du sommeil. En contrepartie, l’Ev serait déficitaire en absence de stimuli, même aux moments où l’activation corticale et comportementale est habituellement nécessaire (e.g., l’extinction lumineuse). Ces phénotypes ainsi que les perturbations comportementales et métaboliques rapportées (adiposité, obésité) chez la même souris suggèrent que ce modèle pourrait s’apparenter à un modèle de restriction chronique de sommeil. Enfin, nos premiers résultats semblent en mesure de montrer un rôle des récepteurs H2 dans la réactivité face au stress, notamment après un test de suspension. L’ensemble de ce travail contribue à la compréhension de la neurobiologie du système à HA et de sa régulation de l’Ev dans les conditions physiopathologiques / Studies from our laboratory have shown the major role of histamine (HA) neurons in the control of cortical activation and waking (W). Using knockout (KO) mouse models, this PhD study provides new experimental data further supporting the importance of HA in W control. First, the comparison of sleep-wake phenotypes of C57BL/6J mice lacking HA with those of the 129/Sv genetic background allowed us to confirm that somnolence and W deficit are due to the absence of HA rather than the interactions between the genetic background and deleted gene. Second, mice lacking H3-receptors showed signs of enhanced HA neurotransmission and vigilance, e.g., a greater extension of W or sleep restriction during behavioral tasks (new environment, locomotion, and motivation tests). During the baseline dark period, however, they displayed deficient W probably due to decreased HA cell activity and desensitized postsynaptic receptors. These data and the obesity phenotypes reported previously in this mouse suggest that chronic enhancement of HA transmission finally compromises the arousal system per se, leading to sleep-wake, behavioral and metabolic disorders similar to those caused by voluntary sleep restriction in humans. Finally, our preliminary results seem to indicate a role of H2- receptors in the reactivity facing stress, notably after a test of tail suspension. Together, our study contributes to the neurobiology of the HA system and its role in controlling W in pathophysiological conditions
24

Etude des atteintes morphofonctionnelles des synapses excitatrices dans la maladie d'Alzheimer : implication de la voie Cofiline-dépendante / Morpho-functional alterations of excitatory synapses in Alzheimer disease : involvment of the cofilin enzyme

