1 |
Modulateurs du transport vésiculaire du glutamate : développement d’outils pharmacologiques et de diagnostic pour la maladie d’Alzheimer / Modulators of vesicular glutamate transporters : development of pharmacological and diagnostic tools for Alzheimer's diseaseFavre-Besse, Franck-Cyril 13 December 2012 (has links)
Les transporteurs vésiculaires du glutamate (VGLUTs) sont impliqués dans la recapture du glutamate du cytosol vers les vésicules présynaptiques. Depuis leurs caractérisations récentes en 2000, leurs implications dans plusieurs maladies neurodégénératives ont été démontrées. Ils jouent ainsi un rôle primordial dans la transmission nerveuse glutamatergique. Deux colorants naturels, le Rose Bengale et le Bleu Trypan, restent les meilleurs inhibiteurs connus à ce jour, avec respectivement des CI50 de 25 et 50 nM. Dans un premier temps, nous avons conçu et optimisé une série d’analogues basée sur le synthon Rose Bengale (inhibiteur non-compétitif). Ce travail a notamment permis de mettre en évidence l’effet des formes tautomères (quinone et lactone) sur l’inhibition des VGLUTs. Ainsi la forme quinonique, présente à pH physiologique, a été confirmée comme étant la seule capable de bloquer la recapture du glutamate. Dans un second temps, nous nous sommes intéressés à la famille du Bleu Trypan (inhibiteur compétitif) et nous avons déterminé la structure minimale active avec l’objectif de rendre ces molécules plus « drug-like ». En effet, l’intérêt de ce projet est de développer de petites structures aisément radiomarquables pour une utilisation dans un contexte physio-pathologique. / Vesicular glutamate transporters (VGLUTs) are involved in the recapture and storage of glutamate from cytol to secretory synaptic vesicules. Since their recent characterization in 2000, their implication in several neurodegenerative disorders have been demonstrated. They play a crucial role in glutamatergic neurotransmission. Natural dyes, such as Rose Bengal and Tryptan Blue are the best known inhibitors with IC50 values of 25 and 50 nM, respectively. Firstly, we designed and optimized a series of analogues based on the synthon Rose Bengal (non-competitive inhibitor). This work has especially enabled to highlight the effect of tautomeric forms (quinone and lactone) on the inhibition of VGLUTs. Thus, the quinone form, present at physiological pH, was confirmed as the only able to block the reuptake of glutamate. Secondly, we have been interested in the family of Trypan Blue (competitive inhibitor) and we determined the minimal active structure in order to render these molecules more "drug-like". Indeed, the interest of this project is to develop small structures easily radiomarquable to use in a physiopathological context.
|
2 |
Functional neuroanatomy of visual pathways involving the pulvinarAbbas Farishta, Reza 04 1900 (has links)
Les neurones du cortex visuel primaire (V1) peuvent emprunter deux voies de communications afin d’atteindre les aires extrastriées : une voie cortico-corticale, et une voie cortico-thalamo-corticale à travers des noyaux thalamiques de haut niveau (HO) comme le pulvinar. Les fonctions respectives de ces deux voies restent toujours méconnues. Un pas vers une meilleure compréhension de celles-ci seraient d’investiguer la nature des signaux qu’elles transmettent. Dans ce contexte, deux grands types de projections cortico-thalamiques (CT) ont été identifiés dans le système visuel : les neurones de type I (modulator) et type II (driver) caractérisés respectivement par des axones minces dotés de petits boutons terminaux et par des axones plus épais et de plus grands boutons respectivement. Une proposition récente a aussi émis l'hypothèse que ces deux types pourraient également être distingués par leur expression de transporteur de glutamate vésiculaire. Cette hypothèse suggère que les projections de type II et de type I peuvent exprimer sélectivement VGLUT2 et VGLUT1, respectivement (Balaram, 2013; Rovo et al, 2012).
Chez le chat, les projections de V1 vers le pulvinar se composent principalement de terminaux de type II, tandis que celles de l’aire PMLS présentent une combinaison de terminaux de type I et II suggérant ainsi que, la proportion de terminaux de type I augmente avec le niveau hiérarchique cortical des zones visuelles. Afin de tester cette hypothèse, nous avons cartographié la distribution des terminaux CT du cortex AEV (article 1) ainsi que de l’aire 21a (article 2). Nous avons aussi étudié l’expression de VGLUT 1 et 2 dans le système visuel du chat afin de tester si leurs expressions corrèlent avec les sites de projections de neurones de type I et II (article 3).
Nos résultats indiquent que la grande majorité des terminaux marqués dans le pulvinar provenant de l’AEV et de l’aire 21a sont de type I (Article 1 et 2) alors que ceux de V1 sont majoritairement de type II. Une comparaison de la proportion des projections de type I à travers les aires V1, PMLS, 21a et AEV révèlent une corrélation positive de sorte que celle-ci augmente avec le degré hiérarchique des aires visuelles.
Nos résultats indiquent que VGLUT 1 et 2 présentent une distribution complémentaire et que leur localisation dans des sites connus pour recevoir une projection de type ‘modulateur’ et ‘déclencheur’ proéminente suggère que leurs expressions peuvent montrer un biais pour celles-ci dans la voie géniculo-strié.