Dollmeyer, Marc 16 December 2015 (has links)
La maladie d'Alzheimer (AD) est une pathologie neurodégénérative caractérisée par une atrophie cérébrale progressive associée à une mort neuronale. Plus récemment, il a été suggéré que la perte des fonctions cognitives survenant pendant la maladie s'explique principalement par une atteinte au niveau synaptique préalable à la mort neuronale. Ainsi il a été observé que le peptide β-amyloïde ou Aβ constituant des plaques séniles, l'un des deux marqueurs histologiques de la maladie, existe sous une forme soluble/oligomérique (Aβo), et cette conformation lui confère des propriétés synaptotoxiques. L'Aβo agit préférentiellement sur le compartiment post-synaptique des synapses excitatrices également appelées épines dendritiques, structures sub-cellulaires dont la forme est régie par un cytosquelette d'actine riche et dynamique. Parmi les nombreuses hypothèses émises pour expliquer la synaptotoxicité de l'Aβo, il a été suggéré que la disparition des épines était due à une dépolymérisation anormale des filaments d'actine par une enzyme : la cofiline. Pourtant des données récentes ont montré à l'inverse une phosphorylation/inactivation de la cofiline dans le cortex frontal de patients AD, mais aussi dans le cerveau de la lignée de souris APP/PS-1, modèle de AD. De plus, des analyses morphologiques des synapses de la région CA1 chez la souris APP/PS-1 ont montré une réduction de la densité d'épines, associée à une augmentation du volume des épines survivantes. Les variations de volume de la tête de l'épine sont des phénomènes très fréquents lors d'une induction de potentialisation à long terme, le corrélat électrophysiologique de la mémoire.. Au cours de ma thèse, nous avons cherché dans un premier temps à caractériser les altérations morphologiques des épines dendritiques chez la souris APP/PS-1 par microscopie électronique. Nous avons pu confirmer que dès 3 mois, les synapses excitatrices sont moins nombreuses, que les épines restantes sont plus larges, mais surtout, que l'épaisseur de la densité post-synaptique n'est plus proportionnelle à la surface de l'épine, ce qui suggère un découplage entre modifications morphologiques et fonctionnelles. Nous avons également mis en évidence la présence de spinules anormales sur les épines.En utilisant des cultures primaires de neurones corticaux, nous avons pu montrer qu'un traitement aigu avec de l'Aβo induit la formation de protrusions riches en actine filamenteuse ressemblant aux spinules observés chez les animaux transgéniques. En purifiant la fraction post-synaptique, nous avons montré que cette formation de protrusions est concomitante à une phosphorylation anormale de la cofiline induite par l'Aβo. Ainsi l'inactivation de la cofiline qui en résulte pourrait être à l'origine d'une stabilisation et donc d'un allongement des filaments d'actine synaptique conduisant à la formation des protrusions. Cette inactivation de la cofiline a également été retrouvée chez la souris APP/PS-1 et chez l'humain. En conclusion, l'ensemble des résultats de cette thèse montre que l'Aβo induit des déformations morphologiques des épines, qui se caractérisent par la formation de protrusions membranaires ressemblant à des spinules. Ces protrusions ne sont pas activité-dépendantes, mais proviennent plutôt d'une dérégulation de l'activité enzymatique de la cofiline par l'Aβo. / Alzheimer's disease (AD) is a neurodegenerative pathology associated with progressive cerebral atrophy linked to neuronal death. It has been recently suggested that loss of cognitive functions occurring during the disease was a consequence of synapse dysfunction and prior to neuronal death. Thus, it has been observed that Amyloïd-β peptide (Aβ), the main component of senile plaques, one histological marker of the disease, also exists as soluble/oligomeric Aβ (Aβo). This Aβ conformation is known to be synaptotoxic. Aβo acts preferentially on the post-synaptic compartment of excitatory synapses, also named dendritic spines, sub-cellular micro-domains containing dynamic and filamentous actin as their main cytoskeleton component. Among numerous theories explaining Aβo synaptotoxicity, it has been suggested that spine collapsing was due to an abnormal actin depolymerisation through Cofilin enzyme. Yet, recent evidences inversely showed Cofilin phosphorylation/inactivation in frontal cortex of AD patients and in the APP/PS-1 transgenic mice brain, an AD animal model. Moreover, synapse morphological analysis in the CA1 region of APP/PS-1 mice showed a reduction in spine density and an increase in spine head volume of remaining ones. Spine head volume variations are commonly occurring during induction of Long Term Potentiation, the electrophysiological correlate of memory.During my thesis, we firstly characterized APP/PS-1 mice dendritic spine morphological alterations using electron microscopy. We confirmed that even at 3 month-old, excitatory synapses are fewer, but also that remaining ones display larger surfaces. In addition, PSD thickness is not proportional to spine surface anymore, which suggests an uncoupling between functional and morphological modifications. We also demonstrated the presence of abnormal shaped spinules onto spines.Using primary cortical neuron cultures, we demonstrated that acute Aβo treatment induces the formation of filamentous actin enriched protrusions, resembling spinules observed in transgenic mice. By purifying post-synaptic protein fraction, we showed that protrusions formation is correlated to an abnormal Cofilin phosphorylation/inactivation by Aβo. Thus, resulting Cofilin inactivation could trigger actin filament stabilization, leading to protrusion formation. We also found Cofilin phosphorylation in APP/PS-1 mice and in AD brains. Taken together, these results show that Aβo triggers dendritic spine abnormal alterations, characterized by the formation of membrane protrusions ressembling spinules. These protrusions are not activity-dependant, but may instead originate from a disregulation of Cofilin enzymatic activity by Aβo.
25

Rôle de l’homéostasie des ions chlorures dans la survenue des troubles dépressifs dans un modèle murin de traumatisme cérébral / Role of chloride homeostasis in post-traumatic depressive like behavior

Goubert, Emmanuelle 05 December 2017 (has links)
Le traumatisme cérébral (TC) touche des millions de personnes chaque année dans le monde. Les premières conséquences peuvent être une perte de conscience, des hémorragies et l’apparition d’un œdème cérébral. Cependant les personnes qui subissent un TC peuvent présenter des séquelles importantes à plus long terme. Ainsi le traitement préventif des pathologies post-traumatiques est devenu un réel problème de santé publique. La dépression représente la pathologie post-traumatique dont l’occurrence est la plus fréquente. Les origines connues de son apparition s’orientent vers une altération de la neurogenèse adulte hippocampique ainsi que des changements dans la neurotransmission GABAergique, qui est dépendante de l’homéostasie des ions chlorures. Mon travail de thèse suggère que la phase critique, responsable de l’apparition des pathologies post-traumatiques, survient au cours de la première semaine suivant le TC. Pendant cette période, mes résultats montrent que l’hyperexcitabilité des réseaux neuronaux hippocampiques est due à une perturbation des transporteurs des ions chlorure entraînant notamment, une diminution de l’inhibition neuronale. J’ai aussi pu mettre en évidence une altération de la neurogenèse adulte hippocampique liée à la perte d’interneurones dans le gyrus denté. Consécutivement à ces changements, vont s’installer des troubles dépressifs majeurs. Mes travaux indiquent également que la restauration précoce, de l’homéostasie des ions chlorure par un agent pharmacologique, prévient la mort des interneurones ainsi que les changements dans la neurogenèse et permet sur le long terme de réduire très fortement les troubles dépressifs majeurs. / Traumatic brain injury (TBI) affects annually millions of people over the world. The first major consequences include loss of consciousness, haemorrhage and the appearance of cerebral edema. However, people who experience TBI may have significant long-term sequelae and in the majority of cases develop major depressive disorders. In addition, debilitating effects of TBI substantially impair health-related quality of life and are associated with high health care costs. Hence, preventive treatment against posttraumatic pathologies has become a real public health concern. Increasing evidence points to an association between depressive disorders and changes in GABAergic neurotransmission as well as alteration of adult hippocampal neurogenesis.My thesis suggests that the critical phase of posttraumatic pathology occurs over the first week following the trauma. During this period, my results show that hippocampal network hyperexcitability is induced by a disruption of the chloride ion transporters, leading notably to a decrease in neuronal inhibition. Then my work highlighted an alteration of hippocampal neurogenesis related to the loss of interneurons in the dentate gyrus. After some latency, these changes will trigger major depressive disorders. My work also indicates that the early restoration, during this first post-traumatic week, of chloride ion homeostasis by a pharmacological agent, prevents cell death of interneurons as well as changes in neurogenesis and allows significant long-term reduction of major depressive disorders. This therefore suggests the possibility of developing new therapeutic strategies to prevent the emergence of posttraumatic pathologies.
26

Modulateurs du transport vésiculaire du glutamate : développement d’outils pharmacologiques et de diagnostic pour la maladie d’Alzheimer / Modulators of vesicular glutamate transporters : development of pharmacological and diagnostic tools for Alzheimer's disease