Les résultats de cette thèse ont permis de mieux connaitre la nature des projections CT des aires visuelles extrastriées. Ces résultats sont d’autant plus importants qu’ils établissent un lien entre la nature de ces projections et le degré hiérarchique des aires visuelles, suggérant ainsi l’existence une organisation anatomofonctionnelle des voies CT passant par le pulvinar. Enfin, les résultats de cette thèse ont aussi permis une meilleure compréhension des vésicules VGLUT 1 et 2 dans le système visuel du chat et leurs affinités respectives pour les sites de projections de neurones de type I et II. / Visual signals from the primary visual cortex (V1), can take two main communication routes in order to reach higher visual areas: a corticocortical pathway and a cortico-thalamo-cortical (or transthalamic) pathway through high-order thalamic nuclei such as the pulvinar. While these pathways are receiving an increasing interest from the scientific community, their respective functions still remain largely unknown. An important step towards a better understanding of these pathways would be to investigate the nature of the signals they transmit. In this context, two main types of corticothalamic (CT) projections have been identified in the visual system: type I projections (modulators) and type II (drivers) characterized respectively by thin axons with small terminal and by thicker axons and larger terminals. A recent proposal has also hypothesized that these two types can also be distinguished by their expression of vesicular glutamate transporter (VGLUT) in their respective synaptic terminals such that type II (driver) and type I (modulator) projections can selectively express VGLUT 2 and VGLUT 1, respectively (Balaram, 2013; Rovo et al, 2012).
In cats, projections from V1 to the LP-pulvinar are mainly composed of type II terminals, while those from the Posteromedial lateral suprasylvian (PMLS) cortex present a combination of type I and II terminals. This observation suggests that, in higher-order (HO) thalamic nuclei, the proportion of type I terminals increases with the hierarchical level of the visual areas. To test this hypothesis, we charted the distribution of CT terminals originating from the Anterior EctoSylvian visual cortex (AEV) (article 1) and from area 21a (article 2). We also studied the expression of VGLUT 1 and 2 in the cat's visual system in order to test whether their expressions correlate with the projection sites of type I and II axon terminals (article 3). Our results from article 1 and 2 indicate that the vast majority of terminals sampled in the pulvinar from the AEV and area 21a are of type I while projections from V1 projections to the pulvinar were mostly composed of type II terminals. A comparison of the proportion of type I projections across areas V1, PMLS, 21a and the AEV revealed a positive correlation such that its proportion increased with the hierarchical rank of visual areas.
Our results also indicate that VGLUT 1 and 2 have a complementary distribution pattern which matches prominent projection of type I and II respectively in ascending visual projections but does not in extra-geniculate pathways involving the pulvinar (Article 3).
Taken together, results from this thesis have allowed a better understanding of the nature of cortico-thalamic projections originating from extra-striate visual areas (21a and AEV). These results are all the more important in that they establish a link between the nature of these projections and the hierarchical degree of their cortical area of origin, thus suggesting that there is a functional organization of CT pathways passing through the pulvinar. Finally, results of this thesis also enabled a better understanding of the expression of VGLUT 1 and 2 in the visual system and their possible respective biases for type I and type II projections.
|
3 |
On the chloride dependence of vesicular glutamate transport / Über die Chloridabhängigkeit des vesikulären GlutamattransportsSchenck, Stephan 26 June 2009 (has links)
No description available.
|
4 |
Development of Fluorescence Activated Synaptosome Sorting (FASS) and analysis of VGLUT1 synapses from mouse brain / Entwicklung von „Fluorescence Activated Synaptosome Sorting“ (FASS) und die Analyse von VGLUT1-Synapsen des MäusehirnsBiesemann, Christoph 11 November 2010 (has links)
No description available.
|
5 |
Modulateurs du transport vésiculaire du glutamate : développement d'outils pharmacologiques et de diagnostic pour la maladie d'AlzheimerFavre-Besse, Franck-Cyril 13 December 2012 (has links) (PDF)
Les transporteurs vésiculaires du glutamate (VGLUTs) sont impliqués dans la recapture du glutamate du cytosol vers les vésicules présynaptiques. Depuis leurs caractérisations récentes en 2000, leurs implications dans plusieurs maladies neurodégénératives ont été démontrées. Ils jouent ainsi un rôle primordial dans la transmission nerveuse glutamatergique. Deux colorants naturels, le Rose Bengale et le Bleu Trypan, restent les meilleurs inhibiteurs connus à ce jour, avec respectivement des CI50 de 25 et 50 nM. Dans un premier temps, nous avons conçu et optimisé une série d'analogues basée sur le synthon Rose Bengale (inhibiteur non-compétitif). Ce travail a notamment permis de mettre en évidence l'effet des formes tautomères (quinone et lactone) sur l'inhibition des VGLUTs. Ainsi la forme quinonique, présente à pH physiologique, a été confirmée comme étant la seule capable de bloquer la recapture du glutamate. Dans un second temps, nous nous sommes intéressés à la famille du Bleu Trypan (inhibiteur compétitif) et nous avons déterminé la structure minimale active avec l'objectif de rendre ces molécules plus " drug-like ". En effet, l'intérêt de ce projet est de développer de petites structures aisément radiomarquables pour une utilisation dans un contexte physio-pathologique.
|
Page generated in 0.0148 seconds