Favre-Besse, Franck-Cyril 13 December 2012 (has links)
Les transporteurs vésiculaires du glutamate (VGLUTs) sont impliqués dans la recapture du glutamate du cytosol vers les vésicules présynaptiques. Depuis leurs caractérisations récentes en 2000, leurs implications dans plusieurs maladies neurodégénératives ont été démontrées. Ils jouent ainsi un rôle primordial dans la transmission nerveuse glutamatergique. Deux colorants naturels, le Rose Bengale et le Bleu Trypan, restent les meilleurs inhibiteurs connus à ce jour, avec respectivement des CI50 de 25 et 50 nM. Dans un premier temps, nous avons conçu et optimisé une série d’analogues basée sur le synthon Rose Bengale (inhibiteur non-compétitif). Ce travail a notamment permis de mettre en évidence l’effet des formes tautomères (quinone et lactone) sur l’inhibition des VGLUTs. Ainsi la forme quinonique, présente à pH physiologique, a été confirmée comme étant la seule capable de bloquer la recapture du glutamate. Dans un second temps, nous nous sommes intéressés à la famille du Bleu Trypan (inhibiteur compétitif) et nous avons déterminé la structure minimale active avec l’objectif de rendre ces molécules plus « drug-like ». En effet, l’intérêt de ce projet est de développer de petites structures aisément radiomarquables pour une utilisation dans un contexte physio-pathologique. / Vesicular glutamate transporters (VGLUTs) are involved in the recapture and storage of glutamate from cytol to secretory synaptic vesicules. Since their recent characterization in 2000, their implication in several neurodegenerative disorders have been demonstrated. They play a crucial role in glutamatergic neurotransmission. Natural dyes, such as Rose Bengal and Tryptan Blue are the best known inhibitors with IC50 values of 25 and 50 nM, respectively. Firstly, we designed and optimized a series of analogues based on the synthon Rose Bengal (non-competitive inhibitor). This work has especially enabled to highlight the effect of tautomeric forms (quinone and lactone) on the inhibition of VGLUTs. Thus, the quinone form, present at physiological pH, was confirmed as the only able to block the reuptake of glutamate. Secondly, we have been interested in the family of Trypan Blue (competitive inhibitor) and we determined the minimal active structure in order to render these molecules more "drug-like". Indeed, the interest of this project is to develop small structures easily radiomarquable to use in a physiopathological context.
27

Vglut3 : un rôle essentiel dans la cochlée et implication dans la surdité DFNA25. / Vglut3 : an essential role in cochlea and implication in deafness DFNA25.

Bersot, Tiphaine 19 December 2011 (has links)
Avant sa libération, le glutamate est accumulé dans des vésicules synaptiques par trois transporteurs vésiculaires (VGLUT1-3). Les cellules ciliées internes (CCI) de la cochlée n'expriment que VGLUT3. Pour étudier son rôle dans la physiologie cochléaire, nous avons utilisé une lignée de souris dont le gène Slc17a8, qui code pour VGLUT3, a été invalidé par recombinaison homologue. Les mutants ne présentaient pas de réponse nerveuse à une stimulation sonore. Les mécanismes d'exocytose des CCI étaient normaux et leurs synapses normales en microscopie électronique. Des immunoblots montraient que le transporteur membranaire du glutamate GLAST, ainsi que les sous-unités GLUR2 et NR1 des récepteurs AMPA et NMDA étaient toujours exprimées. Enfin, des potentiels auditifs du tronc cérébral étaient enregistrés après une stimulation électrique au niveau de la fenêtre ronde. Toutefois, nos résultats indiquent des diminutions de ~50% des synapses afférentes et de ~40% des neurones auditifs primaires ainsi qu'une réduction importante des terminaisons efférentes latérales sous les CCI.SLC17A8 est responsable de la surdité de perception non syndromique dominante DFNA25. Nous avons identifié une mutation dans l'exon 5 conduisant au remplacement de l'Alanine211 en Valine. Cette Alanine est conservée dans les VGLUT3 de différentes espèces ainsi que dans les VGLUT1-3 humains, suggérant un rôle fonctionnel important pour cet acide aminé. Nous avons caractérisé les propriétés biochimiques de la mutation A211V en culture de cellules. Le transporteur muté était correctement adressé aux boutons présynaptiques. Cependant, la mutation pA211V entraîne un défaut d'expression important en partie expliqué par le fait que le codon codant la valine est un codon rare. De plus, les études du transport de glutamate ont montré que la forme mutée est hyperactive par rapport à la forme native. L'ensemble de ces résultats montre que la mutation entraine un phénotype cellulaire complexe. / Before its release, glutamate is accumulated into synaptic vesicles by three vesicular glutamate transporters (VGLUT1-3). Only VGLUT3 is expressed in the inner hair cells (IHCs) of the cochlea. To study its role in the hearing physiology, we used a mouse in which the Slc17a8 gene, which encodes VGLUT3, has been null-mutated. In this VGLUT3-/- mouse, no auditory nerve response to acoustic stimuli could be recorded. All the others cochlear potentials were normal. The genetic deletion of Slc17a8 in mice resulted in a profound deafness, without altering the IHCs synapse morphology and the synaptic vesicles turnover. Using western blot, we then observed that the glutamate-aspartate transporter GLAST and the GLUR2 and NR1 subunits of AMPA and NMDA receptors were always expressed. Finally, auditory brainstem responses could be elicited by electrical stimuli on the round window. However, VGLUT3-/- IHCs presented a ~50% loss of IHCs synapses and a ~40% loss of primary auditory neurons. The number of lateral olivocochlear synapses with primary auditory neurons dendrites was strongly reduced.The SLC17A8 gene is responsible for DFNA25, an autosomal dominant progressive, high-frequency nonsyndromic deafness. We identified a heterozygous non-synonymous missense mutation in exon 5, leading to the amino acid change p.A211V. The A211 residue is conserved in VGLUT3 across species and in all the human VGLUT subtypes (VGLUT1-3), suggesting an important functional role. We characterized the biochemical properties of the A211V mutation in cell culture. Our results suggest that the mutated VGLUT3 was correctly addressed at the presynaptic boutons. However, the pA211V mutation induced an expression decrease because the valine codon is a rare codon. Moreover, the glutamate uptake is increased with the mutated VGLUT3. All these results shows that this mutation involves a complex cellular phenotype.
28

Paysages énergétique et conformationnel d’interaction de la Synaptotagmin-1 avec des membranes / Energy and conformational landscape of Synaptotagmin-1 interacting with membranes

Gruget, Clémence 11 June 2018 (has links)
A l’arrivée d’un potentiel d’action au niveau d’une synapse neuronale, des ions calcium (Ca2+) pénètrent dans le neurone, permettant aux protéines SNAREs (N-ethylmaleimide-sensitive factor activating protein receptor) de s’assembler entièrement, engendrant la fusion des vésicules synaptiques contenant les neurotransmetteurs avec la membrane plasmique du neurone. Des protéines régulatrices telles que la Complexine et la Synaptotagmine sont étroitement couplées aux SNAREs et permettent une fusion rapide et synchrone. La Synaptotagmin-1 (Syt1), une protéine transmembranaire localisée sur les vésicules synaptiques, est le senseur calcique de la neurotransmission. Syt1 possède deux domaines de liaison au Ca2+, C2A et C2B, un domaine flexible reliant la région membranaire au C2A, ainsi qu’un court lien entre C2A et C2B. Il a été montré qu’une région polybasique dans le C2B se liait aux lipides anioniques tels que phosphatidylserine (PS) et phosphatidylinositol-4,5-bisphosphate (PIP2) en l’absence de Ca2+. A l’entrée du Ca2+, les ions Ca2+ se lient au C2A et au C2B. La liaison de Syt1 aux ions Ca2+ permet aux résidus non polaires à proximité des sites de liaison au Ca2+ de s’insérer dans la membrane. Si ces mécanismes sont relativement bien acceptés, les mécanismes biochimiques et biophysiques précis du déclenchement de la fusion induit par la liaison de Syt1 au Ca2+ restent flous. Dans ce travail, nous mesurons directement les interactions de Syt1 liée à une membrane avec des membranes anioniques comprenant des lipides PS et PIP2 par un appareil à force de surface (SFA), afin d’imiter la membrane d’une vésicule synaptique contenant Syt1 interagissant avec la membrane plasmique anionique. Nous réalisons une mutagénèse dirigée sur les sites de liaison au Ca2+ de C2A et C2B, ainsi que sur le site polybasique de C2B, pour entièrement cartographier les énergies de liaison à la membrane relatives à ces sites, à la fois en présence et en l’absence d’ions divalents. Nous trouvons que Syt1 se lie avec une énergie de ~6 kBT dans l’EGTA, ~10 kBT dans le Mg2+, et ~18 kBT dans le Ca2+. Des réarrangements moléculaires mesurés pendant le confinement de Syt1 entre les membranes prévalent dans le Ca2+ et dans le Mg2+, et suggèrent que Syt1 se lie initialement via le C2B puis réoriente ses domaines C2 dans la conformation de liaison privilégiée. La neutralisation des sites de liaison au Ca2+ de C2B engendre une réduction radicale de l’énergie de liaison de Syt1 dans le Ca2+, alors que la même mutation dans le C2A a un effet plus nuancé. Ces résultats éclairent sur la coopérativité de C2A et C2B dans leur liaison à la membrane, et montrent un rôle apparent prédominant de C2B. / Upon arrival of an action potential at the neuronal synapse, calcium ions (Ca2+) enter the neuron, allowing soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) proteins to fully zipper, leading to the fusion of pre-docked synaptic vesicles containing neurotransmitters with the plasma membrane of the neurone. Regulatory proteins such as Complexin and Synaptotagmin are closely coupled to SNAREs during synaptic vesicle fusion and lead to synchronous, fast fusion. Synaptotagmin-1 (Syt1) is a transmembrane protein found in synaptic vesicles and is the Ca2+ sensor for synaptic transmission. Syt1 has two Ca2+ binding domains, C2A and C2B, with a flexible linker domain from the membrane region to C2A, and a short linker between C2A and C2B. A polybasic patch in C2B has been shown to bind to anionic lipids such as phophidylserine (PS) and phosphisotinol (PIP2) in the absence of Ca2+. Upon Ca2+ influx, Ca2+ ions bind in C2A and C2B. Ca2+ binding to Syt1 allows non-polar residues nearby the Ca2+ binding sites to insert into the membrane. While these mechanisms are relatively well-accepted, the precise biochemical and biophysical mechanisms for the Syt1 Ca2+ trigger remain unclear. In this work, we directly measure the interactions of Syt1-coated membranes with anionic membranes including PS and PIP2 lipids by the surface forces apparatus (SFA) technique, in order to mimic a Syt1-coated synaptic vesicle membrane interacting with the anionic plasma membrane. We perform site directed mutagenesis of the Ca2+ binding sites of C2A and C2B, along with the polybasic patch in C2B, to fully map the site-binding energetics of Syt1 with membranes, both in the absence and presence of divalent ions. We find that Syt1 binds with ~6 kBT in EGTA, ~10 kBT in Mg2+, and ~18 kBT in Ca2+. Molecular rearrangements measured during confinement of Syt1 between membranes are more prevalent in Ca2+ and Mg2+ and suggest that Syt1 initially binds through C2B, then reorients the C2 domains into the preferred binding configuration. Neutralization of C2B Ca2+ binding site leads to a drastic decrease of Syt1 binding energy in Ca2+, while the same mutation in C2A has a milder effect. These results illuminate that C2A and C2B cooperate in membrane binding, with an apparent predominant role of C2B.
29

Functional Imaging of Spinal Locomotor Networks

Nagaraja, Chetan January 2016 (has links)
Movement is necessary for the survival of most animals. The spinal cord contains neuronal networks that are capable of motor coordination and of producing different movements. In particular, a very reduced neuronal network in the spinal cord can produce simple rhythmic outputs even in the absence of descending or sensory inputs. This basic circuit was discovered by Thomas Graham Brown (reported in 1911) and is termed central pattern generator. For over a century a large number of studies have been carried out in order to identify the neuronal components that are part of these networks. In project 1 we focused on Renshaw cells, which are a population of spinal interneurons expressing the alpha-2 subunit of the nicotinic acetylcholine receptors (Chrna2). Renshaw cells are the only identified central targets for motor neuron inputs, and in turn they mediate inhibition of the motor neurons. We analyzed the activity pattern of Renshaw cells on a cell-population level in neonates when the circuit is still developing. At segment 1 of the lumbar spinal cord, Renshaw cells show significantly greater activity response to functional sensory and motor inputs from rostral compared to the caudal segments. Contrarily, the suppression of the monosynaptic stretch reflex was more pronounced when caudal roots were stimulated. Our data underline the importance of sensory input during motor circuit development and help to understand the functional organization of Renshaw cell connectivity. Several neurons that play distinct roles in locomotor central pattern generation have been identified with the help of genetics. For instance, the V0 population of spinal interneurons are identified by the expression of transcription factor developing brain homeobox 1 (Dbx1). V0 neurons are necessary for producing an alternating rhythm at all locomotor speeds. In project 2 we have looked at a population of dorsally derived ventrally projecting interneurons that express the transcription factor doublesex and mab-3 related transcription factor 3 (Dmrt3). On a behavioral level Dmrt3 neurons are involved in regulating coordination across different locomotor speeds. On a microcircuit level, we have shown that individual Dmrt3 neurons show distinct frequencies of oscillations for a constant locomotor rhythm. In addition, removal of inhibitory neurotransmission from Dmrt3 neurons results in uncoupling of rhythm in motor neurons. In project 3 the activity patterns in populations of flexor related motor neurons are characterized during fictive locomotion in neonatal mice. An interesting and intriguing finding in project 3 is the presence of multiple rhythmicities in motor neurons. Multiple rhythmicities are seen even when the locomotor output shows a constant frequency.
30

STRUCTURAL AND FUNCTIONAL ALTERATIONS IN NEOCORTICAL CIRCUITS AFTER MILD TRAUMATIC BRAIN INJURY

Vascak, Michal 01 January 2017 (has links)
National concern over traumatic brain injury (TBI) is growing rapidly. Recent focus is on mild TBI (mTBI), which is the most prevalent injury level in both civilian and military demographics. A preeminent sequelae of mTBI is cognitive network disruption. Advanced neuroimaging of mTBI victims supports this premise, revealing alterations in activation and structure-function of excitatory and inhibitory neuronal systems, which are essential for network processing. However, clinical neuroimaging cannot resolve the cellular and molecular substrates underlying such changes. Therefore, to understand the full scope of mTBI-induced alterations it is necessary to study cortical networks on the microscopic level, where neurons form local networks that are the fundamental computational modules supporting cognition. Recently, in a well-controlled animal model of mTBI, we demonstrated in the excitatory pyramidal neuron system, isolated diffuse axonal injury (DAI), in concert with electrophysiological abnormalities in nearby intact (non-DAI) neurons. These findings were consistent with altered axon initial segment (AIS) intrinsic activity functionally associated with structural plasticity, and/or disturbances in extrinsic systems related to parvalbumin (PV)-expressing interneurons that form GABAergic synapses along the pyramidal neuron perisomatic/AIS domains. The AIS and perisomatic GABAergic synapses are domains critical for regulating neuronal activity and E-I balance. In this dissertation, we focus on the neocortical excitatory pyramidal neuron/inhibitory PV+ interneuron local network following mTBI. Our central hypothesis is that mTBI disrupts neuronal network structure and function causing imbalance of excitatory and inhibitory systems. To address this hypothesis we exploited transgenic and cre/lox mouse models of mTBI, employing approaches that couple state-of-the-art bioimaging with electrophysiology to determine the structural- functional alterations of excitatory and inhibitory systems in the neocortex.

Page generated in 0.0808 seconds